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A. Probability Theory
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Probability Theory
Probability measure

We denote an abstract probability space by (⌦,A,P), in which

⌦ is an abstract set of elementary events,
A is a �-algebra of subsets of ⌦ containing the measurable events and
P is a probability measure on A.

Definition A.1
A measure P on a measurable space (⌦,A) is called a probability measure if
P(⌦) = 1.

Definition A.2
An event A 2 A is said to occur almost surely with respect to the measure P
(P-a.s.) if P(A) = 1.
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Probability Theory
Borel-Cantelli lemma

Proposition A.3 (Boole’s inequality)
For events {An}n2N there holds

P ([1
n=1An) 

1X

n=1

P(An).

Definition A.4
The set of all ! 2 ⌦ such that ! 2 An for infinitely many values of n, i.e., !
occurs infinitely often (i.o.), is defined as

{An, i.o. } := lim sup
n2N

An := \1
k=1 [1n=k

An.

Theorem A.5 (Borel-Cantelli Lemma)
If
P1

n=1 P(An) <1, then P{An, i.o.} = 0. For independent events {An}n2N
such that

P1
n=1 P(An) =1 there holds P{An, i.o.} = 1.
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Probability Theory
Random variables

Definition A.6
Let (⌦,A,P) be a probability space and (E,E) a measurable space. A measurable
function X : ⌦! E is called an (E-valued) random variable. Individual values
X(!) for ! 2 ⌦ are called realisations of the random variable.

Remark: If E is a topological space then the �-algebra generated by the open
subsets of E is called the Borel �-algebra B(E).

Definition A.7
Let X be an E-valued random variable where (E,E) is a measurable space and
(⌦,A,P) is the underlying probability space. The probability distribution PX of X
(also called the law of X) is the probability measure on (E,E) defined by
PX(A) := P(X�1(A)) for pre-images X

�1(A) := {! 2 ⌦ : X(!) 2 A)} of sets
A 2 E.

Remark: This construction is sometimes called the push-forward measure defined
by (⌦,A,P), (E,E) and X.
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Probability Theory
Expectation, moments

Definition A.8
The expectation of a Banach space-valued random variable X is defined as the
integral

E [X] :=

Z

⌦
X(!) dP(!).

Definition A.9
The k-th moment (k 2 N) of a real-valued random variable X is E

⇥
X

k
⇤
.

The first moment µ := E [X] is also called the mean or mean value.
The central moments E

⇥
(X � µ)k

⇤
measure the deviation of X from its mean.

The second central moment

VarX := E
⇥
(X � µ)2

⇤
= E

⇥
X

2
⇤
� µ

2

of a random variable X is called its variance.

Remark: The quantity � :=
p
VarX is called the standard deviation of X.
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Probability Theory
Computation of moments

Moments of a random variable are sometimes more easily computed by integrating
over the image variable.

Consider a real-valued random variable X from (⌦,A) to (�,B(�)) where � ⇢ R.
For B 2 B(�), set A := X

�1(B). Then by the definition of the probability
distribution PX

Z

⌦
A(!) dP(!) = P(A) = PX(B) =

Z

�
B(x) dPX(x).

For measurable functions f : �! R we have
Z

⌦
f(X(!)) dP(!) =

Z

�
f(x) dPX(x)

and, in particular,

E [X] =

Z

⌦
X(!) dP(!) =

Z

�
x dPX(x).
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Probability Theory
Probability density functions

Definition A.10
Let P be a probability measure on (�,B(�)) for some � ⇢ R. If there exists a
function p : �! [0,1) such that P(B) =

R
B
p(x) dx for any B 2 B(�) we say

that P has a density p with respect to Lebesgue measure and we call p its
probability density function (pdf). If X is a �-valued random variable on (⌦,A,P),
the pdf pX of X (if it exists) is the pdf of the probability distribution PX .

For real-valued random variables X from (⌦,A,P) to (�,B(�)) we then have1

E [X] =

Z

⌦
X(!) dP(!) =

Z

�
x dPX(x) =

Z

�
xp(x) dx. (A.1)

Event probabilities are then easily calculated as

P(X 2 (a, b)) = P ({! 2 ⌦ : a < X(!) < b}) = PX((a, b)) =

Z
b

a

p(x) dx.

1(where we have omitted the subscript X)
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Probability Theory
Uniform distribution

A random variable X is uniformly distributed on D = [a, b] ⇢ R, (a < b), denoted

X ⇠ Uni(a, b),

if its pdf is

p(x) =
1

b� a
, x 2 [a, b].

Using (A.1), we easily obtain

E [X] =

Z
b

a

x

b� a
dx =

a+ b

2
, E

⇥
X

2
⇤
=

Z
b

a

x
2

b� a
dx =

b
3 � a

3

3(b� a)
,

so that VarX = E
⇥
X

2
⇤
� E [X]2 = (b�a)2

12 .
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Probability Theory
Gaussian distribution

A random variable X is said to follow the Gaussian or normal distribution on
� = R if its pdf is given by

p(x) =
1p
2⇡�2

exp

✓
�(x� µ)2

2�2

◆
, x 2 R,

with two real parameters µ 2 R and � > 0, denoted X ⇠ N(µ,�2).
As is easily verified,

E [X] = µ, VarX = �
2
.

The probability that X is within ↵ of its mean is given by

P(|X � µ|  ↵) = erf

✓
↵p
2�2

◆
,

with the error function erf defined by

erf(x) =
2p
⇡

Z
x

0
e
�t

2

dt.
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Probability Theory
Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution
N(0, 1) is denoted by

�(x) =
1p
2⇡

Z
x

�1
e
� t2

2 dt =
1

2
+

1

2
erf

✓
xp
2

◆
.

Any (finite) linear combination of (jointly) random variables is normally
distributed.
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Probability Theory
Change of variables formula

Lemma A.11 (Change of variables)

Suppose Y : ⌦! R is a real-valued random variable and f : (a, b)! R is

continuously differentiable with inverse function f
�1

. If pY is the pdf of Y , the

pdf of the random variable X : ⌦! (a, b) defined via X = f
�1(Y ) is

pX(x) = pY (f(x)) |f 0(x)| for a < x < b.
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Probability Theory
Lognormal distribution

If Y ⇠ N(µ,�2), then the random variable

X := exp(Y )

is said to follow a lognormal distribution. With f(x) = log x, Lemma A.11 yields
the pdf of X as

pX(x) =
1p

2⇡�2x2
exp

✓
� [log(x)� µ]2

2�2

◆
.

Moreover, there holds

E [X] = exp

✓
µ+

�
2

2

◆
, VarX = (e�

2

� 1)e2µ+�
2

.
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Probability Theory
Covariance

Definition A.12
The covariance between two real-valued random variables is defined as

Cov(X,Y ) = E [(X � µX)(Y � µY )] ,

where µX := E [X] and µY := E [Y ]. In particular, Cov(X,X) = VarX.

Note: An equivalent expression is Cov(X,Y ) = E [XY ]� E [X]E [Y ].

Calculation of the covariance requires evaluating the integral

E [XY ] =

Z

⌦
X(!)Y (!) dP(!) =

Z

X(⌦)⇥Y (⌦)
xy dPX,Y (x, y),

in which PX,Y is the joint probability distribution of X and Y .
Sometimes it is useful to scale the covariance to lie in [�1, 1]. The resulting
quantity is known as the correlation coefficient

⇢(X,Y ) :=
Cov(X,Y )

�X�Y
.
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Probability Theory
Joint probability distribution

Definition A.13
The joint probability distribution of two random variables X and Y is the
distribution of the bivariate random variable X = (X,Y ), i.e., for all
B 2 B(X(⌦)⇥ Y (⌦))

PX,Y (B) = P({! 2 ⌦ : X(!) 2 B}).

If it exists, the density pX,Y of PX,Y is known as the joint pdf and

PX,Y =

Z

B

pX,Y (x, y) dx dy.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Background / A. Probability Theory Penn State ’21 16/86



Probability Theory
Uncorrelated random variables

Definition A.14
If Cov(X,Y ) = 0 the random variables X and Y are said to be uncorrelated. A
family {X↵}↵ is said to be pairwise uncorrelated if X↵ and X� are uncorrelated
for all ↵ 6= �.

Note: Uncorrelated random variables may still be strongly related. As an example,

X ⇠ N(0, 1), and Y := cosX

satisfy µX = 0 and hence

Cov(X,Y ) = E [X cosX] =

Z

R
x cos(x) dPX(x)

=
1p
2⇡

Z

R
x cos(x) exp

✓
�x2

2

◆
dx = 0.

A stronger notion is that of independent random variables.
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Probability Theory
Sub �-algebras, �-algebras generated by random variables

Definition A.15
A �-algebra B is a sub �-algebra of A if B ⇢ A, i.e., if A 2 B implies A 2 A.

Definition A.16
Let X be an E-valued random variable on (⌦,A,P) for a measurable space
(E,E). The �-algebra generated by X, denoted �(X), is defined as

�(X) := {X�1(A) : A 2 E} ⇢ A.

Remark: �(X) is the smallest �-algebra such that X is measurable. It may be
considerably smaller than A.
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Probability Theory
Independence of events, �-algebras and random variables

Definition A.17
Two events A,B 2 A are independent if P(A \B) = P(A)P(B).
Two �-algebras A1 and A2 are independent if all pairs of events A1 and A2 with
A1 2 A1 and A2 2 A2 are independent.

Definition A.18
Two random variables X,Y on a probability space (⌦,A,P) are said to be
independent if the �-algebras �(X) and �(Y ) are independent.
A family {X↵}↵ of random variables is said to be pairwise independent if X↵ and
X� are independent for all ↵ 6= �.

Independence of random variables X and Y can be conveniently determined using
their joint distribution PX,Y : X and Y are independent if and only if PX,Y equals
the product measure PX ⇥ PY . If X and Y are real-valued with densities pX and
pY , they are independent if and only if their joint pdf is

pX,Y (x, y) = pX(x)pY (y).
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Probability Theory
Independence implies uncorrelatedness

Lemma A.19
If X and Y are independent real-valued random variables and

E [|X|] ,E [|Y |] <1, then X and Y are uncorrelated.

Note: The converse is generally false.

Theorem A.20 (Jensen’s inequality)
If X is a real-valued random variable with E [|X|] <1 and � : R! R a convex

function, then

�(E [X])  E [�(X)] . (A.2)
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Probability Theory
Bochner spaces

Definition A.21
Let (⌦,A,P) be a probability space and let W be a separable Banach space with
norm k · k. We denote by L

p(⌦;W ), 1  p <1, the space of W -valued
A-measurable random variables X : ⌦!W with E [kXkp] <1. The resulting
space is a Banach space with the norm

kXkLp(⌦;W ) :=

✓Z

⌦
kX(!)kp dP(!)

◆1/p

= E [kXkp]1/p .

Similarly, L1(⌦;W ) is the Banach space of W -valued random variables
X : ⌦!W for which

kXkL1(⌦;W ) = ess sup
!2⌦

kX(!)k <1.
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Probability Theory
Bochner spaces, p = 2

The case p = 2 when W is a Hilbert space W = H with inner product (·, ·)
occurs frequently. In this case L

2(⌦;H) is a Hilbert space with inner product

(X,Y )L2(⌦;H) := E [(X,Y )] =

Z

⌦
(X(!), Y (!)) dP(!).

Random variables in L
2(⌦;H) are called mean-square integrable random variables.

For random variables X,Y 2 L
2(⌦;H) the Cauchy-Schwarz inequality takes on

the form
|(X,Y )L2(⌦;H)|  kXkL2(⌦;H)kY kL2(⌦;H)

or
E [(X,Y )]  E

⇥
kXk2

⇤1/2 E
⇥
kY k2

⇤1/2
.
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Probability Theory
Bochner spaces, p = 2, covariance

Definition A.22

Let H be a separable Hilbert space. A linear operator C : H ! H is the
covariance of two H-valued random variables X and Y if

(C�, ) = Cov((�, X), ( , Y )) 8�, 2 H.

X and Y are said to be uncorrelated if C is the zero operator. If Y = X then C

is called the covariance of X.

More generally, the covariance of two random variables X and Y with values in a
separable Banach space W may be defined as a bilinear map c : W 0 ⇥W

0 ! R on
the dual space W

0 of W such that

c(�, ) = Cov(h�, XiW 0⇥W , h , Y iW 0⇥W ) 8�, 2W
0
.

Here h·, ·iW 0⇥W denotes the duality bracket between W
0 and W . The bilinear

map c may be identified with a linear operator from C : W 0 !W
00 via the identity

hC�, iW 00⇥W 0 = c(�, ).
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Probability Theory
Convergence of random variables

Definition A.23
Let W be a Banach space with norm k · k and {Xn}n2N be a sequence of
W -valued random variables. We say Xn converges to X 2W

almost surely if Xn(!)! X(!) for almost all ! 2 ⌦, i.e., if

P (kXn �Xk ! 0 for n!1) = 1.

in probability if P (kXn �Xk > ✏)! 0 for n!1 for any ✏ > 0.
in p-th mean or in L

p(⌦;W ) if E [kXn �Xkp]! 0 as n!1. When p = 2 this
is known as convergence in mean square.

in distribution if E [�(Xn)]! E [�(X)] as n!1 for any bounded and
continuous function � : W ! R.
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Probability Theory
Convergence of random variables

Theorem A.24

Let Xk ! X in p-th mean and, for r > 0 and a constant K = K(p), assume that

kXk �XkLp(⌦;W ) := E [kXk �Xkp]1/p  K(p)

kr
. (A.3)

Then the following convergence properties apply:

(a) Xk ! X in probability and, for any ✏ > 0,

P
�
kXk �Xk � k

�r+✏
�
 K(p)p

kp✏
. (A.4)

(b) E [�(Xk)]! E [�(X)] for all Lipschitz continuous functions on W and, if L denotes a

Lipschitz constant of �,

|E [�(Xk)]� E [�(X)]|  L
K(p)

kr
.

(c) If (A.3) holds for all p sufficiently large, then Xk ! X a.s. Furthermore, for each ✏ > 0
there exists a nonnegative random variable K such that kXk(!)�X(!)k  K(!)k�r+✏

for almost all !.
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Probability Theory
Random vectors

Random variables X = (X1, . . . , Xn)T from (⌦,A,P) to (�,B(�) with � ⇢ Rn

are known as random vectors or multivariate random variables (bivariate for
n = 2).

Their expected value

µ = E [X] =

Z

⌦
X(!) dP(!) = [E [X1] , . . . ,E [Xn]]

T

is a vector in Rn. If X has a pdf p, then for B 2 B(�)

P(X 2 B) = P({! 2 ⌦ : X(!) 2 B}) = PX(B) =

Z

B

p(x) dx.

The components {Xj}nj=1 of X are (pairwise) independent if and only if PX is the
product measure PX1 ⇥ · · ·⇥ PXn . In terms of the pdf, this is equivalent to

p(x) = pX1(x1) · pX2(x2) · · · pXn(xn).
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Probability Theory
Multivariate uniform

A random vector X : ⌦! � with values in a set � ⇢ Rn with finite Lebesgue
measure |�| follows a multivariate uniform distribution on �, denoted by

X ⇠ Uni(�)

if it has the pdf

p(x) ⌘ 1

|�| , x 2 �.
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Probability Theory
Covariance matrix

Definition A.25
The covariance of two real-valued random vectors X = [X1, . . . , Xm]T and
Y = [Y1, . . . , Yn]T is given by the m⇥ n matrix

Cov(X,Y) = E
⇥
(X� E [X])(Y � E [Y])T

⇤
.

X and Y are said to be uncorrelated if Cov(X,Y) = O (the m⇥ n zero matrix).
The matrix Cov(X,X) 2 Rn⇥n is called the covariance matrix of X.

Proposition A.26
Let X be an Rn

-valued random variable with mean vector µ and covariance

matric C. Then C is symmetric positive semi-definite and its trace is given by

E
⇥
kX� µk22

⇤
.
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Probability Theory
Multivariate normal distribution

A random vector with mean vector µ and positive definite covariance matrix C is
said to follow an n-variate Gaussian distribution if it has the pdf

p(x) =
1p

(2⇡)d detC
exp

✓
�(x� µ)TC�1(x� µ)

2

◆
. (A.5)

Definition A.27
An Rn-valued random vector X follows a multivariate normal (or Gaussian)
distribution, denoted

X ⇠ N(µ,C),

where µ 2 Rn and C 2 Rn⇥n is symmetric positive definite, if it has the pdf
(A.5).

Note: The case that C is singular (pos. semi-definite) can be handled by
characteristic functions.
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Probability Theory
Multivariate normal distribution

If X ⇠ N(µ,C) is a multivariate normal random vector, then for any a 2 Rn the
linear combination

Y = a
>
X =

nX

k=1

akXk

follows the normal distribution Y ⇠ N(a>µ,a>Ca).
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Probability Theory
i.i.d. random variables

Definition A.28
A sequence {Xj}j2N of random variables is said to be independent and identically
distributed (i.i.d.) if they all follow the same probability distribution and, in
addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of i.i.d. random
variables. For an i.i.d. sequence {Xj}j2N, we introduce the notation

Sn := X1 + · · ·+Xn, n 2 N.
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Probability Theory
Weak Law of Large Numbers

Theorem A.29 (Chebyshev inequality)
A random variable X with finite mean µ and finite variance �

2
satisfies

c
2P(|X � µ| � c)  �2

.

Theorem A.30 (WLLN)
Let {Xk}k2N be a sequence of i.i.d. random variables on a given probability space

(⌦,A,P) with mean µ and finite variance. Then

Sn

n
! µ in probability, i.e.

for ever fixed ✏ > 0 there holds

P (|Sn/n� µ| > ✏)! 0 as n!1.
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Probability Theory
Strong Law of Large Numbers

Theorem A.31 (SLLN)
Let {Xk}k2N be a sequence of i.i.d. real-valued random variables on a given

probability space (⌦,A,P). Then Sn/n has a finite limit if and only if

E [|X1|] <1, in which case

Sn

n
! E [X1] a.s.

If E [|X1|] =1, then lim sup
n!1 |Sn|/n!1 a.s.
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Probability Theory
Central Limit Theorem

Let the sequence {Xk}k2N of real-valued random variables be independent, but
not necessarily identically distributed. In addition, let E [Xk] = 0 and
E
⇥
X

2
k

⇤
<1 for all k.

Besides Sn =
P

n

k=1 Xk, introduce the quantities

�
2
k
:= VarXk,

⌃2
n
:=

nX

j=1

�
2
j
= VarSn.

The central limit theorem (CLT) is the statement that

lim
n!1

Sn

⌃n

= lim
n!1

Sn � E [Sn]p
VarSn

⇠ N(0, 1) in distribution.
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Probability Theory
Central Limit Theorem

Definition A.32 (Lyapunov condition)
The sequence {Xk}k2N satisfies the Lyapunov condition if E

⇥
|Xk|3

⇤
<1 for

each k and

lim
n!1

1

⌃2
n

nX

k=1

E
⇥
|Xk|3

⇤
= 0.

Theorem A.33 (Lyapunov CLT)
If {Xk}k2N satisfies the Lyapunov condition, then Sn/⌃n ! N(0, 1) in

distribution.

Note: There exist several variants of the CLT with different assumptions.

Theorem A.34 (Simple CLT)
Let {Xk}k2N be a sequence of i.i.d. random variables, with E[Xk] = µ and

VarXk = �
2

for all k 2 N. Then
p
n(Sn/n� µ)! N(0,�2) in distribution.
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Probability Theory
Berry-Esseen Theorem

Theorem A.35 (Berry, 1941; Esseen 1942)

Let {Xk}k2N be i.i.d. random variables such that, for all k 2 N,

µ := E [Xk] , �
2 := VarXk > 0, ⇢ := E

⇥
|Xk � µ|3

⇤
<1.

If Fn denotes the distribution function of (Sn � nµ)/(�
p
n) and � that of the

standard normal distribution N(0, 1), then, with a universal constant C,

sup
x2R

|�(x)� Fn(x)|  C · ⇢

�3
p
n
.

Note: the constant C is known to satisfy 0.4097  C  0.7056 [Shevtsova, 2007].
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Statistical Estimation

Estimation theory is concerned with determining an unknown quantity ✓
associated with the probability distribution of a random variable X given n

i.i.d. samples {Xk}nk=1 of X.
Typical examples of such quantities ✓ are moments of X’s distribution such
as the mean and the variance. Another common situation is the estimation of
one or more parameters which determine the distribution of X.
An estimator for a scalar quantity ✓ is a function

� : Rn ! R, ✓̂ = �(X1, . . . , Xn)

mapping n i.i.d. realisations of X to the estimate ✓̂ of ✓.
Note that, since each of the n random samples Xk are random variables, the
same is true of

✓̂ = ✓̂(!) = �(X1(!), . . . , Xn(!)).

Once the samples have been drawn/realised, the estimate ✓̂ is a real number.
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Statistical Estimation
Sample average, unbiased estimator

The sample average

µ̂n :=
X1 + · · ·+Xn

n

is an estimate for the mean µ = E [X].
Since the Xk are i.i.d., we conclude from the linearity of expectation that

E [µ̂n] =
1

n

nX

k=1

E [Xk] =
1

n
· nµ = µ.

If E [|X|] <1 the SLLN tells us that also µ̂n ! µ = E [X] a.s. as n!1.

Since Var µ̂n = �
2

n
, where �2 = VarX, we note that the variance µ̂n

decreases like 1/n with growing sample size.

Definition A.36
An estimator for which E[✓̂] = ✓ is called unbiased.
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Statistical Estimation
Sample variance

The sample variance

�̂
2
n
:=

1

n� 1

nX

k=1

(Xk � µ̂n)
2

is an unbiased estimator for �2 = VarX.

In addition, there holds �̂2
n
! �

2 a.s. as n!1.
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B. Elliptic Boundary Value Problems
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Elliptic Boundary Value Problem
We consider the elliptic boundary value problem (BVP) of finding the solution of
the partial differential equation with Dirichlet boundary condition

�r·(aru) = f on D, (B.1a)
u = g on @D, (B.1b)

given a bounded convex domain D ⇢ Rd, d = 1, 2, 3 with sufficiently smooth
boundary @D, a coefficient function a : D ! R+, a source term f : D ! R and
boundary data in the form of a function g : @D ! R.
The differential operator in (B.1a) is short for

r·(aru) =
dX

j=1

@

@xj

✓
a(x)

@u(x)

@xj

◆

Equation (B.1a) is a model for diffusion phenomena occurring in , e.g., heat
conduction, electrostatics, potential flow and elasticity. Generalisations of (B.1)
involve the addition of lower-order terms, other boundary conditions, a
matrix-valued coefficient function and dependence of a on u.
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Elliptic Boundary Value Problem
Strong and weak solution

If f 2 C(D) and a 2 C
1(D), then a function u 2 C

2(D) \ C
1(D) which satisfies

(B.1) is called a classical solution or a strong solution of the boundary value
problem.

There are (theoretical and practical) reasons for generalizing the classical solution
concept. The key to this generalisation lies in reformulating (B.1) as a variational
problem. Multiplying both sides of (B.1a) by an arbitrary function � 2 C

1
0 (D), in

this context known as a test function, and integrating by parts, we observe that
any (classical) solution of (B.1) also satisfies the equation

a(u,�) = `(�) for all � 2 C
1
0 (D), (B.2)

with the symmetric bilinear form a(·, ·) and linear functional `(·) given by

a(u,�) =

Z

D

a(x)ru(x) ·r�(x) dx, `(�) =

Z

D

f(x)�(x) dx. (B.3)

For (B.2) to make sense, it is sufficient that the integrals and derivatives are
well-defined.
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Elliptic Boundary Value Problem
Strong and weak solution

This is the case if u and � are taken to lie in the Sobolev space

H
1(D) := {v 2 L

2(D) : rv 2 L
2(D)2},

which is a Hilbert space with respect to the inner product

(u, v)H1(D) =

Z

D

(ru ·rv + uv) dx = (ru,rv) + (u, v),

where we use (·, ·) to denote the inner product in L
2(D). The associated norm on

H
1(D) is

kuk2
H1(D) =

Z

D

�
|ru|2 + u

2
�
dx.

The gradients are in terms of weak derivatives in the sense of
✓
@u

@xj

,�

◆
= �

✓
u,

@�

@xj

◆
for all � 2 C

1
0 (D).
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Elliptic Boundary Value Problem
Strong and weak solution

Stating the boundary condition (B.1b) requires a well-defined notion of evaluating
a function from H

1(D) on the lower-dimensional manifold @D.

Functions in H
1(D) satisfying the BC with homogeneous boundary data

g ⌘ 0 are can be characterised as lying in the subspace H
1
0 (D) ⇢ H

1(D),
which is defined as the closure of smooth functions with compact support
with respect to k · kH1 :

H
1
0 (D) := C

1
0 (D) ⇢ H

1(D).

For inhomogeneous boundary data we define the space

W := H
1
g
(D) := {v 2 H

1(D) : u|@D = g}.

The evaluation on the boundary is understood in the following sense: for a
sufficiently smooth boundary there exists a bounded trace operator
� : H1(D)! L

2(@D) such that for all u 2 C
1(D) there holds �u = u|@D.

Since C
1(D) is dense in H

1(D), we have �u = limn!1 u|@D for any
approximating sequence {un} ⇢ C

1(D) converging to u in H
1(D).
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.1
The trace space of H1(D) for a sufficiently smooth domain D is defined as

H
1/2(@D) := �(H1(D)) = {�u : u 2 H

1(D)}.

H
1/2(@D) is a Hilbert space with norm

kgkH1/2(@D) := inf{kukH1(D) : �u = g, u 2 H
1(D)}.

Sine in general H1/2(@D) ( L
2(@D), boundary data g in (B.1b) must be chosen

from H
1/2(@D).

Lemma B.2
There exists C� > 0 such that, for all g 2 H

1/2(@D), we can find ug 2 H
1(D)

with �ug = g and

kugkH1(D)  C�kgkH1/2(@D)
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Elliptic Boundary Value Problem
Strong and weak solution

We denote the spaces of trial and test functions by

W := H
1
g
(D), and V := H

1
0 (D).

Assumption 1

The coefficient function a = a(x) in (B.1a) satisfies

0 < amin  a(x)  amax <1 for almost all x 2 D

for positive constants amin and amax. In particular, a 2 L
1(D) and a is uniformly

bounded away from zero.

By Assumption 1, the bilinear form a(·, ·) is bounded on H
1(D), i.e.,

|a(u, v)|  CkukH1(D)kvkH1(D), for all u, v 2 H
1(D)

with a constant C  kakL1(D).
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.3
A weak solution of (B.1) is a function u 2W such that

a(u, v) = `(v) for all v 2 V, (B.4)

with a(·, ·) and `(·) as defined in (B.3).
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Elliptic Boundary Value Problem
Strong and weak solution

Definition B.4
A bilinear form a : H ⇥H ! R on a Hilbert space H is said to be coercive if
there exists a constant ↵ > 0 such that

a(u, u) � ↵kuk2
H

for all u 2 H.

Lemma B.5 (Lax–Milgram)
Let H be a real Hilbert space with norm k · kH and let ` be a bounded linear

functional on H. Let a : H ⇥H ! R be a bilinear form that is bounded and

coercive. Then there exists a unique u` 2 H such that a(u`, v) = `(v) for all

v 2 H, and the solution depends continuously on the data

ku`kH 
1

↵
k`k.
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Elliptic Boundary Value Problem
Strong and weak solution

For functions in H
1(D) we introduce the H

1 semi-norm

|u|H1(D) :=

✓Z

D

|ru|2 dx
◆1/2

.

as well as the energy norm associated with the coefficient function a as

|u|a := a(u, u)1/2 =

✓Z

D

aru ·ru dx
◆1/2

.

Theorem B.6 (PoincarÃľ–Friedrichs inequality)

For a bounded domain D there exists a constant C = CD > 0 such that

kukL2(D)  CD|u|H1(D) for all u 2 H
1
0 (D).
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Elliptic Boundary Value Problem
Strong and weak solution

Lemma B.7
Under Assumption 1 the bilinear form a : H1(D)⇥H

1
0 (D)! R is bounded and

the energy norm is equivalent to the H
1

semi-norm on H
1(D).

Theorem B.8

Let Assumption 1 hold, f 2 L
2(D) and g 2 H

1/2(@D). Then (B.1) has a unique

weak solution u 2W = H
1
g
(D). Furthermore, the weak solution u 2W satisfies

|u|H1(D)  C
�
kfkL2(D) + kgkH1/2(@D

�

where C = max{CD/amin, C�(1 + amax/amin)}.

Proof. Lax–Milgram Lemma.
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Finite Element Approximation
Galerkin discretisation

Given: linear variational problem of finding u 2 V , V a Hilbert space with norm
k · k, such that

a(u, v) = `(v) for all v 2 V (B.5)

with a bilinear form a(·, ·) and linear form `(·) on V which satisfy the assumptions
of the Lax-Milgram lemma.

Galerkin method for finding approximate solutions of (B.5) proceeds by restricting
the problem to a finite-dimensional subspace Vn ⇢ V : denote by un 2 Vn the
solution of

a(un, vn) = `(vn) for all vn 2 Vn. (B.6)

Note: The Galerkin approximation un of u with respect to the space Vn is
uniquely determined since the conditions of the Lax-Milgram Lemma are satisfied
for Problem (B.6) by inclusion.
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Finite Element Approximation
CÃľa’s lemma

Galerkin orthogonality
The Galerkin solution un 2 Vn satisfies

a(u� un, vn) = 0, for all vn 2 Vn.

The simple structure of a linear variational problem allows its reduction to a
problem of best approximation.

Lemma B.9 (CÃľa)
If the assumptions of the Lax-Milgram lemma apply to Problem (B.5) with

solution u 2 V , then the Galerkin approximation un, i.e., the solution of (B.6),
satisfies

ku� unk 
C

↵
inf

vn2Vn

ku� vnk. (B.7)
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Finite Element Approximation
CÃľa’s lemma, symmetric case

If the bilinear form a(·, ·) is, in addition, symmetric (Hermitian) then,
because of coercivity, it defines an inner product on V .
Galerkin orthogonality then implies un is the a-orthogonal projection of u
onto Vn and therefore the best approximation to u from Vn with respect to
the associated (energy) norm.
In the energy norm (B.7) is therefore satisfied with C = ↵ = 1.
Coercivity and boundedness also imply that the energy norm is equivalent to
k · k, i.e., p

↵kvk  |v|a 
p
Ckvk for all v 2 V,

which leads to the improved estimate over (B.7)

ku� unk 
r

C

↵
inf

v2Vn

ku� vk.
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Finite Element Approximation
Application to elliptic BVP

We have seen that, for the elliptic BVP (B.1), we have the equivalences

k · kH1(D) ⇣ | · |H1(D) ⇣ | · |a.

Corollary B.10

Under Assumption 1, the Galerkin approximation un fo the solution of the elliptic

boundary value problem (B.1), with respect to any subspace Vn of V = H
1
0 (D),

satisfies

|u� un|a = inf
v2Vn

|u� v|a,

|u� un|H1(D) 
r

amin

amax
|u� v|H1(D) for all v 2 Vn.
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Finite Element Approximation
Galerkin system

Given a basis {v1, . . . , vn} of Vn and the solution un =
P

n

j=1 ⇠jvj , then the
Galerkin variational equation (B.6) is equivalent to

nX

j=1

⇠j a(vj , vi) = `(vi), i = 1, . . . , n,

which, when rewritten as a linear system of equation, becomes the Galerkin system

Ax = b (B.8)

with Galerkin matrix [A]i,j = a(vj , vi), unknown vector [x]i = ⇠i and right-hand
side vector [b]i = `(vi).

If a(·, ·) is symmetric, then so is A.
If a(·, ·) is coercive, then A is (uniformly) positive definite.
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Finite Element Approximation
The finite element method

Different Galerkin methods result from different choices of subspaces.
Wavelets.
Trigonometric functions, global polynomials (spectral methods).
Radial basis functions.
The finite element method employs finite dimensional subspaces of the
variational spaces (trial and test spaces) consisting of piecewise polynomials
with respect to a partition of D.
We shall assume in the following that D is a polygon (polyhedron), but the
finite element method can also be applied to domains with curved boundaries.
For the remainder of this section we consider the case where D ⇢ R2, i.e.,
d = 2. The concepts can easily be extended to different d.
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Finite Element Approximation
Triangulations

Assumptions on the partition of the domain D, denoted by Th with elements K:

(Z1) D = [K2ThK.

(Z2) Each K 2 Th is a closed set with nonempty interor K̊.

(Z3) For two distinct K1,K2 2 Th there holds K̊1 \ K̊2 = ;.

(Z4) Each K 2 Th has a Lipschitz-continuous boundary @K.

The partition is usually assigned a discretisation parameter h > 0 given by

h := max
K2Th

diamK,

which is a measure of how fine the partition is.
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Finite Element Approximation
Triangulations

Triangular mesh on a square domain.

Triangular mesh on a polygonal

approximation of a circle.
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Finite Element Approximation
Triangulations

Quadrilateral mesh on a rectangular (exterior)

domain.

Mesh consisting of triangles and

quadrilaterals.
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Finite Element Approximation
Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).
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Finite Element Approximation
H

1-conforming finite element spaces

A conforming Galerkin approximation is one which employs finite-dimensional
spaces Vn such that Vn ⇢ V .

Let Vh denote a space of piecewise continuous functions v : D ! R with respect
to an admissible triangulation Th of D, i.e., such that each restriction v|K to any
K 2 Th is continuous on K.

Theorem B.11
With the notation defined above, there holds Vh ⇢ H

1(D) if, and only if,

Vh ⇢ C(D) and {v|K : v 2 Vh} ⇢ H
1(K).

In this case {v 2 Vh : v = 0 on @D} ⇢ H
1
0 (D).
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Finite Element Approximation
Finite elements

According to [Ciarlet, 1978], a finite element is a triple (K,PK , K) such that
(1) K is a nonempty set
(2) PK is a finite-dimensional space of functions defined on K and
(3)  K is a set of linearly independent linear functionals  on PK with the

property that, for any p 2 PK ,

 (p) = 0 for all  2  K ) p = 0.

We shall consider a single finite element, the so-called linear triangle, where
(1) K 2 R2 is a triangle with (non-collinear) vertices x1, x2 and x3,
(2) PK is the space of all affine functions on K and
(3)  K consists of the three functionals

 K = { j : PK ! R, j(p) = p(xj), j = 1, 2, 3}.
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Finite Element Approximation
Trianglular finite elements

To construct a (global) finite element space Vh based on linear triangle
elements consider a triangulation Th of D consisting of (closed) triangles K

which satisfy properties (Z1)–(Z4).
The functions in Vh will also lie in H

1(D) if they are continuous on D,
which, for piecewise linear (polynomial) functions, is equivalent to their being
continuous across triangle boundaries.
We thus obtain the space

Vh := {v 2 C(D) : v|K 2P1 for all K 2 Th},

where Pk denotes the space of (multivariate) polynomials of (complete)
degree k.
Define the subspace Vh,0 of Vh by

Vh,0 := {v 2 Vh : v|@D = 0} ⇢ H
1
0 (D).
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Finite Element Approximation
Degrees of freedom, nodal basis

A continuous piecewise linear function in Vh is completely determined by its
values at all triangle vertices.
Such a (finite) set of parameters which uniquely determine a finite element
function is called a set of degrees of freedom (DOF).
In Vh,0 these are the values at all nodes which do not lie on @D; denote their
number by n.
A particularly convenient basis {�1, . . . ,�n} of Vh,0 is the so-called nodal
basis characterised by

�j(xi) = �i,j i, j = 1, . . . , n.

If Nh = {x1, . . . , xn} denotes the set of vertices xj 62 @D, then

supp�j =
[

K2Th
xj2K

K.
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Finite Element Approximation
Nodal basis for linear triangles

A nodal basis function with its support.
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Finite Element Approximation
Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis functions.
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Finite Element Approximation
Galerkin matrix, linear triangles

Implications for Galerkin system (B.8):

[b]i = `(�i) =

Z

D

f�i dx =

Z

supp�i

f�i dx,

[A]i,j = a(�j ,�i) =

Z

D

a(x)�i(x) ·r�j(x) dx

=

Z

supp�i\supp�j

a(x)r�i(x) ·r�j(x) dx.

In particular, the Galerkin matrix A is sparse.
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Finite Element Approximation
Finite element assembly

Common procedure in assembling the Galerkin system:

(1) Ignore boundary condition initially, i.e., consider all of Vh with nodal basis

{�1,�2, . . . ,�n,�n+1, . . . ,�ñ},

ñ� n the number of vertices on the boundary @D.
Yields matrix Ã 2 Rñ⇥ñ, vector b̃ 2 Rñ.

(2) Then eliminate the DOF associated with boundary vertices.
Yields matrix A, vector b.

Note:
Initial approach for step (1): compute Ã, b̃, entry by entry, i.e., basis
function by basis function
But: shape and connectivity of supports typically very different.
Simpler: compute A, b element by element.
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Finite Element Approximation
Finite element assembly

K 2 Th: then for i, j = 1, 2 . . . , ñ:

a(�j ,�i) =

Z

D

ar�j ·r�i dx =
X

K2Th

Z

K

ar�j ·r�i dx =:
X

K2Th

aK(�j ,�i),

`(�i) =

Z

D

f�i dx =
X

K2Th

Z

K

f�i dx =:
X

K2Th

`K(�i).

Setting

[ÃK ]i,j := aK(�j ,�i) i, j = 1, 2, . . . , ñ,

[b̃K ]i := `K(�i, i = 1, 2, . . . , ñ,

we obtain
Ã =

X

K2Th

ÃK , b̃ =
X

K2Th

b̃K .
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Finite Element Approximation
Finite element assembly: element table

Since each element belongs to the support of exactly three basis functions, only
(at most) nine entries of ÃK and three entries of b̃K are nonzero.
Which entries these are can be determined by maintaining an element table:

[G(i, j)]i=1,2,3;j=1,...,nK :

Element K1 K2 . . . KnK

first vertex i
(1)
1 i

(2)
1 . . . i

(nK)
1

second vertex i
(1)
2 i

(2)
2 . . . i

(nK)
2

third vertex i
(1)
3 i

(2)
3 . . . i

(nK)
3

Here nK denotes the number of triangles in Th.

Besides the global vertex numbering

x1, x2, . . . , xñ,

the element table introduces a second, local vertex numbering

x
(K)
1 , x

(K)
2 , x

(K)
3

of the vertices (DOFs) associated with K. G is the local to global mapping of the
DOFs.
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Finite Element Approximation
Finite element assembly

Global numbering of

vertices (red) and

elements (black)

in a triangulation of an

L-shaped domain.
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Finite Element Approximation
Finite element assembly

With this notation the nonzero submatrix AK of ÃK and nonzero subvector bK

of b̃K are given by

AK :=

2

64
aK(�(K)

1 ,�(K)
1 ) aK(�(K)

2 ,�(K)
1 ) aK(�(K)

3 ,�(K)
1 )

aK(�(K)
1 ,�(K)

2 ) aK(�(K)
2 ,�(K)

2 ) aK(�(K)
3 ,�(K)

2 )

aK(�(K)
1 ,�(K)

3 ) aK(�(K)
2 ,�(K)

3 ) aK(�(K)
3 ,�(K)

3 )

3

75 , bK :=

2

64
`K(�(K)

1 )

`K(�(K)
2 )

`K(�(K)
3 )

3

75 .

If K has number k in the enumeration of the elements, then the association of the
local numbering {�(K)

i
}i=1,2,3 of the three basis functions whose support contains

K with the global numbering {�j}ñj=1 of all basis functions is given by

�
(K)
i

= �j , j = G(i, k), i = 1, 2, 3.

AK and bK are sometimes called the element stiffness matrix and element load
vector.
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Finite Element Approximation
Finite element assembly

We summarise phase (1) of the finite element assembly process in the following
algorithm2

Algorithm 1 Phase (1) of finite element assembly.

1: Initialise Ã := O, b̃ := 0.
2: for K 2 Th do
3: Compute AK and bK

4: k  [index of element K]
5: i1  G(1, k), i2  G(2, k), i3  G(3, k)
6: Ã([i1i2i3], [i1i2i3]) Ã([i1i2i3], [i1i2i3]) +AK

7: b̃([i1i2i3]) b̃([i1i2i3]) + bK

8: end for

2We use the following MATLAB-inspired notation:

A([i1i2i3], [i1i2i3]) =

2

4
ai1,i1 ai1,i2 ai1,i3
ai2,i1 ai2,i2 ai2,i3
ai3,i1 ai3,i2 ai3,i3

3

5 , b([i1i2i3]) =

2

4
bi1
bi2
bi3

3

5 .
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Finite Element Approximation
Reference element

Both the numerical integration as well as the error analysis benefit from a change
of variables to a reference element K̂ ⇢ R2. Each element K 2 Th then has a
parametrisation K = µK(K̂), where

µK : K̂ ! K, K̂ 3 ⇠ 7! x 2 K, x = µK(⇠) = BK⇠ + bK .

Most common for triangular elements: unit simplex

K̂ = {(⇠, ⌘) 2 R2 : 0  ⇠  1, 0  ⌘  1� ⇠}.

For each triangle K 2 Th the affine mapping µK is determined by prescribing,
e.g.,

(1, 0) 7! (x1, y1),

(0, 1) 7! (x2, y2),

(0, 0) 7! (x3, y3), i.e.
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Finite Element Approximation
Reference element

⇠

⌘

(0, 0)

(0, 1)

(1, 0)

K̂

µK

x

y

(x3, y3)

(x2, y2)

(x1, y1)

K


x

y

�
=


x1 � x3 x2 � x3

y1 � y3 y2 � y3

�

| {z }
BK


⇠

⌘

�
+


x3

y3

�

|{z }
bK
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Finite Element Approximation
Reference element

Local (nodal) basis on K̂: (dual basis of DOF)

�̂1(⇠, ⌘) = ⇠, �̂2(⇠, ⌘) = ⌘, �̂3(⇠, ⌘) = 1� ⇠ � ⌘, (⇠, ⌘) 2 K̂.

The correspondence

�̂ 7! � := �̂ � µ�1
K

, d.h. �(x) := �̂(⇠(x)) = �̂(µ�1
K

(x))

assigns to �̂ on K̂ a unique function � on K.

Local basis functions on K:

�j = �̂j � µ�1
K

: K ! R, j = 1, 2, 3.
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Finite Element Approximation
Reference element, change of variables

The chain rule3 applied to �(x) = �̂(⇠(x)) gives

r� =


�x

�y

�
=


�̂⇠⇠x + �̂⌘⌘x

�̂⇠⇠y + �̂⌘⌘y

�
=


⇠x ⌘x

⇠y ⌘y

� 
�̂⇠

�̂⌘

�
= (Dµ

�1
K

)>r̂�̂.

Since x = µK(⇠) = BK⇠ + bK , i.e. DµK ⌘ BK ,

⇠ = µ
�1
K

(x) = B
�1
K

(x� bK), i.e. Dµ
�1
K
⌘ B

�1
K

we obtain
r� = B

�>
K
r̂�̂.

3r̂ indicates differentiation with respect to the variables ⇠ and ⌘.
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Finite Element Approximation
Reference element, element integrals

This finally gives the element integrals (�i = �
(K)
i

, i = 1, 2, 3)

aK(�j ,�i) =

Z

K

a(x)r�j(x) ·r�i(x) dx

=

Z

K̂

a(x(⇠))
⇣
B

�>
K
r̂�̂j(⇠)

⌘
·
⇣
B

�>
K
r̂�̂i(⇠)

⌘
| detBK | d⇠.

(B.9)

The determinant is given by (note K is a triangle)

| detBK | = 2|K|,

B
�>
K

=
1

2|K|


y2 � y3 x3 � x2

y3 � y1 x1 � x3

�
,

⇥
r̂�̂1 r̂�̂2 r̂�̂3

⇤
=


1 0 �1
0 1 �1

�
.
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Finite Element Approximation
Eliminate constrained boundary DOF

To impose the Dirichlet boundary condition we require that the Galerkin
approximation uh 2 Vh satisfy

uh(xj) = g(xj) at all boundary vertices {xj}ñj=n+1. (B.10)

We partition the coefficient vector u 2 Rñ into a first block uI 2 Rn

containing the coefficients associated with the interior vertices {xj}nj=1 and a
second block uB 2 Rñ�n containing the constrained coefficients associated
with boundary vertices.
For the assembled matrix Ã and vector b̃ this induces the partitionings

Ã =


ÃII ÃIB

ÃBI ÃBB

�
, b̃ =


b̃I

b̃B

�
.

The constraint (B.10) now reads uB = g, where g 2 Rñ�n contains the
boundary data {g(xj)}ñj=n+1.
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Finite Element Approximation
Eliminate constrained boundary DOF

This constraint is characterised by there being no coupling of the boundary DOF
to either interior DOF or among themselves, resulting in the modified linear
system of equations 

ÃII ÃIB

O I

� 
uI

uB

�
=


bI

g

�
,

which gives the reduced system

AuI = b, A = ÃII , b = bI � ÃIBg

for the interior DOF.

Note that this procedure is a discrete variant of the reformulation of the BVP with
inhomogeneous Dirichlet boundary conditions to an equivalent one with
homogeneous Dirichlet boundary conditions.
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Finite Element Convergence
Summary

CÃľa’s lemma characterises the Galerkin error as one of best appproximation
from the FE subspace Vh.
An upper bound for this error is the distance of the true solution from its
interpolant from the FE subspace. This is the uniquely determined function
from Vh which possesses the same global DOF as the exact solution.
The asymptotic behavior of the interpolant is then analyzed on a sequence of
meshes {Thn}n2N with limn!1 hn = 0.
For the interpolation error to become small, the mesh sequence has to be
shape-regular: if ⇢K denotes the radius of the inscribed circle in K and
hK = diamK, then a sequence of meshes is shape-regular provided the ratio

⇢K

hK

, K 2 Th

is bounded below uniformly for all {Thn}.
A priori convergence bounds are obtained by relating the smoothness of the
exact solution to the convergence rate h

↵ of the interpolation error as h! 0.
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Finite Element Convergence
Extra regularity

Interpolation estimates for u that is only in H
1(D) do not yield a useful rate h

↵

with an ↵ > 0. As such one looks for solutions that possesses higher regularity.

Definition B.12
For r 2 N and D ⇢ Rd bounded, we denote by H

r(D) the Sobolev space

H
r(D) := {v 2 L

2(D) : D↵
u 2 L

2(D) for all ↵ 2 Nd

0, |↵|  r}.

H
r(D) is a Hilbert space with the inner product

(u, v)Hr(D) =
X

|↵|r

Z

D

(D↵
u)(D↵

v) dx,

and the induced norm given by

kuk2
Hr(D) = (u, u)Hr(D) =

X

|↵| r

kD↵k2
L2(D).

Note: the vector ↵ 2 Nd

0 is called a multiindex, and |↵| :=
P

d

j=1 ↵j .
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Finite Element Convergence
Interpolation error of linear FE for H

2-regular functions

Let Vh denote the space of piecewise linear functions subject to a
shape-regular, admissible triangulation Th of D.
Denote by Ih : C(D)! Vh the (global) interpolation operator assigning to
each continuous function v the interpolant vh 2 Vh determined by the
condition that vh agrees with v at all vertices of Th.
Then the error of best approximation of u 2 C(D) is bounded by the
interpolation error

inf
v2Vh

|u� v|H1(D)  |u� Ihu|H1(D).

If the solution u of (B.4) has additional regularity u 2 H
2(D), then the

Sobolev imbedding theorem assures that u agrees a.e. with a function in
C(D), so that pointwise evaluation of u and thus the interpolant is
well-defined.
In this case a scaling argument can be used to show

|u� Ihu|H1(D)  C h |u|H2(D)

with a constant C independent of h and u.
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Finite Element Convergence
Model problem

Assumption 2 (H2/elliptic regularity)

There exists a constant C2 > 0 such that, for every f 2 L
2(D), the solution of (B.4) belongs to

H
2(D) and satisfies

|u|H2(D)  C2kfkL2(D).

Theorem B.13

Under Assumptions 1 and 2, the solution u of (B.4) with f 2 L
2(D) and the piecewise linear

finite element approximation uh on a sequence of shape-regular meshes satisfy

|u� uh|a  C
p
amax|u|H2(D) h  CC2

p
amaxkfkL2(D) h, (B.11)

with a constant C independent of h.

Corollary B.14
Under the assumptions of Theorem B.13 there holds

|u� uh|H1(D)  C

r
amax

amin
|u|H2(D) h  CC2

r
amax

amin
kfkL2(D) h.
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