Multilevel Monte Carlo Methods for UQ

Appendix: Background Material (based on the notes of Prof. Dr Oliver Ernst, TU Chemnitz)

Robert Scheichl
r.scheichl@uni-heidelberg.de

UNIVERSITÄT HEIDELBERG
ZUKUNFT SEIT 1386

Institut für Angewandte Mathematik, Universität Heidelberg
Short Course, Penn State University, 21 \& 23 April 2021
https://katana.iwr.uni-heidelberg.de/teaching/pennstate2021/
A. Probability Theory

- Random Variables
- Random Vectors
- Limit Theorems
- Statistical Estimation
B. Elliptic Boundary Value Problems
- Weak Formulation
- Finite Element Approximation
- Finite Element Convergence

A. Probability Theory

Probability Theory

Probability measure

We denote an abstract probability space by $(\Omega, \mathfrak{A}, \mathbb{P})$, in which
Ω is an abstract set of elementary events,
\mathfrak{A} is a σ-algebra of subsets of Ω containing the measurable events and \mathbb{P} is a probability measure on \mathfrak{A}.

Definition A. 1

A measure \mathbb{P} on a measurable space (Ω, \mathfrak{A}) is called a probability measure if $\mathbb{P}(\Omega)=1$.

Definition A. 2
An event $A \in \mathfrak{A}$ is said to occur almost surely with respect to the measure \mathbb{P} (\mathbb{P}-a.s.) if $\mathbb{P}(A)=1$.

Probability Theory

Borel-Cantelli lemma

Proposition A. 3 (Boole's inequality)

For events $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ there holds

$$
\mathbb{P}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right) .
$$

Definition A. 4

The set of all $\omega \in \Omega$ such that $\omega \in A_{n}$ for infinitely many values of n, i.e., ω occurs infinitely often (i.o.), is defined as

$$
\left\{A_{n}, \text { i.o. }\right\}:=\limsup _{n \in \mathbb{N}} A_{n}:=\cap_{k=1}^{\infty} \cup_{n=k}^{\infty} A_{n} .
$$

Theorem A. 5 (Borel-Cantelli Lemma)

If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left\{A_{n}\right.$, i.o. $\}=0$. For independent events $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ such that $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ there holds $\mathbb{P}\left\{A_{n}\right.$, i.o. $\}=1$.

Probability Theory

Random variables

Definition A. 6

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (E, \mathfrak{E}) a measurable space. A measurable function $X: \Omega \rightarrow E$ is called an (E-valued) random variable. Individual values $X(\omega)$ for $\omega \in \Omega$ are called realisations of the random variable.

Remark: If E is a topological space then the σ-algebra generated by the open subsets of E is called the Borel σ-algebra $\mathfrak{B}(E)$.

Definition A. 7

Let X be an E-valued random variable where (E, \mathfrak{E}) is a measurable space and $(\Omega, \mathfrak{A}, \mathbb{P})$ is the underlying probability space. The probability distribution \mathbb{P}_{X} of X (also called the law of X) is the probability measure on (E, \mathfrak{E}) defined by $\mathbb{P}_{X}(A):=\mathbb{P}\left(X^{-1}(A)\right)$ for pre-images $\left.X^{-1}(A):=\{\omega \in \Omega: X(\omega) \in A)\right\}$ of sets $A \in \mathfrak{E}$.

Remark: This construction is sometimes called the push-forward measure defined by $(\Omega, \mathfrak{A}, \mathbb{P}),(E, \mathfrak{E})$ and X.

Probability Theory

Expectation, moments

Definition A. 8

The expectation of a Banach space-valued random variable X is defined as the integral

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

Definition A. 9

The k-th moment ($k \in \mathbb{N}$) of a real-valued random variable X is $\mathbb{E}\left[X^{k}\right]$.
The first moment $\mu:=\mathbb{E}[X]$ is also called the mean or mean value. The central moments $\mathbb{E}\left[(X-\mu)^{k}\right]$ measure the deviation of X from its mean. The second central moment

$$
\operatorname{Var} X:=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

of a random variable X is called its variance.
Remark: The quantity $\sigma:=\sqrt{\operatorname{Var} X}$ is called the standard deviation of X.

Probability Theory

Computation of moments
Moments of a random variable are sometimes more easily computed by integrating over the image variable.

Consider a real-valued random variable X from (Ω, \mathfrak{A}) to $(\Gamma, \mathfrak{B}(\Gamma))$ where $\Gamma \subset \mathbb{R}$. For $B \in \mathfrak{B}(\Gamma)$, set $A:=X^{-1}(B)$. Then by the definition of the probability distribution \mathbb{P}_{X}

$$
\int_{\Omega} \mathbb{1}_{A}(\omega) \mathrm{d} \mathbb{P}(\omega)=\mathbb{P}(A)=\mathbb{P}_{X}(B)=\int_{\Gamma} \mathbb{1}_{B}(x) \mathrm{d}_{X}(x) .
$$

For measurable functions $f: \Gamma \rightarrow \mathbb{R}$ we have

$$
\int_{\Omega} f(X(\omega)) \operatorname{dP}(\omega)=\int_{\Gamma} f(x) \operatorname{dP}_{X}(x)
$$

and, in particular,

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)=\int_{\Gamma} x \mathrm{dP}_{X}(x) .
$$

Probability Theory

Probability density functions

Definition A. 10

Let \mathbb{P} be a probability measure on $(\Gamma, \mathfrak{B}(\Gamma))$ for some $\Gamma \subset \mathbb{R}$. If there exists a function $p: \Gamma \rightarrow[0, \infty)$ such that $\mathbb{P}(B)=\int_{B} p(x) \mathrm{d} x$ for any $B \in \mathfrak{B}(\Gamma)$ we say that \mathbb{P} has a density p with respect to Lebesgue measure and we call p its probability density function (pdf). If X is a Γ-valued random variable on $(\Omega, \mathfrak{A}, \mathbb{P})$, the pdf p_{X} of X (if it exists) is the pdf of the probability distribution \mathbb{P}_{X}.

For real-valued random variables X from $(\Omega, \mathfrak{A}, \mathbb{P})$ to $(\Gamma, \mathfrak{B}(\Gamma))$ we then have ${ }^{1}$

$$
\begin{equation*}
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)=\int_{\Gamma} x \mathrm{~d} \mathbb{P}_{X}(x)=\int_{\Gamma} x p(x) \mathrm{d} x \tag{A.1}
\end{equation*}
$$

Event probabilities are then easily calculated as

$$
\mathbb{P}(X \in(a, b))=\mathbb{P}(\{\omega \in \Omega: a<X(\omega)<b\})=\mathbb{P}_{X}((a, b))=\int_{a}^{b} p(x) \mathrm{d} x
$$

[^0]
Probability Theory

Uniform distribution

A random variable X is uniformly distributed on $D=[a, b] \subset \mathbb{R},(a<b)$, denoted

$$
X \sim \operatorname{Uni}(a, b)
$$

if its pdf is

$$
p(x)=\frac{1}{b-a}, \quad x \in[a, b]
$$

Using (A.1), we easily obtain

$$
\mathbb{E}[X]=\int_{a}^{b} \frac{x}{b-a} \mathrm{~d} x=\frac{a+b}{2}, \quad \mathbb{E}\left[X^{2}\right]=\int_{a}^{b} \frac{x^{2}}{b-a} \mathrm{~d} x=\frac{b^{3}-a^{3}}{3(b-a)}
$$

so that $\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{(b-a)^{2}}{12}$.

Probability Theory

Gaussian distribution

A random variable X is said to follow the Gaussian or normal distribution on $\Gamma=\mathbb{R}$ if its pdf is given by

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right), \quad x \in \mathbb{R}
$$

with two real parameters $\mu \in \mathbb{R}$ and $\sigma>0$, denoted $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
As is easily verified,

$$
\mathbb{E}[X]=\mu, \quad \operatorname{Var} X=\sigma^{2} .
$$

The probability that X is within α of its mean is given by

$$
\mathbb{P}(|X-\mu| \leq \alpha)=\operatorname{erf}\left(\frac{\alpha}{\sqrt{2 \sigma^{2}}}\right)
$$

with the error function erf defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t .
$$

Probability Theory

Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution $\mathrm{N}(0,1)$ is denoted by

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} \mathrm{~d} t=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) .
$$

Any (finite) linear combination of (jointly) random variables is normally distributed.

Probability Theory

Change of variables formula

Lemma A. 11 (Change of variables)

Suppose $Y: \Omega \rightarrow \mathbb{R}$ is a real-valued random variable and $f:(a, b) \rightarrow \mathbb{R}$ is continuously differentiable with inverse function f^{-1}. If p_{Y} is the pdf of Y, the pdf of the random variable $X: \Omega \rightarrow(a, b)$ defined via $X=f^{-1}(Y)$ is

$$
p_{X}(x)=p_{Y}(f(x))\left|f^{\prime}(x)\right| \quad \text { for } a<x<b .
$$

Probability Theory

Lognormal distribution

If $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then the random variable

$$
X:=\exp (Y)
$$

is said to follow a lognormal distribution. With $f(x)=\log x$, Lemma A. 11 yields the pdf of X as

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2} x^{2}}} \exp \left(-\frac{[\log (x)-\mu]^{2}}{2 \sigma^{2}}\right) .
$$

Moreover, there holds

$$
\mathbb{E}[X]=\exp \left(\mu+\frac{\sigma^{2}}{2}\right), \quad \text { Var } X=\left(e^{\sigma^{2}}-1\right) e^{2 \mu+\sigma^{2}} .
$$

Probability Theory

Covariance

Definition A. 12

The covariance between two real-valued random variables is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

where $\mu_{X}:=\mathbb{E}[X]$ and $\mu_{Y}:=\mathbb{E}[Y]$. In particular, $\operatorname{Cov}(X, X)=\operatorname{Var} X$.
Note: An equivalent expression is $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
Calculation of the covariance requires evaluating the integral

$$
\mathbb{E}[X Y]=\int_{\Omega} X(\omega) Y(\omega) \mathrm{d} \mathbb{P}(\omega)=\int_{X(\Omega) \times Y(\Omega)} x y \mathrm{~d} \mathbb{P}_{X, Y}(x, y),
$$

in which $\mathbb{P}_{X, Y}$ is the joint probability distribution of X and Y.
Sometimes it is useful to scale the covariance to lie in $[-1,1]$. The resulting quantity is known as the correlation coefficient

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

Probability Theory

Joint probability distribution

Definition A. 13

The joint probability distribution of two random variables X and Y is the distribution of the bivariate random variable $\mathbf{X}=(X, Y)$, i.e., for all $B \in \mathfrak{B}(X(\Omega) \times Y(\Omega))$

$$
\mathbb{P}_{X, Y}(B)=\mathbb{P}(\{\omega \in \Omega: \mathbf{X}(\omega) \in B\})
$$

If it exists, the density $p_{X, Y}$ of $\mathbb{P}_{X, Y}$ is known as the joint pdf and

$$
\mathbb{P}_{X, Y}=\int_{B} p_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Probability Theory

Uncorrelated random variables

Definition A. 14

If $\operatorname{Cov}(X, Y)=0$ the random variables X and Y are said to be uncorrelated. A family $\left\{X_{\alpha}\right\}_{\alpha}$ is said to be pairwise uncorrelated if X_{α} and X_{β} are uncorrelated for all $\alpha \neq \beta$.

Note: Uncorrelated random variables may still be strongly related. As an example,

$$
X \sim \mathrm{~N}(0,1), \quad \text { and } \quad Y:=\cos X
$$

satisfy $\mu_{X}=0$ and hence

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[X \cos X]=\int_{\mathbb{R}} x \cos (x) \mathrm{d} \mathbb{P}_{X}(x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} x \cos (x) \exp \left(\frac{-x^{2}}{2}\right) \mathrm{d} x=0
\end{aligned}
$$

A stronger notion is that of independent random variables.

Probability Theory

Sub σ-algebras, σ-algebras generated by random variables

Definition A. 15

A σ-algebra \mathfrak{B} is a sub σ-algebra of \mathfrak{A} if $\mathfrak{B} \subset \mathfrak{A}$, i.e., if $A \in \mathfrak{B}$ implies $A \in \mathfrak{A}$.

Definition A. 16

Let X be an E-valued random variable on $(\Omega, \mathfrak{A}, \mathbb{P})$ for a measurable space (E, \mathfrak{E}). The σ-algebra generated by X, denoted $\sigma(X)$, is defined as

$$
\sigma(X):=\left\{X^{-1}(A): A \in \mathfrak{E}\right\} \subset \mathfrak{A}
$$

Remark: $\sigma(X)$ is the smallest σ-algebra such that X is measurable. It may be considerably smaller than \mathfrak{A}.

Probability Theory

Independence of events, σ-algebras and random variables

Definition A. 17

Two events $A, B \in \mathfrak{A}$ are independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
Two σ-algebras \mathfrak{A}_{1} and \mathfrak{A}_{2} are independent if all pairs of events A_{1} and A_{2} with $A_{1} \in \mathfrak{A}_{1}$ and $A_{2} \in \mathfrak{A}_{2}$ are independent.

Definition A. 18

Two random variables X, Y on a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$ are said to be independent if the σ-algebras $\sigma(X)$ and $\sigma(Y)$ are independent.
A family $\left\{X_{\alpha}\right\}_{\alpha}$ of random variables is said to be pairwise independent if X_{α} and X_{β} are independent for all $\alpha \neq \beta$.

Independence of random variables X and Y can be conveniently determined using their joint distribution $\mathbb{P}_{X, Y}: X$ and Y are independent if and only if $\mathbb{P}_{X, Y}$ equals the product measure $\mathbb{P}_{X} \times \mathbb{P}_{Y}$. If X and Y are real-valued with densities p_{X} and p_{Y}, they are independent if and only if their joint pdf is

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) .
$$

Probability Theory

Independence implies uncorrelatedness

Lemma A. 19
If X and Y are independent real-valued random variables and
$\mathbb{E}[|X|], \mathbb{E}[|Y|]<\infty$, then X and Y are uncorrelated.
Note: The converse is generally false.

Theorem A. 20 (Jensen's inequality)

If X is a real-valued random variable with $\mathbb{E}[|X|]<\infty$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ a convex function, then

$$
\begin{equation*}
\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)] . \tag{A.2}
\end{equation*}
$$

Probability Theory

Bochner spaces

Definition A. 21

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and let W be a separable Banach space with norm $\|\cdot\|$. We denote by $L^{p}(\Omega ; W), 1 \leq p<\infty$, the space of W-valued \mathfrak{A}-measurable random variables $X: \Omega \rightarrow W$ with $\mathbb{E}\left[\|X\|^{p}\right]<\infty$. The resulting space is a Banach space with the norm

$$
\|X\|_{L^{p}(\Omega ; W)}:=\left(\int_{\Omega}\|X(\omega)\|^{p} \mathrm{dP}(\omega)\right)^{1 / p}=\mathbb{E}\left[\|X\|^{p}\right]^{1 / p}
$$

Similarly, $L^{\infty}(\Omega ; W)$ is the Banach space of W-valued random variables $X: \Omega \rightarrow W$ for which

$$
\|X\|_{L^{\infty}(\Omega ; W)}=\underset{\omega \in \Omega}{\operatorname{ess} \sup }\|X(\omega)\|<\infty
$$

Probability Theory

Bochner spaces, $p=2$

The case $p=2$ when W is a Hilbert space $W=H$ with inner product (\cdot, \cdot) occurs frequently. In this case $L^{2}(\Omega ; H)$ is a Hilbert space with inner product

$$
(X, Y)_{L^{2}(\Omega ; H)}:=\mathbb{E}[(X, Y)]=\int_{\Omega}(X(\omega), Y(\omega)) \mathrm{d} \mathbb{P}(\omega) .
$$

Random variables in $L^{2}(\Omega ; H)$ are called mean-square integrable random variables.
For random variables $X, Y \in L^{2}(\Omega ; H)$ the Cauchy-Schwarz inequality takes on the form

$$
\left|(X, Y)_{L^{2}(\Omega ; H)}\right| \leq\|X\|_{L^{2}(\Omega ; H)}\|Y\|_{L^{2}(\Omega ; H)}
$$

or

$$
\mathbb{E}[(X, Y)] \leq \mathbb{E}\left[\|X\|^{2}\right]^{1 / 2} \mathbb{E}\left[\|Y\|^{2}\right]^{1 / 2}
$$

Probability Theory

Bochner spaces, $p=2$, covariance

Definition A. 22

Let H be a separable Hilbert space. A linear operator $C: H \rightarrow H$ is the covariance of two H-valued random variables X and Y if

$$
(C \phi, \psi)=\operatorname{Cov}((\phi, X),(\psi, Y)) \quad \forall \phi, \psi \in H .
$$

X and Y are said to be uncorrelated if C is the zero operator. If $Y=X$ then C is called the covariance of X.

More generally, the covariance of two random variables X and Y with values in a separable Banach space W may be defined as a bilinear map $c: W^{\prime} \times W^{\prime} \rightarrow \mathbb{R}$ on the dual space W^{\prime} of W such that

$$
c(\phi, \psi)=\operatorname{Cov}\left(\langle\phi, X\rangle_{W^{\prime} \times W},\langle\psi, Y\rangle_{W^{\prime} \times W}\right) \quad \forall \phi, \psi \in W^{\prime} .
$$

Here $\langle\cdot, \cdot\rangle_{W^{\prime} \times W}$ denotes the duality bracket between W^{\prime} and W. The bilinear map c may be identified with a linear operator from $C: W^{\prime} \rightarrow W^{\prime \prime}$ via the identity

$$
\langle C \phi, \psi\rangle_{W^{\prime \prime} \times W^{\prime}}=c(\phi, \psi)
$$

Probability Theory

Convergence of random variables

Definition A. 23

Let W be a Banach space with norm $\|\cdot\|$ and $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of W-valued random variables. We say X_{n} converges to $X \in W$ almost surely if $X_{n}(\omega) \rightarrow X(\omega)$ for almost all $\omega \in \Omega$, i.e., if

$$
\mathbb{P}\left(\left\|X_{n}-X\right\| \rightarrow 0 \text { for } n \rightarrow \infty\right)=1
$$

in probability if $\mathbb{P}\left(\left\|X_{n}-X\right\|>\epsilon\right) \rightarrow 0$ for $n \rightarrow \infty$ for any $\epsilon>0$. in p-th mean or in $L^{p}(\Omega ; W)$ if $\mathbb{E}\left[\left\|X_{n}-X\right\|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$. When $p=2$ this is known as convergence in mean square.
in distribution if $\mathbb{E}\left[\phi\left(X_{n}\right)\right] \rightarrow \mathbb{E}[\phi(X)]$ as $n \rightarrow \infty$ for any bounded and continuous function $\phi: W \rightarrow \mathbb{R}$.

Probability Theory

Convergence of random variables

Theorem A. 24

Let $X_{k} \rightarrow X$ in p-th mean and, for $r>0$ and a constant $K=K(p)$, assume that

$$
\begin{equation*}
\left\|X_{k}-X\right\|_{L^{p}(\Omega ; W)}:=\mathbb{E}\left[\left\|X_{k}-X\right\|^{p}\right]^{1 / p} \leq \frac{K(p)}{k^{r}} \tag{A.3}
\end{equation*}
$$

Then the following convergence properties apply:
(a) $X_{k} \rightarrow X$ in probability and, for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\left\|X_{k}-X\right\| \geq k^{-r+\epsilon}\right) \leq \frac{K(p)^{p}}{k^{p \epsilon}} \tag{A.4}
\end{equation*}
$$

(b) $\mathbb{E}\left[\phi\left(X_{k}\right)\right] \rightarrow \mathbb{E}[\phi(X)]$ for all Lipschitz continuous functions on W and, if L denotes a Lipschitz constant of ϕ,

$$
\left|\mathbb{E}\left[\phi\left(X_{k}\right)\right]-\mathbb{E}[\phi(X)]\right| \leq L \frac{K(p)}{k^{r}}
$$

(c) If (A.3) holds for all p sufficiently large, then $X_{k} \rightarrow X$ a.s. Furthermore, for each $\epsilon>0$ there exists a nonnegative random variable K such that $\left\|X_{k}(\omega)-X(\omega)\right\| \leq K(\omega) k^{-r+\epsilon}$ for almost all ω.

Probability Theory

Random vectors

Random variables $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\top}$ from $(\Omega, \mathfrak{A}, \mathbb{P})$ to $\left(\Gamma, \mathfrak{B}(\Gamma)\right.$ with $\Gamma \subset \mathbb{R}^{n}$ are known as random vectors or multivariate random variables (bivariate for $n=2$).

Their expected value

$$
\boldsymbol{\mu}=\mathbb{E}[\mathbf{X}]=\int_{\Omega} \mathbf{X}(\omega) \operatorname{d} \mathbb{P}(\omega)=\left[\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{n}\right]\right]^{\top}
$$

is a vector in \mathbb{R}^{n}. If \mathbf{X} has a pdf p, then for $B \in \mathfrak{B}(\Gamma)$

$$
\mathbb{P}(\mathbf{X} \in B)=\mathbb{P}(\{\omega \in \Omega: \mathbf{X}(\omega) \in B\})=\mathbb{P}_{\mathbf{X}}(B)=\int_{B} p(\mathbf{x}) \mathrm{d} \mathbf{x} .
$$

The components $\left\{X_{j}\right\}_{j=1}^{n}$ of \mathbf{X} are (pairwise) independent if and only if $\mathbb{P}_{\mathbf{X}}$ is the product measure $\mathbb{P}_{X_{1}} \times \cdots \times \mathbb{P}_{X_{n}}$. In terms of the pdf, this is equivalent to

$$
p(\mathbf{x})=p_{X_{1}}\left(x_{1}\right) \cdot p_{X_{2}}\left(x_{2}\right) \cdots p_{X_{n}}\left(x_{n}\right)
$$

Probability Theory

Multivariate uniform

A random vector $\mathbf{X}: \Omega \rightarrow \Gamma$ with values in a set $\Gamma \subset \mathbb{R}^{n}$ with finite Lebesgue measure $|\Gamma|$ follows a multivariate uniform distribution on Γ, denoted by

$$
\mathbf{X} \sim \operatorname{Uni}(\Gamma)
$$

if it has the pdf

$$
p(\mathbf{x}) \equiv \frac{1}{|\Gamma|}, \quad \mathbf{x} \in \Gamma
$$

Probability Theory

Covariance matrix

Definition A. 25

The covariance of two real-valued random vectors $\mathbf{X}=\left[X_{1}, \ldots, X_{m}\right]^{\top}$ and $\mathbf{Y}=\left[Y_{1}, \ldots, Y_{n}\right]^{\top}$ is given by the $m \times n$ matrix

$$
\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{Y}-\mathbb{E}[\mathbf{Y}])^{\top}\right] .
$$

\mathbf{X} and \mathbf{Y} are said to be uncorrelated if $\mathbf{C o v}(\mathbf{X}, \mathbf{Y})=\mathbf{O}$ (the $m \times n$ zero matrix). The matrix $\operatorname{Cov}(\mathbf{X}, \mathbf{X}) \in \mathbb{R}^{n \times n}$ is called the covariance matrix of \mathbf{X}.

Proposition A. 26

Let \mathbf{X} be an \mathbb{R}^{n}-valued random variable with mean vector $\boldsymbol{\mu}$ and covariance matric \mathbf{C}. Then \mathbf{C} is symmetric positive semi-definite and its trace is given by $\mathbb{E}\left[\|\mathbf{X}-\boldsymbol{\mu}\|_{2}^{2}\right]$.

Probability Theory

Multivariate normal distribution

A random vector with mean vector $\boldsymbol{\mu}$ and positive definite covariance matrix \mathbf{C} is said to follow an n-variate Gaussian distribution if it has the pdf

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} \mathbf{C}}} \exp \left(\frac{-(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})}{2}\right) \tag{A.5}
\end{equation*}
$$

Definition A. 27

An \mathbb{R}^{n}-valued random vector \mathbf{X} follows a multivariate normal (or Gaussian) distribution, denoted

$$
\mathbf{X} \sim \mathrm{N}(\boldsymbol{\mu}, \mathbf{C})
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{n}$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$ is symmetric positive definite, if it has the pdf (A.5).

Note: The case that \mathbf{C} is singular (pos. semi-definite) can be handled by characteristic functions.

Probability Theory

Multivariate normal distribution

If $\mathbf{X} \sim N(\boldsymbol{\mu}, \mathbf{C})$ is a multivariate normal random vector, then for any $\mathbf{a} \in \mathbb{R}^{n}$ the linear combination

$$
Y=\mathbf{a}^{\top} \mathbf{X}=\sum_{k=1}^{n} a_{k} X_{k}
$$

follows the normal distribution $Y \sim \mathrm{~N}\left(\mathbf{a}^{\top} \boldsymbol{\mu}, \mathbf{a}^{\top} \mathbf{C a}\right)$.

Probability Theory

i.i.d. random variables

Definition A. 28

A sequence $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ of random variables is said to be independent and identically distributed (i.i.d.) if they all follow the same probability distribution and, in addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of i.i.d. random variables. For an i.i.d. sequence $\left\{X_{j}\right\}_{j \in \mathbb{N}}$, we introduce the notation

$$
S_{n}:=X_{1}+\cdots+X_{n}, \quad n \in \mathbb{N} .
$$

Probability Theory

Weak Law of Large Numbers

Theorem A. 29 (Chebyshev inequality)
A random variable X with finite mean μ and finite variance σ^{2} satisfies

$$
c^{2} \mathbb{P}(|X-\mu| \geq c) \leq \sigma^{2} .
$$

Theorem A. 30 (WLLN)

Let $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables on a given probability space $(\Omega, \mathfrak{A}, \mathbb{P})$ with mean μ and finite variance. Then

$$
\frac{S_{n}}{n} \rightarrow \mu \quad \text { in probability, i.e. }
$$

for ever fixed $\epsilon>0$ there holds

$$
\mathbb{P}\left(\left|S_{n} / n-\mu\right|>\epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Probability Theory

Strong Law of Large Numbers

Theorem A. 31 (SLLN)

Let $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of i.i.d. real-valued random variables on a given probability space $(\Omega, \mathfrak{A}, \mathbb{P})$. Then S_{n} / n has a finite limit if and only if $\mathbb{E}\left[\left|X_{1}\right|\right]<\infty$, in which case

$$
\frac{S_{n}}{n} \rightarrow \mathbb{E}\left[X_{1}\right] \quad \text { a.s. }
$$

If $\mathbb{E}\left[\left|X_{1}\right|\right]=\infty$, then $\lim \sup _{n \rightarrow \infty}\left|S_{n}\right| / n \rightarrow \infty$ a.s.

Probability Theory

Central Limit Theorem

Let the sequence $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ of real-valued random variables be independent, but not necessarily identically distributed. In addition, let $\mathbb{E}\left[X_{k}\right]=0$ and $\mathbb{E}\left[X_{k}^{2}\right]<\infty$ for all k.
Besides $S_{n}=\sum_{k=1}^{n} X_{k}$, introduce the quantities

$$
\begin{aligned}
\sigma_{k}^{2} & :=\operatorname{Var} X_{k}, \\
\Sigma_{n}^{2} & :=\sum_{j=1}^{n} \sigma_{j}^{2}=\operatorname{Var} S_{n}
\end{aligned}
$$

The central limit theorem (CLT) is the statement that

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{\Sigma_{n}}=\lim _{n \rightarrow \infty} \frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var} S_{n}}} \sim \mathrm{~N}(0,1) \quad \text { in distribution. }
$$

Probability Theory

Central Limit Theorem

Definition A. 32 (Lyapunov condition)

The sequence $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ satisfies the Lyapunov condition if $\mathbb{E}\left[\left|X_{k}\right|^{3}\right]<\infty$ for each k and

$$
\lim _{n \rightarrow \infty} \frac{1}{\Sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left|X_{k}\right|^{3}\right]=0
$$

Theorem A. 33 (Lyapunov CLT)

If $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ satisfies the Lyapunov condition, then $S_{n} / \Sigma_{n} \rightarrow \mathrm{~N}(0,1)$ in distribution.

Note: There exist several variants of the CLT with different assumptions.

Theorem A. 34 (Simple CLT)

Let $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables, with $\mathbb{E}\left[X_{k}\right]=\mu$ and
$\operatorname{Var} X_{k}=\sigma^{2}$ for all $k \in \mathbb{N}$. Then $\sqrt{n}\left(S_{n} / n-\mu\right) \rightarrow \mathrm{N}\left(0, \sigma^{2}\right)$ in distribution.

Probability Theory

Berry-Esseen Theorem

Theorem A. 35 (Berry, 1941; Esseen 1942)

Let $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ be i.i.d. random variables such that, for all $k \in \mathbb{N}$,

$$
\mu:=\mathbb{E}\left[X_{k}\right], \quad \sigma^{2}:=\operatorname{Var} X_{k}>0, \quad \rho:=\mathbb{E}\left[\left|X_{k}-\mu\right|^{3}\right]<\infty .
$$

If F_{n} denotes the distribution function of $\left(S_{n}-n \mu\right) /(\sigma \sqrt{n})$ and Φ that of the standard normal distribution $\mathrm{N}(0,1)$, then, with a universal constant C,

$$
\sup _{x \in \mathbb{R}}\left|\Phi(x)-F_{n}(x)\right| \leq C \cdot \frac{\rho}{\sigma^{3} \sqrt{n}} .
$$

Note: the constant C is known to satisfy $0.4097 \leq C \leq 0.7056$ [Shevtsova, 2007].

Statistical Estimation

- Estimation theory is concerned with determining an unknown quantity θ associated with the probability distribution of a random variable X given n i.i.d. samples $\left\{X_{k}\right\}_{k=1}^{n}$ of X.
- Typical examples of such quantities θ are moments of X 's distribution such as the mean and the variance. Another common situation is the estimation of one or more parameters which determine the distribution of X.
- An estimator for a scalar quantity θ is a function

$$
\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \hat{\theta}=\phi\left(X_{1}, \ldots, X_{n}\right)
$$

mapping n i.i.d. realisations of X to the estimate $\hat{\theta}$ of θ.

- Note that, since each of the n random samples X_{k} are random variables, the same is true of

$$
\hat{\theta}=\hat{\theta}(\omega)=\phi\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right) .
$$

Once the samples have been drawn/realised, the estimate $\hat{\theta}$ is a real number.

Statistical Estimation

Sample average, unbiased estimator

- The sample average

$$
\hat{\mu}_{n}:=\frac{X_{1}+\cdots+X_{n}}{n}
$$

is an estimate for the mean $\mu=\mathbb{E}[X]$.

- Since the X_{k} are i.i.d., we conclude from the linearity of expectation that

$$
\mathbb{E}\left[\hat{\mu}_{n}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[X_{k}\right]=\frac{1}{n} \cdot n \mu=\mu .
$$

- If $\mathbb{E}[|X|]<\infty$ the SLLN tells us that also $\hat{\mu}_{n} \rightarrow \mu=\mathbb{E}[X]$ a.s. as $n \rightarrow \infty$.
- Since $\operatorname{Var} \hat{\mu}_{n}=\frac{\sigma^{2}}{n}$, where $\sigma^{2}=\operatorname{Var} X$, we note that the variance $\hat{\mu}_{n}$ decreases like $1 / n$ with growing sample size.

Definition A. 36

An estimator for which $\mathbb{E}[\hat{\theta}]=\theta$ is called unbiased.

Statistical Estimation

Sample variance

The sample variance

$$
\hat{\sigma}_{n}^{2}:=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\hat{\mu}_{n}\right)^{2}
$$

is an unbiased estimator for $\sigma^{2}=\mathbf{V a r} X$.
In addition, there holds $\hat{\sigma}_{n}^{2} \rightarrow \sigma^{2}$ a.s. as $n \rightarrow \infty$.

References

[1] O. Kallenberg. Foundations of Modern Probability Springer, Berlin-Heidelberg, 1997.
[2] I. G. Shevtsova. Sharpening of the upper bound of the absolute constant in the Berry-Esseen inequality. Theory Probab. Appl., 51, 549-553, 2007.

B. Elliptic Boundary Value Problems

Elliptic Boundary Value Problem

We consider the elliptic boundary value problem (BVP) of finding the solution of the partial differential equation with Dirichlet boundary condition

$$
\begin{align*}
-\nabla \cdot(a \nabla u)=f & \text { on } D, \tag{B.1a}\\
u=g & \text { on } \partial D, \tag{B.1b}
\end{align*}
$$

given a bounded convex domain $D \subset \mathbb{R}^{d}, d=1,2,3$ with sufficiently smooth boundary ∂D, a coefficient function $a: D \rightarrow \mathbb{R}^{+}$, a source term $f: D \rightarrow \mathbb{R}$ and boundary data in the form of a function $g: \partial D \rightarrow \mathbb{R}$.
The differential operator in (B.1a) is short for

$$
\nabla \cdot(a \nabla u)=\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}}\left(a(\mathbf{x}) \frac{\partial u(\mathbf{x})}{\partial x_{j}}\right)
$$

Equation (B.1a) is a model for diffusion phenomena occurring in , e.g., heat conduction, electrostatics, potential flow and elasticity. Generalisations of (B.1) involve the addition of lower-order terms, other boundary conditions, a matrix-valued coefficient function and dependence of a on u.

Elliptic Boundary Value Problem

Strong and weak solution
If $f \in C(\bar{D})$ and $a \in C^{1}(\bar{D})$, then a function $u \in C^{2}(D) \cap C^{1}(\bar{D})$ which satisfies (B.1) is called a classical solution or a strong solution of the boundary value problem.

There are (theoretical and practical) reasons for generalizing the classical solution concept. The key to this generalisation lies in reformulating (B.1) as a variational problem. Multiplying both sides of (B.1a) by an arbitrary function $\phi \in C_{0}^{\infty}(D)$, in this context known as a test function, and integrating by parts, we observe that any (classical) solution of (B.1) also satisfies the equation

$$
\begin{equation*}
a(u, \phi)=\ell(\phi) \quad \text { for all } \phi \in C_{0}^{\infty}(D), \tag{B.2}
\end{equation*}
$$

with the symmetric bilinear form $a(\cdot, \cdot)$ and linear functional $\ell(\cdot)$ given by

$$
\begin{equation*}
a(u, \phi)=\int_{D} a(\mathbf{x}) \nabla u(x) \cdot \nabla \phi(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \ell(\phi)=\int_{D} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d} \mathbf{x} . \tag{B.3}
\end{equation*}
$$

For (B.2) to make sense, it is sufficient that the integrals and derivatives are well-defined.

Elliptic Boundary Value Problem

Strong and weak solution
This is the case if u and ϕ are taken to lie in the Sobolev space

$$
H^{1}(D):=\left\{v \in L^{2}(D): \nabla v \in L^{2}(D)^{2}\right\}
$$

which is a Hilbert space with respect to the inner product

$$
(u, v)_{H^{1}(D)}=\int_{D}(\nabla u \cdot \nabla v+u v) \mathrm{d} \mathbf{x}=(\nabla u, \nabla v)+(u, v),
$$

where we use (\cdot, \cdot) to denote the inner product in $L^{2}(D)$. The associated norm on $H^{1}(D)$ is

$$
\|u\|_{H^{1}(D)}^{2}=\int_{D}\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} \mathbf{x} .
$$

The gradients are in terms of weak derivatives in the sense of

$$
\left(\frac{\partial u}{\partial x_{j}}, \phi\right)=-\left(u, \frac{\partial \phi}{\partial x_{j}}\right) \quad \text { for all } \phi \in C_{0}^{\infty}(D) .
$$

Elliptic Boundary Value Problem

Strong and weak solution
Stating the boundary condition (B.1b) requires a well-defined notion of evaluating a function from $H^{1}(D)$ on the lower-dimensional manifold ∂D.

- Functions in $H^{1}(D)$ satisfying the BC with homogeneous boundary data $g \equiv 0$ are can be characterised as lying in the subspace $H_{0}^{1}(D) \subset H^{1}(D)$, which is defined as the closure of smooth functions with compact support with respect to $\|\cdot\|_{H^{1}}$:

$$
H_{0}^{1}(D):=\overline{C_{0}^{\infty}(D)} \subset H^{1}(D) .
$$

- For inhomogeneous boundary data we define the space

$$
W:=H_{g}^{1}(D):=\left\{v \in H^{1}(D): u_{\mid \partial D}=g\right\} .
$$

The evaluation on the boundary is understood in the following sense: for a sufficiently smooth boundary there exists a bounded trace operator $\gamma: H^{1}(D) \rightarrow L^{2}(\partial D)$ such that for all $u \in C^{1}(\bar{D})$ there holds $\gamma u=u_{\mid \partial D}$. Since $C^{1}(\bar{D})$ is dense in $H^{1}(D)$, we have $\gamma u=\lim _{n \rightarrow \infty} u_{\mid \partial D}$ for any approximating sequence $\left\{u_{n}\right\} \subset C^{1}(\bar{D})$ converging to u in $H^{1}(D)$.

Elliptic Boundary Value Problem

Strong and weak solution

Definition B. 1

The trace space of $H^{1}(D)$ for a sufficiently smooth domain D is defined as

$$
H^{1 / 2}(\partial D):=\gamma\left(H^{1}(D)\right)=\left\{\gamma u: u \in H^{1}(D)\right\} .
$$

$H^{1 / 2}(\partial D)$ is a Hilbert space with norm

$$
\|g\|_{H^{1 / 2}(\partial D)}:=\inf \left\{\|u\|_{H^{1}(D)}: \gamma u=g, u \in H^{1}(D)\right\} .
$$

Sine in general $H^{1 / 2}(\partial D) \subsetneq L^{2}(\partial D)$, boundary data g in (B.1b) must be chosen from $H^{1 / 2}(\partial D)$.

Lemma B. 2

There exists $C_{\gamma}>0$ such that, for all $g \in H^{1 / 2}(\partial D)$, we can find $u_{g} \in H^{1}(D)$ with $\gamma u_{g}=g$ and

$$
\left\|u_{g}\right\|_{H^{1}(D)} \leq C_{\gamma}\|g\|_{H^{1 / 2}(\partial D)}
$$

Elliptic Boundary Value Problem

Strong and weak solution
We denote the spaces of trial and test functions by

$$
W:=H_{g}^{1}(D), \quad \text { and } \quad V:=H_{0}^{1}(D) .
$$

Assumption 1

The coefficient function $a=a(\mathbf{x})$ in (B.1a) satisfies

$$
0<a_{\min } \leq a(\mathbf{x}) \leq a_{\max }<\infty \quad \text { for almost all } \mathbf{x} \in D
$$

for positive constants $a_{\min }$ and $a_{\max }$. In particular, $a \in L^{\infty}(D)$ and a is uniformly bounded away from zero.

By Assumption 1, the bilinear form $a(\cdot, \cdot)$ is bounded on $H^{1}(D)$, i.e.,

$$
|a(u, v)| \leq C\|u\|_{H^{1}(D)}\|v\|_{H^{1}(D)}, \quad \text { for all } u, v \in H^{1}(D)
$$

with a constant $C \leq\|a\|_{L^{\infty}(D)}$.

Elliptic Boundary Value Problem

Strong and weak solution

Definition B. 3

A weak solution of (B.1) is a function $u \in W$ such that

$$
\begin{equation*}
a(u, v)=\ell(v) \quad \text { for all } v \in V, \tag{B.4}
\end{equation*}
$$

with $a(\cdot, \cdot)$ and $\ell(\cdot)$ as defined in (B.3).

Elliptic Boundary Value Problem

Definition B. 4

A bilinear form $a: H \times H \rightarrow \mathbb{R}$ on a Hilbert space H is said to be coercive if there exists a constant $\alpha>0$ such that

$$
a(u, u) \geq \alpha\|u\|_{H}^{2} \quad \text { for all } u \in H .
$$

Lemma B. 5 (Lax-Milgram)

Let H be a real Hilbert space with norm $\|\cdot\|_{H}$ and let ℓ be a bounded linear functional on H. Let $a: H \times H \rightarrow \mathbb{R}$ be a bilinear form that is bounded and coercive. Then there exists a unique $u_{\ell} \in H$ such that $a\left(u_{\ell}, v\right)=\ell(v)$ for all $v \in H$, and the solution depends continuously on the data

$$
\left\|u_{\ell}\right\|_{H} \leq \frac{1}{\alpha}\|\ell\|
$$

Elliptic Boundary Value Problem

Strong and weak solution
For functions in $H^{1}(D)$ we introduce the H^{1} semi-norm

$$
|u|_{H^{1}(D)}:=\left(\int_{D}|\nabla u|^{2} \mathrm{dx}\right)^{1 / 2} .
$$

as well as the energy norm associated with the coefficient function a as

$$
|u|_{a}:=a(u, u)^{1 / 2}=\left(\int_{D} a \nabla u \cdot \nabla u \mathrm{dx}\right)^{1 / 2} .
$$

Theorem B. 6 (PoincarÃl'-Friedrichs inequality)

For a bounded domain D there exists a constant $C=C_{D}>0$ such that

$$
\|u\|_{L^{2}(D)} \leq C_{D}|u|_{H^{1}(D)} \quad \text { for all } u \in H_{0}^{1}(D) .
$$

Elliptic Boundary Value Problem

Lemma B. 7

Under Assumption 1 the bilinear form $a: H^{1}(D) \times H_{0}^{1}(D) \rightarrow \mathbb{R}$ is bounded and the energy norm is equivalent to the H^{1} semi-norm on $H^{1}(D)$.

Theorem B. 8

Let Assumption 1 hold, $f \in L^{2}(D)$ and $g \in H^{1 / 2}(\partial D)$. Then (B.1) has a unique weak solution $u \in W=H_{g}^{1}(D)$. Furthermore, the weak solution $u \in W$ satisfies

$$
|u|_{H^{1}(D)} \leq C\left(\|f\|_{L^{2}(D)}+\|g\|_{H^{1 / 2}(\partial D}\right)
$$

where $C=\max \left\{C_{D} / a_{\min }, C_{\gamma}\left(1+a_{\max } / a_{\min }\right)\right\}$.
Proof. Lax-Milgram Lemma.

Finite Element Approximation

Galerkin discretisation

Given: linear variational problem of finding $u \in V, V$ a Hilbert space with norm $\|\cdot\|$, such that

$$
\begin{equation*}
a(u, v)=\ell(v) \quad \text { for all } v \in V \tag{B.5}
\end{equation*}
$$

with a bilinear form $a(\cdot, \cdot)$ and linear form $\ell(\cdot)$ on V which satisfy the assumptions of the Lax-Milgram lemma.

Galerkin method for finding approximate solutions of (B.5) proceeds by restricting the problem to a finite-dimensional subspace $V_{n} \subset V$: denote by $u_{n} \in V_{n}$ the solution of

$$
\begin{equation*}
a\left(u_{n}, v_{n}\right)=\ell\left(v_{n}\right) \quad \text { for all } v_{n} \in V_{n} . \tag{B.6}
\end{equation*}
$$

Note: The Galerkin approximation u_{n} of u with respect to the space V_{n} is uniquely determined since the conditions of the Lax-Milgram Lemma are satisfied for Problem (B.6) by inclusion.

Finite Element Approximation

CÃla's lemma

Galerkin orthogonality

The Galerkin solution $u_{n} \in V_{n}$ satisfies

$$
a\left(u-u_{n}, v_{n}\right)=0, \quad \text { for all } v_{n} \in V_{n}
$$

The simple structure of a linear variational problem allows its reduction to a problem of best approximation.

Lemma B. 9 (CÃl’a)

If the assumptions of the Lax-Milgram lemma apply to Problem (B.5) with solution $u \in V$, then the Galerkin approximation u_{n}, i.e., the solution of (B.6), satisfies

$$
\begin{equation*}
\left\|u-u_{n}\right\| \leq \frac{C}{\alpha} \inf _{v_{n} \in V_{n}}\left\|u-v_{n}\right\| \tag{B.7}
\end{equation*}
$$

Finite Element Approximation

CÃl'a's lemma, symmetric case

- If the bilinear form $a(\cdot, \cdot)$ is, in addition, symmetric (Hermitian) then, because of coercivity, it defines an inner product on V.
- Galerkin orthogonality then implies u_{n} is the a-orthogonal projection of u onto V_{n} and therefore the best approximation to u from V_{n} with respect to the associated (energy) norm.
- In the energy norm (B.7) is therefore satisfied with $C=\alpha=1$.
- Coercivity and boundedness also imply that the energy norm is equivalent to $\|\cdot\|$, i.e.,

$$
\sqrt{\alpha}\|v\| \leq|v|_{a} \leq \sqrt{C}\|v\| \quad \text { for all } v \in V
$$

which leads to the improved estimate over (B.7)

$$
\left\|u-u_{n}\right\| \leq \sqrt{\frac{C}{\alpha}} \inf _{v \in V_{n}}\|u-v\|
$$

Finite Element Approximation

Application to elliptic BVP

We have seen that, for the elliptic BVP (B.1), we have the equivalences

$$
\|\cdot\|_{H^{1}(D)} \asymp|\cdot|_{H^{1}(D)} \asymp|\cdot|_{a} .
$$

Corollary B. 10

Under Assumption 1, the Galerkin approximation u_{n} fo the solution of the elliptic boundary value problem (B.1), with respect to any subspace V_{n} of $V=H_{0}^{1}(D)$, satisfies

$$
\begin{aligned}
\left|u-u_{n}\right|_{a} & =\inf _{v \in V_{n}}|u-v|_{a} \\
\left|u-u_{n}\right|_{H^{1}(D)} & \leq \sqrt{\frac{a_{\min }}{a_{\max }}}|u-v|_{H^{1}(D)} \quad \text { for all } v \in V_{n}
\end{aligned}
$$

Finite Element Approximation

Galerkin system

Given a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V_{n} and the solution $u_{n}=\sum_{j=1}^{n} \xi_{j} v_{j}$, then the Galerkin variational equation (B.6) is equivalent to

$$
\sum_{j=1}^{n} \xi_{j} a\left(v_{j}, v_{i}\right)=\ell\left(v_{i}\right), \quad i=1, \ldots, n
$$

which, when rewritten as a linear system of equation, becomes the Galerkin system

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{B.8}
\end{equation*}
$$

with Galerkin matrix $[\mathbf{A}]_{i, j}=a\left(v_{j}, v_{i}\right)$, unknown vector $[\mathbf{x}]_{i}=\xi_{i}$ and right-hand side vector $[\mathbf{b}]_{i}=\ell\left(v_{i}\right)$.

- If $a(\cdot, \cdot)$ is symmetric, then so is \mathbf{A}.
- If $a(\cdot, \cdot)$ is coercive, then \mathbf{A} is (uniformly) positive definite.

Finite Element Approximation

The finite element method

- Different Galerkin methods result from different choices of subspaces.
- Wavelets.
- Trigonometric functions, global polynomials (spectral methods).
- Radial basis functions.
- The finite element method employs finite dimensional subspaces of the variational spaces (trial and test spaces) consisting of piecewise polynomials with respect to a partition of D.
- We shall assume in the following that D is a polygon (polyhedron), but the finite element method can also be applied to domains with curved boundaries.
- For the remainder of this section we consider the case where $D \subset \mathbb{R}^{2}$, i.e., $d=2$. The concepts can easily be extended to different d.

Finite Element Approximation

Triangulations

Assumptions on the partition of the domain D, denoted by \mathscr{T}_{h} with elements K :
$\left(Z_{1}\right) \bar{D}=\cup_{K \in \mathscr{F}_{h}} K$.
$\left(Z_{2}\right)$ Each $K \in \mathscr{T}_{h}$ is a closed set with nonempty interor $\stackrel{\circ}{K}$.
$\left(Z_{3}\right)$ For two distinct $K_{1}, K_{2} \in \mathscr{T}_{h}$ there holds $\stackrel{\circ}{K}_{1} \cap \stackrel{\circ}{K}_{2}=\emptyset$.
$\left(Z_{4}\right)$ Each $K \in \mathscr{T}_{h}$ has a Lipschitz-continuous boundary ∂K.
The partition is usually assigned a discretisation parameter $h>0$ given by

$$
h:=\max _{K \in \mathscr{T} h} \operatorname{diam} K,
$$

which is a measure of how fine the partition is.

Finite Element Approximation

Triangulations

Triangular mesh on a square domain.

Triangular mesh on a polygonal approximation of a circle.

Finite Element Approximation

Triangulations

Quadrilateral mesh on a rectangular (exterior) domain.

Mesh consisting of triangles and quadrilaterals.

Finite Element Approximation

Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).

Finite Element Approximation

H^{1}-conforming finite element spaces

A conforming Galerkin approximation is one which employs finite-dimensional spaces V_{n} such that $V_{n} \subset V$.

Let V_{h} denote a space of piecewise continuous functions $v: \bar{D} \rightarrow \mathbb{R}$ with respect to an admissible triangulation \mathscr{T}_{h} of D, i.e., such that each restriction $\left.v\right|_{K}$ to any $K \in \mathscr{T}_{h}$ is continuous on K.

Theorem B. 11

With the notation defined above, there holds $V_{h} \subset H^{1}(D)$ if, and only if,

$$
V_{h} \subset C(\bar{D}) \quad \text { and } \quad\left\{\left.v\right|_{K}: v \in V_{h}\right\} \subset H^{1}(K)
$$

In this case $\left\{v \in V_{h}: v=0\right.$ on $\left.\partial D\right\} \subset H_{0}^{1}(D)$.

Finite Element Approximation

Finite elements

According to [Ciarlet, 1978], a finite element is a triple (K, P_{K}, Ψ_{K}) such that
(1) K is a nonempty set
(2) P_{K} is a finite-dimensional space of functions defined on K and
(3) Ψ_{K} is a set of linearly independent linear functionals ψ on P_{K} with the property that, for any $p \in P_{K}$,

$$
\psi(p)=0 \text { for all } \psi \in \Psi_{K} \quad \Rightarrow \quad p=0
$$

We shall consider a single finite element, the so-called linear triangle, where
(1) $K \in \mathbb{R}^{2}$ is a triangle with (non-collinear) vertices $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3},
(2) P_{K} is the space of all affine functions on K and
(3) Ψ_{K} consists of the three functionals

$$
\Psi_{K}=\left\{\psi_{j}: P_{K} \rightarrow \mathbb{R}, \psi_{j}(p)=p\left(\mathbf{x}_{j}\right), j=1,2,3\right\} .
$$

Finite Element Approximation

Trianglular finite elements

- To construct a (global) finite element space V_{h} based on linear triangle elements consider a triangulation \mathscr{T}_{h} of D consisting of (closed) triangles K which satisfy properties (Z1)-(Z4).
- The functions in V_{h} will also lie in $H^{1}(D)$ if they are continuous on \bar{D}, which, for piecewise linear (polynomial) functions, is equivalent to their being continuous across triangle boundaries.
- We thus obtain the space

$$
V_{h}:=\left\{v \in C(\bar{D}):\left.v\right|_{K} \in \mathscr{P}_{1} \text { for all } K \in \mathscr{T}_{h}\right\},
$$

where \mathscr{P}_{k} denotes the space of (multivariate) polynomials of (complete) degree k.

- Define the subspace $V_{h, 0}$ of V_{h} by

$$
V_{h, 0}:=\left\{v \in V_{h}:\left.v\right|_{\partial D}=0\right\} \subset H_{0}^{1}(D) .
$$

Finite Element Approximation

Degrees of freedom, nodal basis

- A continuous piecewise linear function in V_{h} is completely determined by its values at all triangle vertices.
- Such a (finite) set of parameters which uniquely determine a finite element function is called a set of degrees of freedom (DOF).
- In $V_{h, 0}$ these are the values at all nodes which do not lie on ∂D; denote their number by n.
- A particularly convenient basis $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ of $V_{h, 0}$ is the so-called nodal basis characterised by

$$
\phi_{j}\left(\mathbf{x}_{i}\right)=\delta_{i, j} \quad i, j=1, \ldots, n .
$$

- If $\mathscr{N}_{h}=\left\{x_{1}, \ldots, x_{n}\right\}$ denotes the set of vertices $x_{j} \notin \partial D$, then

$$
\operatorname{supp} \phi_{j}=\bigcup_{\substack{K \in \mathscr{F}_{h} \\ x_{j} \in K}} K
$$

Finite Element Approximation

Nodal basis for linear triangles

A nodal basis function with its support.

Finite Element Approximation

Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis functions.

Finite Element Approximation

Galerkin matrix, linear triangles

Implications for Galerkin system (B.8):

$$
\begin{aligned}
{[\mathbf{b}]_{i}=\ell\left(\phi_{i}\right) } & =\int_{D} f \phi_{i} \mathrm{~d} \mathbf{x}=\int_{\operatorname{supp} \phi_{i}} f \phi_{i} \mathrm{~d} \mathbf{x}, \\
{[\mathbf{A}]_{i, j}=a\left(\phi_{j}, \phi_{i}\right) } & =\int_{D} a(\mathbf{x}) \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\int_{\operatorname{supp} \phi_{i} \cap \operatorname{supp} \phi_{j}} a(\mathbf{x}) \nabla \phi_{i}(\mathbf{x}) \cdot \nabla \phi_{j}(\mathbf{x}) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

In particular, the Galerkin matrix \mathbf{A} is sparse.

Finite Element Approximation

Finite element assembly
Common procedure in assembling the Galerkin system:
(1) Ignore boundary condition initially, i.e., consider all of V_{h} with nodal basis

$$
\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}, \phi_{n+1}, \ldots, \phi_{\tilde{n}}\right\}
$$

$\tilde{n}-n$ the number of vertices on the boundary ∂D.
Yields matrix $\tilde{\mathbf{A}} \in \mathbb{R}^{\tilde{n} \times \tilde{n}}$, vector $\tilde{\mathbf{b}} \in \mathbb{R}^{\tilde{n}}$.
(2) Then eliminate the DOF associated with boundary vertices.

Yields matrix \mathbf{A}, vector \mathbf{b}.

Note:

- Initial approach for step (1): compute $\tilde{\mathbf{A}}, \tilde{\mathbf{b}}$, entry by entry, i.e., basis function by basis function
- But: shape and connectivity of supports typically very different.
- Simpler: compute A, b element by element.

Finite Element Approximation

Finite element assembly
$K \in \mathscr{T}_{h}$: then for $i, j=1,2 \ldots, \tilde{n}$:

$$
\begin{aligned}
a\left(\phi_{j}, \phi_{i}\right) & =\int_{D} a \nabla \phi_{j} \cdot \nabla \phi_{i} \mathrm{~d} \mathbf{x}=\sum_{K \in \mathscr{T}_{h}} \int_{K} a \nabla \phi_{j} \cdot \nabla \phi_{i} \mathrm{~d} \mathbf{x}=: \sum_{K \in \mathscr{T}_{h}} a_{K}\left(\phi_{j}, \phi_{i}\right), \\
\ell\left(\phi_{i}\right) & =\int_{D} f \phi_{i} \mathrm{~d} \mathbf{x}=\sum_{K \in \mathscr{T}_{h}} \int_{K} f \phi_{i} \mathrm{~d} \mathbf{x}=: \sum_{K \in \mathscr{T}_{h}} \ell_{K}\left(\phi_{i}\right)
\end{aligned}
$$

Setting

$$
\begin{aligned}
{\left[\tilde{\mathbf{A}}_{K}\right]_{i, j} } & :=a_{K}\left(\phi_{j}, \phi_{i}\right) & & i, j=1,2, \ldots, \tilde{n}, \\
{\left[\tilde{\mathbf{b}}_{K}\right]_{i} } & :=\ell_{K}\left(\phi_{i},\right. & & i=1,2, \ldots, \tilde{n},
\end{aligned}
$$

we obtain

$$
\tilde{\mathbf{A}}=\sum_{K \in \mathscr{F}_{h}} \tilde{\mathbf{A}}_{K}, \quad \tilde{\mathbf{b}}=\sum_{K \in \mathscr{F}_{h}} \tilde{\mathbf{b}}_{K} .
$$

Finite Element Approximation

Finite element assembly: element table
Since each element belongs to the support of exactly three basis functions, only (at most) nine entries of $\tilde{\mathbf{A}}_{K}$ and three entries of $\tilde{\mathbf{b}}_{K}$ are nonzero.
Which entries these are can be determined by maintaining an element table:

$$
[G(i, j)]_{i=1,2,3 ; j=1, \ldots, n_{K}}:
$$

Element	K_{1}	K_{2}	\ldots	$K_{n_{K}}$
first vertex	$i_{1}^{(1)}$	$i_{1}^{(2)}$	\ldots	$i_{1}^{\left(n_{K}\right)}$
second vertex	$i_{2}^{(1)}$	$i_{2}^{(2)}$	\ldots	$i_{2}^{\left(n_{K}\right)}$
third vertex	$i_{3}^{(1)}$	$i_{3}^{(2)}$	\ldots	$i_{3}^{\left(n_{K}\right)}$

Here n_{K} denotes the number of triangles in \mathscr{T}_{h}.
Besides the global vertex numbering

$$
x_{1}, x_{2}, \ldots, x_{\tilde{n}}
$$

the element table introduces a second, local vertex numbering

$$
x_{1}^{(K)}, x_{2}^{(K)}, x_{3}^{(K)}
$$

of the vertices (DOFs) associated with $K . G$ is the local to global mapping of the DOFs.

Finite Element Approximation

Finite element assembly

Global numbering of vertices (red) and elements (black) in a triangulation of an L-shaped domain.

Finite Element Approximation

Finite element assembly

With this notation the nonzero submatrix \mathbf{A}_{K} of $\tilde{\mathbf{A}}_{K}$ and nonzero subvector \mathbf{b}_{K} of $\tilde{\mathbf{b}}_{K}$ are given by

$$
\mathbf{A}_{K}:=\left[\begin{array}{lll}
a_{K}\left(\phi_{1}^{(K)}, \phi_{1}^{(K)}\right) & a_{K}\left(\phi_{2}^{(K)}, \phi_{1}^{(K)}\right) & a_{K}\left(\phi_{3}^{(K)}, \phi_{1}^{(K)}\right) \\
a_{K}\left(\phi_{1}^{(K)}, \phi_{2}^{(K)}\right) & a_{K}\left(\phi_{2}^{(K)}, \phi_{2}^{(K)}\right) & a_{K}\left(\phi_{3}^{(K)}, \phi_{2}^{(K)}\right) \\
a_{K}\left(\phi_{1}^{(K)}, \phi_{3}^{(K)}\right) & a_{K}\left(\phi_{2}^{(K)}, \phi_{3}^{(K)}\right) & a_{K}\left(\phi_{3}^{(K)}, \phi_{3}^{(K)}\right)
\end{array}\right], \quad \mathbf{b}_{K}:=\left[\begin{array}{c}
\ell_{K}\left(\phi_{1}^{(K)}\right) \\
\ell_{K}\left(\phi_{2}^{(K)}\right) \\
\ell_{K}\left(\phi_{3}^{(K)}\right)
\end{array}\right] .
$$

If K has number k in the enumeration of the elements, then the association of the local numbering $\left\{\phi_{i}^{(K)}\right\}_{i=1,2,3}$ of the three basis functions whose support contains K with the global numbering $\left\{\phi_{j}\right\}_{j=1}^{\tilde{n}}$ of all basis functions is given by

$$
\phi_{i}^{(K)}=\phi_{j}, \quad j=G(i, k), \quad i=1,2,3 .
$$

\mathbf{A}_{K} and \mathbf{b}_{K} are sometimes called the element stiffness matrix and element load vector.

Finite Element Approximation

Finite element assembly
We summarise phase (1) of the finite element assembly process in the following algorithm ${ }^{2}$

```
Algorithm 1 Phase (1) of finite element assembly.
    Initialise \(\tilde{\mathbf{A}}:=\mathbf{O}, \tilde{\mathrm{b}}:=\mathbf{0}\).
    for \(K \in \mathscr{T}_{h}\) do
        Compute \(\mathbf{A}_{K}\) and \(\mathbf{b}_{K}\)
        \(k \leftarrow\) [index of element \(K\) ]
        \(i_{1} \leftarrow G(1, k), i_{2} \leftarrow G(2, k), i_{3} \leftarrow G(3, k)\)
        \(\tilde{\mathbf{A}}\left(\left[i_{1} i_{2} i_{3}\right],\left[i_{1} i_{2} i_{3}\right]\right) \leftarrow \tilde{\mathbf{A}}\left(\left[i_{1} i_{2} i_{3}\right],\left[i_{1} i_{2} i_{3}\right]\right)+\mathbf{A}_{K}\)
        \(\tilde{\mathbf{b}}\left(\left[i_{1} i_{2} i_{3}\right]\right) \leftarrow \tilde{\mathbf{b}}\left(\left[i_{1} i_{2} i_{3}\right]\right)+\mathbf{b}_{K}\)
    end for
```

${ }^{2}$ We use the following MATLAB-inspired notation:

$$
\mathbf{A}\left(\left[i_{1} i_{2} i_{3}\right],\left[i_{1} i_{2} i_{3}\right]\right)=\left[\begin{array}{lll}
a_{i_{1}, i_{1}} & a_{i_{1}, i_{2}} & a_{i_{1}, i_{3}} \\
a_{i_{2}, i_{1}} & a_{i_{2}, i_{2}} & a_{i_{2}, i_{3}} \\
a_{i_{3}, i_{1}} & a_{i_{3}, i_{2}} & a_{i_{3}, i_{3}}
\end{array}\right], \quad \mathbf{b}\left(\left[i_{1} i_{2} i_{3}\right]\right)=\left[\begin{array}{c}
b_{i_{1}} \\
b_{i_{2}} \\
b_{i_{3}}
\end{array}\right] .
$$

Finite Element Approximation

Reference element
Both the numerical integration as well as the error analysis benefit from a change of variables to a reference element $\hat{K} \subset \mathbb{R}^{2}$. Each element $K \in \mathscr{T}_{h}$ then has a parametrisation $K=\mu_{K}(\hat{K})$, where

$$
\mu_{K}: \hat{K} \rightarrow K, \quad \hat{K} \ni \boldsymbol{\xi} \mapsto \mathbf{x} \in K, \quad \mathbf{x}=\mu_{K}(\boldsymbol{\xi})=B_{K} \boldsymbol{\xi}+\mathbf{b}_{K} .
$$

Most common for triangular elements: unit simplex

$$
\hat{K}=\left\{(\xi, \eta) \in \mathbb{R}^{2}: 0 \leq \xi \leq 1,0 \leq \eta \leq 1-\xi\right\} .
$$

For each triangle $K \in \mathscr{T}_{h}$ the affine mapping μ_{K} is determined by prescribing, e.g.,

$$
\begin{aligned}
(1,0) & \mapsto\left(x_{1}, y_{1}\right) \\
(0,1) & \mapsto\left(x_{2}, y_{2}\right), \\
(0,0) & \mapsto\left(x_{3}, y_{3}\right), \quad \text { i.e. }
\end{aligned}
$$

Finite Element Approximation

Reference element

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
x_{1}-x_{3} & x_{2}-x_{3} \\
y_{1}-y_{3} & y_{2}-y_{3}
\end{array}\right]}_{B_{K}}\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]+\underbrace{\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]}_{\mathbf{b}_{K}}
$$

Finite Element Approximation

Reference element
Local (nodal) basis on \hat{K} : (dual basis of DOF)

$$
\hat{\phi}_{1}(\xi, \eta)=\xi, \quad \hat{\phi}_{2}(\xi, \eta)=\eta, \quad \hat{\phi}_{3}(\xi, \eta)=1-\xi-\eta, \quad(\xi, \eta) \in \hat{K} .
$$

The correspondence

$$
\hat{\phi} \mapsto \phi:=\hat{\phi} \circ \mu_{K}^{-1}, \quad \text { d.h. } \quad \phi(\mathbf{x}):=\hat{\phi}(\boldsymbol{\xi}(\mathbf{x}))=\hat{\phi}\left(\mu_{K}^{-1}(\mathbf{x})\right)
$$

assigns to $\hat{\phi}$ on \hat{K} a unique function ϕ on K.

Local basis functions on K :

$$
\phi_{j}=\hat{\phi}_{j} \circ \mu_{K}^{-1}: K \rightarrow \mathbb{R}, \quad j=1,2,3 .
$$

Finite Element Approximation

Reference element, change of variables

The chain rule ${ }^{3}$ applied to $\phi(\mathbf{x})=\hat{\phi}(\boldsymbol{\xi}(\mathbf{x}))$ gives

$$
\nabla \phi=\left[\begin{array}{l}
\phi_{x} \\
\phi_{y}
\end{array}\right]=\left[\begin{array}{l}
\hat{\phi}_{\xi} \xi_{x}+\hat{\phi}_{\eta} \eta_{x} \\
\hat{\phi}_{\xi} \xi_{y}+\hat{\phi}_{\eta} \eta_{y}
\end{array}\right]=\left[\begin{array}{ll}
\xi_{x} & \eta_{x} \\
\xi_{y} & \eta_{y}
\end{array}\right]\left[\begin{array}{c}
\hat{\phi}_{\xi} \\
\hat{\phi}_{\eta}
\end{array}\right]=\left(D \mu_{K}^{-1}\right)^{\top} \hat{\nabla} \hat{\phi} .
$$

Since

$$
\begin{array}{ll}
\mathbf{x}=\mu_{K}(\boldsymbol{\xi})=B_{K} \boldsymbol{\xi}+\mathbf{b}_{K}, & \text { i.e. } D \mu_{K} \equiv B_{K}, \\
\boldsymbol{\xi}=\mu_{K}^{-1}(\mathbf{x})=B_{K}^{-1}\left(\mathbf{x}-\mathbf{b}_{K}\right), & \text { i.e. } D \mu_{K}^{-1} \equiv B_{K}^{-1}
\end{array}
$$

we obtain

$$
\nabla \phi=B_{K}^{-\top} \hat{\nabla} \hat{\phi} .
$$

[^1]
Finite Element Approximation

Reference element, element integrals
This finally gives the element integrals $\left(\phi_{i}=\phi_{i}^{(K)}, i=1,2,3\right)$

$$
\begin{align*}
a_{K}\left(\phi_{j}, \phi_{i}\right) & =\int_{K} a(\mathbf{x}) \nabla \phi_{j}(\mathbf{x}) \cdot \nabla \phi_{i}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\int_{\hat{K}} a(\mathbf{x}(\boldsymbol{\xi}))\left(B_{K}^{-\top} \hat{\nabla} \hat{\phi}_{j}(\boldsymbol{\xi})\right) \cdot\left(B_{K}^{-\top} \hat{\nabla} \hat{\phi}_{i}(\boldsymbol{\xi})\right)\left|\operatorname{det} B_{K}\right| \mathrm{d} \boldsymbol{\xi} \tag{B.9}
\end{align*}
$$

The determinant is given by (note K is a triangle)

$$
\begin{aligned}
& \left|\operatorname{det} B_{K}\right|=2|K| \\
& B_{K}^{-\top}=\frac{1}{2|K|}\left[\begin{array}{ll}
y_{2}-y_{3} & x_{3}-x_{2} \\
y_{3}-y_{1} & x_{1}-x_{3}
\end{array}\right] \\
& {\left[\hat{\nabla} \hat{\phi}_{1} \quad \hat{\nabla} \hat{\phi}_{2} \quad \hat{\nabla} \hat{\phi}_{3}\right]=\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right] .}
\end{aligned}
$$

Finite Element Approximation

Eliminate constrained boundary DOF
To impose the Dirichlet boundary condition we require that the Galerkin approximation $u_{h} \in V_{h}$ satisfy

$$
\begin{equation*}
u_{h}\left(\mathbf{x}_{j}\right)=g\left(\mathbf{x}_{j}\right) \quad \text { at all boundary vertices }\left\{\mathbf{x}_{j}\right\}_{j=n+1}^{\tilde{n}} . \tag{B.10}
\end{equation*}
$$

- We partition the coefficient vector $\mathbf{u} \in \mathbb{R}^{\tilde{n}}$ into a first block $\mathbf{u}_{I} \in \mathbb{R}^{n}$ containing the coefficients associated with the interior vertices $\left\{\mathbf{x}_{j}\right\}_{j=1}^{n}$ and a second block $\mathbf{u}_{B} \in \mathbb{R}^{\tilde{n}-n}$ containing the constrained coefficients associated with boundary vertices.
- For the assembled matrix $\tilde{\mathbf{A}}$ and vector $\tilde{\mathbf{b}}$ this induces the partitionings

$$
\tilde{\mathbf{A}}=\left[\begin{array}{ll}
\tilde{\mathbf{A}}_{I I} & \tilde{\mathbf{A}}_{I B} \\
\tilde{\mathbf{A}}_{B I} & \tilde{\mathbf{A}}_{B B}
\end{array}\right], \quad \tilde{\mathbf{b}}=\left[\begin{array}{c}
\tilde{\mathbf{b}}_{I} \\
\tilde{\mathbf{b}}_{B}
\end{array}\right]
$$

- The constraint (B.10) now reads $\mathbf{u}_{B}=\mathbf{g}$, where $\mathbf{g} \in \mathbb{R}^{\tilde{n}-n}$ contains the boundary data $\left\{g\left(\mathbf{x}_{j}\right)\right\}_{j=n+1}^{\tilde{n}}$.

Finite Element Approximation

Eliminate constrained boundary DOF

This constraint is characterised by there being no coupling of the boundary DOF to either interior DOF or among themselves, resulting in the modified linear system of equations

$$
\left[\begin{array}{cc}
\tilde{\mathbf{A}}_{I I} & \tilde{\mathbf{A}}_{I B} \\
\mathbf{O} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{I} \\
\mathbf{u}_{B}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{b}_{I} \\
\mathbf{g}
\end{array}\right],
$$

which gives the reduced system

$$
\mathbf{A} \mathbf{u}_{I}=\mathbf{b}, \quad \mathbf{A}=\tilde{\mathbf{A}}_{I I}, \quad \mathbf{b}=\mathbf{b}_{I}-\tilde{\mathbf{A}}_{I B} \mathbf{g}
$$

for the interior DOF.
Note that this procedure is a discrete variant of the reformulation of the BVP with inhomogeneous Dirichlet boundary conditions to an equivalent one with homogeneous Dirichlet boundary conditions.

Finite Element Convergence

Summary

- CÃl'a's lemma characterises the Galerkin error as one of best appproximation from the FE subspace V_{h}.
- An upper bound for this error is the distance of the true solution from its interpolant from the FE subspace. This is the uniquely determined function from V_{h} which possesses the same global DOF as the exact solution.
- The asymptotic behavior of the interpolant is then analyzed on a sequence of meshes $\left\{\mathscr{T}_{n}\right\}_{n \in \mathbb{N}}$ with $\lim _{n \rightarrow \infty} h_{n}=0$.
- For the interpolation error to become small, the mesh sequence has to be shape-regular: if ρ_{K} denotes the radius of the inscribed circle in K and $h_{K}=\operatorname{diam} K$, then a sequence of meshes is shape-regular provided the ratio

$$
\frac{\rho_{K}}{h_{K}}, \quad K \in \mathscr{T}_{h}
$$

is bounded below uniformly for all $\left\{\mathscr{T}_{n}\right\}$.

- A priori convergence bounds are obtained by relating the smoothness of the exact solution to the convergence rate h^{α} of the interpolation error as $h \rightarrow 0$.

Finite Element Convergence

Extra regularity

Interpolation estimates for u that is only in $H^{1}(D)$ do not yield a useful rate h^{α} with an $\alpha>0$. As such one looks for solutions that possesses higher regularity.

Definition B. 12

For $r \in \mathbb{N}$ and $D \subset \mathbb{R}^{d}$ bounded, we denote by $H^{r}(D)$ the Sobolev space

$$
H^{r}(D):=\left\{v \in L^{2}(D): D^{\boldsymbol{\alpha}} u \in L^{2}(D) \text { for all } \boldsymbol{\alpha} \in \mathbb{N}_{0}^{d},|\boldsymbol{\alpha}| \leq r\right\}
$$

$H^{r}(D)$ is a Hilbert space with the inner product

$$
(u, v)_{H^{r}(D)}=\sum_{|\boldsymbol{\alpha}| \leq r} \int_{D}\left(D^{\boldsymbol{\alpha}} u\right)\left(D^{\boldsymbol{\alpha}} v\right) \mathrm{d} \mathbf{x}
$$

and the induced norm given by

$$
\|u\|_{H^{r}(D)}^{2}=(u, u)_{H^{r}(D)}=\sum_{|\boldsymbol{\alpha}| \leq r}\left\|D^{\boldsymbol{\alpha}}\right\|_{L^{2}(D)}^{2}
$$

Note: the vector $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$ is called a multiindex, and $|\boldsymbol{\alpha}|:=\sum_{j=1}^{d} \alpha_{j}$.

Finite Element Convergence

Interpolation error of linear FE for H^{2}-regular functions

- Let V_{h} denote the space of piecewise linear functions subject to a shape-regular, admissible triangulation \mathscr{T}_{h} of D.
- Denote by $I_{h}: C(\bar{D}) \rightarrow V_{h}$ the (global) interpolation operator assigning to each continuous function v the interpolant $v_{h} \in V_{h}$ determined by the condition that v_{h} agrees with v at all vertices of \mathscr{T}_{h}.
- Then the error of best approximation of $u \in C(\bar{D})$ is bounded by the interpolation error

$$
\inf _{v \in V_{h}}|u-v|_{H^{1}(D)} \leq\left|u-I_{h} u\right|_{H^{1}(D)} .
$$

- If the solution u of (B.4) has additional regularity $u \in H^{2}(D)$, then the Sobolev imbedding theorem assures that u agrees a.e. with a function in $C(\bar{D})$, so that pointwise evaluation of u and thus the interpolant is well-defined.
- In this case a scaling argument can be used to show

$$
\left|u-I_{h} u\right|_{H^{1}(D)} \leq C h|u|_{H^{2}(D)}
$$

with a constant C independent of h and u.

Finite Element Convergence

Model problem

Assumption 2 ($\mathrm{H}^{2} /$ elliptic regularity)

There exists a constant $C_{2}>0$ such that, for every $f \in L^{2}(D)$, the solution of (B.4) belongs to $H^{2}(D)$ and satisfies

$$
|u|_{H^{2}(D)} \leq C_{2}\|f\|_{L^{2}(D)} .
$$

Theorem B. 13

Under Assumptions 1 and 2, the solution u of (B.4) with $f \in L^{2}(D)$ and the piecewise linear finite element approximation u_{h} on a sequence of shape-regular meshes satisfy

$$
\begin{equation*}
\left|u-u_{h}\right|_{a} \leq C \sqrt{a_{\max }}|u|_{H^{2}(D)} h \leq C C_{2} \sqrt{a_{\max }}\|f\|_{L^{2}(D)} h, \tag{B.11}
\end{equation*}
$$

with a constant C independent of h.

Corollary B. 14

Under the assumptions of Theorem B. 13 there holds

$$
\left|u-u_{h}\right|_{H^{1}(D)} \leq C \sqrt{\frac{a_{\max }}{a_{\min }}}|u|_{H^{2}(D)} h \leq C C_{2} \sqrt{\frac{a_{\max }}{a_{\min }}}\|f\|_{L^{2}(D)} h .
$$

References

[1] D. Braess. Finite Elements. Springer, Berlin-Heidelberg, 2003.
[2] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North Holland Publishing Company, New York-Amsterdam-Oxford, 1978.
[3] P. Bastian. Scientific Computing with Partial Differential Equations. Lecture Notes, Universität Heidelberg, 2017.

[^0]: ${ }^{1}$ (where we have omitted the subscript X)

[^1]: ${ }^{3} \hat{\nabla}$ indicates differentiation with respect to the variables ξ, and η.

