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1. What is Uncertainty Quantification?
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Motivation
Mathematical modelling, e.g., in the form of differential equations, is
essential to understand, optimise, control and predict physical, biological and
engineering processes.
Numerical methods are central in solving these often very complex
mathematical models.
These methods have reached a high level of maturity & sophistication.
Many excellent PDE software packages exist to model complex problems
efficiently and robustly.
But models have input data that are typically not known precisely
(parameters, source term, domain shape, boundary conditions, etc...)

It is of great importance to determine these parameters, their

influence on the solution & uncertainties due to their variability.

To find (and analyse) efficient numerical methods for those tasks is still a very

active field of research. Here, I will present the promising family of

Multilevel Monte Carlo methods.
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What is Uncertainty Quantification (UQ)?
Uncertainty in Modern Life

Many aspects of modern life involve uncertainty:

Society: military, finance, insurance industry, elections

Environment: weather, climate, seismic, subsurface geophysics

Engineering: automobiles, aircraft, structures, materials

Biology: health, medicine, pharmaceuticals, gene expression, cancer research

Physics: quantum physics, radioactive decay
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What is Uncertainty Quantification (UQ)?
Examples

Source: GKN Aerospace

Performance “knock-down” factors through wrinkling defects in carbon fibre
composite aeroplane wing
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Modelled via PDEs with Random Coefficients
Structural Mechanics (e.g. composites, tires or bone):

r ·

✓
C(x,!) :

1

2

⇥
ru+ruT

⇤◆
+ F(x,!) = 0 in ⌦(!)

subject to uncertain BCs

fibre defects

contact on rough surface
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The “Fruit Fly” of UQ
A popular model problem in the UQ community is the steady-state diffusion
problem with uncertain coefficient function a(x):

�r·(aru) = f on domain D ⇢ Rd. (an elliptic PDE)

Rather than in the solution u, typically we are interested in a functional Q of the
solution u, known as quantity of interest (QoI):

e.g. Q(u) = u(x0) or Q(u) = 1
|D0|

R
D0

u(x) dx.

In what way might uncertainty in the coefficient a be addressed?

Worst case analysis: Could calculate uncertainty interval

I =
h

inf
ka�a0k<"

Q(u(a)), sup
ka�a0k<"

Q(u(a))
i
.
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Probabilistic Modelling of Uncertainty

But, in general, some coefficients with ka� a0k < " are more likely than others

) Probabilistic approach

Introduce probability measure on S := {a : ka� a0k < "}.

Then Q(u(·)) (as measurable mapping on S) induces probability measure for
the QoI (“Uncertainty Propagation”) Today

Big issue: choice of distribution, information too subjective?
(Some classical guidelines: Laplace’s principle, maximum entropy,. . . )

Choosing distribution based on (output) is starting point for Bayesian

inference (“Uncertainty Quantification”) Friday
(Here the choice of distribution on S, the “prior”, becomes less important, although
classical, frequentist statisticians still consider it too subjective!)
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Learning from Sparse and Noisy Data

Particulary important when studying complex physical or biological systems
where only very sparse and noisy data is available, but good mathematical
models exist to describe the system.

Examples:

Atmospheric, ocean or subsurface flow
Cardiovascular system or tracer diffusion in brain imaging
Structural mechanics of composite materials or bones

Machine Learning and Neural Networks alone will not be sufficient!

Need to add mathematical modelling and numerical analysis to the toolkit –
New Challenges!
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2. Computational Challenges
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Computational Challenges
in simulating PDEs with highly heterogeneous random coefficients

�r · (a(x,!)ru(x,!)) = f(x,!), x 2 D ⇢ Rd, ! 2 ⌦ (prob. space)

Sampling from random field log a(x,!) (correlated Gaussian):
I truncated Karhunen-Loève expansion of log a
I matrix factorisation, e.g. circulant embedding (FFT)
I via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Quadrature The central focus of this course!
I Monte Carlo, Quasi-Monte Carlo, Multilevel Monte Carlo
I Sparse Grids & stochastic Galerkin/collocation

Solve large number of multiscale deterministic PDEs:
I Efficient discretisation & FE error analysis (mesh size h)
I Multigrid Methods, AMG, DD Methods Big focus here at Penn State!
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Why is it Computationally so Challenging?
Low regularity (global): a 2 C⌘, ⌘ < ⌫ < 1 (Hölder) =) fine FE mesh h ⌧ 1

Large variance �2 & exponential =) high contrast amax/amin > 106

Small correlation length �
=) multiscale + high stochastic dimension s � 1
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Source: Ernst et al, 2014 (s = M)
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Standard Monte Carlo Quadrature

X(!) 2 Rs FE Model(h)
�! U(!) 2 RMh

Output
�! Qh,s(!) 2 R

random input state vector quantity of interest

Here: X multivariate Gaussian for KL expansion; U numerical PDE solution;
Qh,s a (non)linear functional of U

Real QoI Q(!) inaccessible (exact PDE), but we can assume
E[Qh,s]

h!0, s!1
�! E[Q] and |E[Qh,s �Q]| = O(h↵) +O(s�↵0

)

Standard Monte Carlo estimator for E[Q]: More detail below!

Q̂MC :=
1

N

NX

i=1

Q(i)
h,s

where {Q(i)
h,s}

N
i=1 are i.i.d. samples computed with FE Model(h)

Cost per sample is O(M�
h ) (optimal: � = 1, e.g. multigrid)
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Standard Monte Carlo Quadrature

Convergence of plain vanilla MC (mean square error):

E
⇥�
Q̂MC

� E[Q]
�2⇤

| {z }
=: MSE

= V[Q̂MC] +
�
E[Q̂MC]� E[Q]

�2

=
V[Qh,s]

N| {z }
sampling error

+
⇣
E[Qh,s �Q]

⌘2

| {z }
model error (“bias”)

Typical: ↵ = 1 )

MSE = O(N�1) +O(h2)  TOL2 and so h ⇠ TOL and N ⇠ TOL�2

Using optimal PDE solver: Cost = O(Nh�d) = O(TOL�(d+2))

(e.g. for TOL = 10�3: h ⇠ 10�3, N ⇠ 106 and Cost = O(1012) in 2D!!)

Quickly becomes prohibitively expensive !
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Numerical Experiment with Standard Monte Carlo

D = (0, 1)2, Q = k � a @u
@x1

kL1(D), sampling via truncated KL expansion, and
using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Numerically observed FE-error: ⇡ O(h3/4) =) ↵ ⇡ 3/4.
Numerically observed cost/sample: ⇡ O(h�2) =) � ⇡ 1.

Total cost to get RMSE O(TOL): ⇡ O(TOL�14/3)

To get error reduction by a factor 2 �! Cost grows by a factor 25!

Case 1: �2 = 1, � = 0.3, ⌫ = 0.5

TOL h�1 N Cost
0.01 129 1.4⇥ 104 21min

0.002 1025 3.5⇥ 105 30 days

Case 2: �2 = 3, � = 0.1, ⌫ = 0.5

TOL h�1 N Cost
0.01 513 8.5⇥ 103 4 h

0.002 Prohibitively large!!

(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)
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Alternatives
Polynomial quadrature: stochastic Galerkin/collocation methods

I Cost grows very fast with dimension s & polynomial order q
! #stochastic DOFs NSC = O

⇣
(s+q)!
s!q!

⌘
(faster than exponential!)

I Lower number with sparse grids (Smolyak), but still exponential growth with s!

The “Curse of Dimensionality”

I Anisotropic sparse grids or adaptive best N -term approximation can be
dimension independent with sufficient smoothness! [Zech, 2018]

Monte Carlo type methods

I Convergence of plain vanilla Monte Carlo is always dimension independent !
(No smoothness needed!) BUT (as shown) order is way too slow: O(N�1/2)!

I Quasi-Monte Carlo can also be dimension independent and (almost) O(N�1)!
But requires also (some) smoothness !

Focus here instead: Use a multilevel hierarchy of numerical models !!
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3. Convergence & Complexity of Basic Monte Carlo
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Basic Monte Carlo Simulation – Convergence Results
Given a sequence {Xk} of i.i.d. copies of a given random variable X, basic
MC simulation uses the estimator

E [X] ⇡
SN

N
, SN = X1 + · · ·+XN .

Strong Law of Large Numbers:
SN

N
! E [X] a.s.

Also, for any measurable function f :
1

N

NX

k=1

f(Xk) ! E [f(X)] a.s.

Central Limit Theorem: If E [X] = µ and Var[X] = �2, then

E [SN ] = Nµ, Var[SN ] = N�2 and S⇤
N =

SN �Nµ
p
N�

! N(0, 1),

i.e. the estimate is unbiased, the standard error is �N�1/2 and the
distribution of the normalised RV S⇤

N becomes Gaussian as N ! 1.

(if Var[X] < 1 then the normalised RV X⇤ := X�E[X]
p

Var[X]
has E [X⇤] = 0, Var[X⇤] = 1)
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Basic Monte Carlo Simulation – Convergence Results
Mean square convergence:

E
"✓

SN

N
� µ

◆2
#
= Var

SN

N
=

�2

N
! 0.

Chebyshev’s Inequality implies, for any ✏ > 0:

P
⇢����

SN

N
� µ

���� > N�1/2+✏

�


�2

N2✏
,

(i.e. the probability of the error being > N�1/2+✏ converges to zero as N ! 1)

If ⇢ := E
⇥
|X � µ|3

⇤
< 1, then the Berry-Esseen Inequality gives
���P{S⇤

N  x}� �(x)
��� 

⇢

2�3
p
N

,

where � denotes cumulative density function (CDF) of N(0, 1).

Using Berry-Esseen, the asymptotic 95% confidence interval for SN/N is

0.95�
⇢

�3
p
N

 P
⇢
µ 2


SN

N
�

1.96�
p
N

,
SN

N
+

1.96�
p
N

��
 0.95 +

⇢

�3
p
N
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4. A Simple ODE Example
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Predator-Prey Dynamical System
Now apply Monte Carlo in a UQ application. Consider the Lotka-Volterra (or
predator-prey) model of the dynamics of two interacting populations

u̇ =


u̇1

u̇2

�
=


✓1u1 � ✓12u1u2

✓21u1u2 � ✓2u2

�
= f(u), u(0) = u0,

where u1 is the number of prey, u2 is the number of predator and
✓1, ✓2, ✓12, ✓21 � 0 are parameters describing the interaction of the two species.

For simplicity, assume that

✓1 = ✓2 = ✓12 = ✓21 = 1

and only the vector of initial conditions u0 is uncertain.

We model it as a (uniform) random vector u0 ⇠ U(�), where � denotes the
square

� = u0 + [��, �]2.

Goal: estimate E [u1(T )] at time T > 0 using the Monte Carlo method.
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Predator-Prey Dynamical System – Sample Trajectories

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

u
1

u
2

Population dynamics problem (with ✓1 = ✓2 = ✓12 = ✓21 = 1) integrated over [0, T ]
with u0 = [0.5, 2]T, � = 0.2 and T = 6. Unperturbed trajectory (black) alongside
15 perturbed trajectories. For the unperturbed trajectory u1(T ) = 1.3942.
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Modelling Epidemics like COVID-19
Obviously there are arbitrarily many variations to this simple UQ problem
(the distribution of u0 may be more complicated, the interaction parameters may
also be uncertain, there may be more species, or the quantity of interest may be
something more complicated) . . . in particular . . .
A special case of the Lotka-Volterra model is the simplest and most widely
used model for the spread of diseases (such as COVID-19):

SIR model
Ṡ = �

�
N SI

İ = �
N SI � �I

Ṙ = �I

where population of N individuals is divided into categories susceptibles

(S), infecteous (I) and recovered (R). The total number N = S + I +R
of individuals is assumed to be constant (i.e. birth/death processes negligible)

For constant N , this problem can be reduced to solving the first two ODEs,
which is the Lotka-Volterra system with ✓1 = 0, ✓12 = ✓21 = �/N , ✓2 = �.
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Modelling Epidemics like COVID-19

The current situation, including lock-down measures, is modelled more accurately
with the SEIR model, which includes a category exposed (E):

SEIR model
Ṡ = µ(N � S)� �

N SI

Ė = �
N SI � (µ+ ↵)E

İ = ↵E � (� + µ)I

Ṙ = �I � µR

One of my postdocs, Tobias Siems, has been collaborating with the Heidelberg

Institute for Global Health and the regional health authority last year to model the
Rhein-Neckar-Kreis with SEIR (and a further refinement SEIHR) in order to
predict case numbers and the resulting need for hospital beds.
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Explicit Euler Discretisation
Denote by uM = uM (!) the explicit Euler approximation after M = Mh

time steps of length h = T
M , starting with initial data u0 = u0(!), i.e.

uj = uj�1 + hf(uj�1), j = 1, . . . ,Mh.

Explicit Euler has consistency order 1 and thus there exists a constant K > 0
sucht that the discretisation error can be bounded by

ku(T )� uMhk  K h .

Define the quantity of interest (QoI) Q = �(u(T )) = u1(T ) for u = [u1, u2]T

and estimate E [Qh] using the MC method just described with Qh = �(uMh).

The QoI � is Lipschitz-continuous with constant L = 1, such that also

|E [Q]� E [Qh] | = |E [Q�Qh] |  K h. (4.1)

Denote the Monte Carlo estimator for E [Qh] by

bQh := bQh,N =
1

N

NP
k=1

Q(k)
h N i.i.d. samples Q

(1)
h , . . . , Q

(N)
h of Qh.

Expect better approximations for N large and h small.
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Bias-Variance Decomposition – Balancing Error Contributions

Lemma 4.1 (Bias-Variance Decomposition)

The mean square error (MSE) can be expanded

E
h�
E [Q]� bQh

�2i
=

�
E [Q�Qh]

�2
+

Var[Qh]

N

Proof. Demonstrated on tablet.
Hint: Note that E [Q] is constant and only bQh is actually random.

Thus, using the bias error bound above and the fact that, for h sufficiently small,
Var[Qh]  �2

bnd  1.1Var[Q] (independently of h), we get the following bound:

MSE := E
h�
E [Q]� bQh

�2i
 K2h2 + �2

bndN
�1 (4.2)
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Balancing Discretisation and Sampling Error (in probability)

Using above convergence results, error can also be bounded in probability:

Error with N samples and M = T/h time steps:

eh,N := |E [Q]� bQh|  |E [Q]� E [Qh] || {z }
discretisation error

+ |E [Qh]� bQh|| {z }
Monte Carlo error

Using the asymptotic 95% confidence interval for the MC error on Slide 21
(with Var[Qh] = �2

h  �2
bnd) we get

P
⇢���E [Qh]� bQh

��� 
1.96�h
p
N

�
> 0.95 +O(N�1/2)

Combining this with discretisation error in (4.1) (using triangle inequality):

P
n
eh,N  K h+ 1.96�hN

�1/2
o
> 0.95 +O(N�1/2). (4.3)
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Monte Carlo Complexity for Predator-Prey Problem
Finally noting that the cost in each time step is 8 FLOPs, the total cost for the
MC estimator is

Cost( bQh) = 8MhN = 8T h�1N (FLOPs) (4.4)

and we have the following complexity result:

Proposition 4.2 (Monte Carlo Complexity)

The total cost to compute a standard Monte Carlo estimator for E [u1(T )] for

the predator-prey model with explicit Euler time discretisation, such that

MSE < "2 or P{eh,N < "} > ✓ for any ✓ 2 (0, 1), satisfies

Cost( bQh) = O("�3).

Proof. (only the proof for in probability) A sufficient condition for eh,N < " is

K h = "/2 and 1.96�hN
�1/2 = "/2 (balancing the two terms).

This leads to

h = 1
2K" and N = 3.922�2

h"
�2

) Cost( bQh) 
256T�2

bnd
K

"�3 .
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5. The Multilevel Monte Carlo Method
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History
The multilevel Monte Carlo method is a powerful “new” variance reduction
technique (especially for UQ applications).

First ideas for high-dimensional quadrature by [Heinrich, 2000].

Independently discovered and popularised by [Giles, 2007] in the context of
stochastic DEs in mathematical finance.

First papers in the context of UQ:
I [Barth, Schwab, Zollinger, 2011] & [Cliffe, Giles, RS, Teckentrup, 2011]

Stochastic simulation of discrete state systems (biology, chemistry)
I [Anderson, Higham, 2012]

. . .

Goal: Estimate E [Q] of an inacccessible RV Q (e.g. derived from the solution of DE)

Assume: Access to sequence of approximations Qh ⇡ Q, parametrised by h,
such that limh!0 Qh = Q (#time steps, #grid points, . . . )

Idea: Reduce variance by a clever use of the hierarchy of approximations.
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Abstract Complexity Result for Standard MC
Recall from Lemma 4.1 that mean square error (MSE) for standard MC estimator
bQh,N (using samples from the approximation Qh instead of Q) expands as

E
⇣

bQh,N � E [Q]
⌘2

�
=

�
E [Qh �Q]

�2
+

Var[Qh]

N
.

Thus, we can derive an abstract version of Proposition 4.2 (with identical proof):

Theorem 5.1 (Abstract Complexity Theorem for standard MC)

Assume that there exist constants ↵, � > 0, such that

|E [Qh �Q] | = O(h↵), as h ! 0, (5.1)

Cost(Q(k)
h ) = O(h��), as h ! 0, (5.2)

where Cost(Q(k)
h ) denotes the cost to compute a sample from approximation Qh.

Then, for any " > 0 and ✓ 2 (0, 1), the total cost to compute a standard Monte

Carlo estimator for E [Q], such that MSE < "2 or P{eh,N < "} > ✓, satisfies

Cost( bQh,N ) = O("�2��/↵).
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Multilevel Estimator

Key idea: use samples of Qh on a hierarchy of different levels, i.e., for
different values h0, . . . , hL of the discretization parameter, and decompose

E [QhL ] =E [Qh0 ] +
LX

`=1

E
⇥
Qh` �Qh`�1

⇤
=:

LX

`=0

E [Y`] ,

For simplicity, we will often choose h`�1 = mh`, ` = 1, . . . , L, for some
m 2 N \ {1} and h0 > 0) (uniform grid refinement).

Given estimators {bY`}
L
`=0 for E [Y`], we refer to

bQML
L :=

LX

`=0

bY`

as a multilevel estimator for Q.

Different variants of this multilevel estimator now arise from different choices
of the level estimators, e.g. standard Monte Carlo, quasi-Monte Carlo, etc . . .
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Multilevel Monte Carlo (MLMC) Estimator
If each bY` is itself a standard Monte Carlo estimator, i.e.,

bY0 = bY0,N0 :=
1

N0

N0X

k=1

Q(k)
h0

and

bY` = bY`,N` :=
1

N`

NX̀

k=1

⇣
Q(k)

h`
�Q(k)

h`�1

⌘
, ` = 1, . . . , L,

one obtains the multilevel Monte Carlo estimator and bQML
L is unbiased.

If all expectations E [Y`] are sampled independently (not neccessary), then

Var bQML
L =

LP
`=0

Var bY`.

and the associated MSE has the standard decomposition

E
⇣

bQML
L,{N`} � E [Q]

⌘2
�
= E [QhL �Q]2 +

LX

`=0

Var Y`

N`

into bias and sample variance (shown identically to Lemma 4.1 for standard MC).
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MLMC variance reduction

Choose the discretisation parameter hL on the highest level and the numbers
of samples (N`)L`=0 again to balance the terms in the MSE.

The bias term is the same as for the standard MC estimator if hL = h, so
that under Assumption (5.1), this leads again to a choice of hL = O("1/↵).

But why do we get variance reduction or lower cost for the same variance?

Two reasons:

1. As we coarsen the problem, the cost per sample decays rapidly from level to
level under Assumption (5.2); by a factor m� if h`�1/h` = m.

2. Since Qh ! Q, then Var[Y`] = Var[Qh` �Qh`�1 ] ! 0 as ` ! 1, allowing
for smaller and smaller sample sizes N` on higher and higher levels.
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Optimal Sample Sizes

The cost of the MLMC estimator is

Cost( bQML
L,{N`}) =

LX

`=0

N`C`, C` := Cost(Y (k)
` ).

Treating the N` as continuous variables, the cost of the MLMC estimator can
be minimised for a fixed variance

LX

`=0

Var Y`

N`
=

"2

2

The solution to this constrained minimisation problem is

N` = �
p

Var[Y`]/C` (5.3)

with the constant � chosen such that the total variance is "2

2 , leading to the
constant � = 2

"2
P

`

p
C` Var[Y`]. Demonstrated on tablet.
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Cost Comparison MLMC vs. Standard MC
Thus the total cost on level ` is proportional to

p
C` Var[Y`] and therefore

Cost( bQML
L,{N`}) 

2

"2

✓ LX

`=0

p
C` Var[Y`]

◆2

For comparison, standard MC has Cost( bQhL,N ) =
2

"2
CL Var[QML ].

If Var[Y`] decays faster than C` increases, the cost on level ` = 0 dominates.
Since Var[Qh0 ] ⇡ Var[QhL ], the cost ratio of MLMC to MC estimation is
then approximately

C0/CL h
�
m��

�L

If C` increases faster than Var[Y`] decays, the cost on level ` = L dominates.
Then the cost ratio is approximately

Var[YL]/Var[QhL ] h "2

(provided E
⇥
(Q�QL)2

⇤
h (E [Q�QL])

2, which is problem dependent).
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General Multilevel Monte Carlo Complexity Theorem
Theorem 5.2

Let " < exp(�1) and assume that there are constants ↵,�, � > 0 such that

↵ �
1
2 min{�, �} and, for all ` = 0, . . . , L,

(M1) |E [Qh` ]� E [Q] | = O(h↵
` ),

(M2) Var[Y`] = O(h�
` ),

(M3) C` = O(h��
` ).

Then there are L and {N`}
L
`=0 such that E

h� bQML
L,{N`} � E [Q]

�2i
 "2 and

Cost
� bQML

L,{N`}
�
=

8
><

>:

O
�
"�2

�
, if � > �,

O
�
"�2

| log "|2
�
, if � = �,

O
�
"�2�(���)/↵

�
, if � < �.

Proof. Demonstrated on tablet.

[Giles, 2007] for special case of SDEs with ↵ = � = 1.
[Cliffe, Giles, RS, Teckentrup, 2011] for the general case.
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Application to the Predator-Prey Problem
In the case of the predator-prey model problem we have already seen in (4.1) and
(4.4) that (M1) and (M3) hold with ↵ = 1 and � = 1, respectively.

Finally, it can be proved similarly to (M1) that (M2) holds with � = 2. Indeed

Var[Y`] = Var[Qh` �Qh`�1 ]  E
h�
Qh` �Qh`�1

�2i

 2
⇣
E
h�
Q�Qh`�1

�2i
+ E

h�
Q�Qh`

�2i⌘

 2
�
K2h2

`�1 +K2h2
`

�

 2K2(1 +m2)| {z }
constant

h2
` .

Thus, � > � and it follows from Theorem 5.2 that

Cost
� bQML

L,{N`}
�
= O

�
"�2

�
.

Recall that for standard MC we had Cost( bQh,N ) = O
�
"�3

�
, so we gained a whole

order of magnitude.
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Numerical Results – CPU time vs. Root Mean Square Error
Comparing standard MC & MLMC for the predator-prey model (and anithetic MC)

The cost of the standard MC method grows like O("�3), as predicted, while the
cost for MLMC grows like O("�2) (actual cost depends on number of levels).
(We can also observe the variance reduction through antithetic sampling.)
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Adaptive MLMC Algorithm
The following MLMC algorithm computes the optimal values of L and N`

adaptively using the sample averages bY`,N` and sample variances

s2` :=
1

N � 1

NX̀

k=1

⇣
Y (k)
` � bY`,N`

⌘2
of Y` .

Sample variances can be used directly to estimate the MC error on each level.

To bound the bias error, we assume there exists an h? > 0 such that the
error decay in |E [Qh �Q] | is monotonic for h  h? and satisfies

ch↵
 |E [Qh �Q] |  Ch↵.

This ensures that in the case h`�1

h`
= m (via inverse triangle inequality) DIY

|E [Qh` �Q] |  1
rm↵�1

bY` for r = c/C.

For the predator-prey problem r = c/C ⇡ 1 (c can safely be chosen as 0.9) and
this gives a computable error estimator on level L to determine whether hL is
sufficiently small or whether L needs to be increased.
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Adaptive MLMC Algorithm

Adaptive MLMC Algorithm
1. Set h0, m, ", L = 1 and N0 = N1 = NInit.
2. For ` = 0, . . . , L

a. Compute new samples Y (k)
` on level ` until there are N`.

b. Compute bY` and s2`, and estimate C`.

3. Update estimates for N` using the formula in (5.3) and
if bYL > rm↵�1p

2
", increase L ! L+ 1 and set NL = NInit.

4. While bYL > rm↵�1p
2

" or
LP

`=0
s2`/N` > "2/2

Return to 2.

5. Set bQML
L,{N`} =

LP
`=0

bY`.
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