Multilevel Monte Carlo Methods for UQ Part I

Robert Scheichl r.scheichl@uni-heidelberg.de

Institut für Angewandte Mathematik, Universität Heidelberg

Short Course, Penn State University, 21 & 23 April 2021 https://katana.iwr.uni-heidelberg.de/teaching/pennstate2021/

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I

Penn State '21 1/43

Collaborators

- J Charrier (Marseille)
- KA Cliffe † (Nottingham)
- T Cui (Monash)
- G Detommaso (Amazon Berlin)
- T Dodwell (Exeter)
- C Fox (Otago)
- A Gilbert (UNSW Sydney)
- M Giles (Oxford)
- IG Graham (Bath)
- Ch Ketelsen (Boulder)
- F Kuo (UNSW Sydney)

- J Lang (Darmstadt)
- MB Lykkegaard (Exeter)
- E Müller (Bath)
- Ch Schwab (ETH Zürich)
- T Shardlow (Bath)
- D Silvester (Manchester)
- IH Sloan (UNSW Sydney)
- A Stuart (Caltech)
- AL Teckentrup (Edinburgh)
- E Ullmann (TU Munich)
- . . .

- 1. What is Uncertainty Quantification?
- 2. Computational Challenges
- 3. Convergence & Complexity of Basic Monte Carlo
- 4. A Simple ODE Example
- 5. The Multilevel Monte Carlo Method
- 6. Random Fields
- 7. (Multilevel) Monte Carlo Finite Element Methods
- 8. Conditioning on Data Bayesian Inverse Problems
- 9. Model Problems & Markov Chain Monte Carlo
- 10. Multilevel Markov Chain Monte Carlo
- 11. Conclusions & Outlook

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I

Penn State '21 3/43

1. What is Uncertainty Quantification?

Motivation

- Mathematical modelling, e.g., in the form of differential equations, is essential to understand, optimise, control and predict physical, biological and engineering processes.
- Numerical methods are central in solving these often very complex mathematical models.
- These methods have reached a high level of maturity & sophistication.
- Many excellent PDE software packages exist to model complex problems efficiently and robustly.
- But models have input data that are typically not known precisely (parameters, source term, domain shape, boundary conditions, etc...)
- It is of great importance to determine these parameters, their influence on the solution & uncertainties due to their variability.

To find (and analyse) efficient numerical methods for those tasks is still a **very** active field of research. Here, I will present the promising family of

Multilevel Monte Carlo methods.

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 1. What is UQ?

Penn State '21 5/43

What is Uncertainty Quantification (UQ)?

Uncertainty in Modern Life

Many aspects of modern life involve uncertainty:

- **Society:** military, finance, insurance industry, elections
- Environment: weather, climate, seismic, subsurface geophysics
- Engineering: automobiles, aircraft, structures, materials
- **Biology:** health, medicine, pharmaceuticals, gene expression, cancer research
- **Physics:** quantum physics, radioactive decay

What is Uncertainty Quantification (UQ)?

Examples

Source: GKN Aerospace

Performance "knock-down" factors through wrinkling defects in carbon fibre composite aeroplane wing

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 1. What is UQ?

Penn State '21 7/43

Modelled via PDEs with Random Coefficients

• Structural Mechanics (e.g. composites, tires or bone):

$$abla \cdot \left(\overline{\overline{C}}(x,\omega): rac{1}{2}\left[
abla \mathbf{u} +
abla \mathbf{u}^T
ight]
ight) + \mathbf{F}(x,\omega) \;=\; 0 \quad ext{in} \;\; \Omega(\omega)$$

subject to uncertain BCs

contact on rough surface

The "Fruit Fly" of UQ

A popular **model problem** in the UQ community is the steady-state diffusion problem with uncertain coefficient function a(x):

$$-\nabla \cdot (\mathbf{a} \nabla u) = f$$
 on domain $D \subset \mathbb{R}^d$. (an elliptic PDE)

Rather than in the solution u, typically we are interested in a functional Q of the solution u, known as quantity of interest (QoI):

e.g. $Q(u) = u(\mathbf{x}_0)$ or $Q(u) = \frac{1}{|D_0|} \int_{D_0} u(\mathbf{x}) d\mathbf{x}$.

In what way might uncertainty in the coefficient a be addressed?

• Worst case analysis: Could calculate *uncertainty interval*

$$\mathcal{I} = \Big[\inf_{\|a-a_0\| < \varepsilon} Q(u(a)), \sup_{\|a-a_0\| < \varepsilon} Q(u(a)) \Big].$$

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 1. What is UQ?

Penn State '21 9/43

Probabilistic Modelling of Uncertainty

But, in general, some coefficients with $||a - a_0|| < \varepsilon$ are more likely than others

\Rightarrow Probabilistic approach

- Introduce probability measure on $S := \{a : ||a a_0|| < \varepsilon\}$.
- Then $Q(u(\cdot))$ (as measurable mapping on S) induces probability measure for the Qol ("Uncertainty Propagation") Today
- **Big issue:** choice of distribution, information too subjective? (Some classical guidelines: Laplace's principle, maximum entropy,...)
- Choosing distribution based on (output) is starting point for *Bayesian* inference ("Uncertainty Quantification") Friday

(Here the choice of distribution on S, the "prior", becomes less important, although classical, frequentist statisticians still consider it too subjective!)

Learning from Sparse and Noisy Data

Particulary important when studying complex physical or biological systems where only **very sparse and noisy data** is available, but good mathematical models exist to describe the system.

Examples:

- Atmospheric, ocean or subsurface flow
- Cardiovascular system or tracer diffusion in brain imaging
- Structural mechanics of composite materials or bones

Machine Learning and Neural Networks alone will not be sufficient!

Need to add mathematical modelling and numerical analysis to the toolkit – **New Challenges!**

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 1. What is UQ?

Penn State '21 11/43

2. Computational Challenges

Computational Challenges

in simulating PDEs with highly heterogeneous random coefficients

- $-\nabla \cdot (\mathbf{a}(\mathbf{x},\omega) \nabla u(\mathbf{x},\omega)) = f(\mathbf{x},\omega), \quad \mathbf{x} \in D \subset \mathbb{R}^d, \; \omega \in \Omega \; (\text{prob. space})$
- **Sampling** from random field $\log a(\mathbf{x}, \omega)$ (correlated Gaussian):
 - truncated Karhunen-Loève expansion of $\log a$
 - matrix factorisation, e.g. circulant embedding (FFT)
 - via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Quadrature The central focus of this course!
 - ► Monte Carlo, Quasi-Monte Carlo, Multilevel Monte Carlo
 - Sparse Grids & stochastic Galerkin/collocation
- Solve large number of multiscale deterministic PDEs:
 - Efficient discretisation & FE error analysis (mesh size *h*)
 - Multigrid Methods, AMG, DD Methods
 Big focus here at Penn State!

Why is it Computationally so Challenging?

- Low regularity (global): $a \in C^{\eta}, \eta < \nu < 1$ (Hölder) \implies fine FE mesh $h \ll 1$
- Large variance σ^2 & exponential \implies high contrast $a_{\rm max}/a_{\rm min} > 10^6$
- Small correlation length λ

\implies multiscale + high stochastic dimension $s \gg 1$

Source: Ernst et al, 2014 (s = M)

Standard Monte Carlo Quadrature

$\mathbf{X}(\omega) \in \mathbb{R}^s$	$\stackrel{FE \; Model(h)}{\longrightarrow}$	$\mathbf{U}(\omega) \in \mathbb{R}^{M_h}$	$\stackrel{Output}{\longrightarrow} Q_{h,s}(\omega) \in \mathbb{R}$
random input		state vector	quantity of interest

- Here: X multivariate Gaussian for KL expansion; U numerical PDE solution; $Q_{h,s}$ a (non)linear functional of U
- Real Qol $Q(\omega)$ inaccessible (exact PDE), but we can assume $\mathbb{E}[Q_{h,s}] \xrightarrow{h \to 0, \ s \to \infty} \mathbb{E}[Q] \text{ and } |\mathbb{E}[Q_{h,s} - Q]| = \mathcal{O}(h^{\alpha}) + \mathcal{O}(s^{-\alpha'})$
- Standard Monte Carlo estimator for $\mathbb{E}[Q]$:

More detail below!

$$\hat{Q}^{\mathrm{MC}} := \frac{1}{N} \sum_{i=1}^{N} Q_{h,s}^{(i)}$$

where $\{Q_{h,s}^{(i)}\}_{i=1}^{N}$ are i.i.d. samples computed with FE Model(h)

• Cost per sample is $\mathcal{O}(M_h^\gamma)$ (optimal: $\gamma=1$, e.g. multigrid)

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 2. Computational Challenges Penn State '21 15/43

Standard Monte Carlo Quadrature

• Convergence of plain vanilla MC (mean square error):

$$\underbrace{\mathbb{E}\left[\left(\hat{Q}^{\mathrm{MC}} - \mathbb{E}[Q]\right)^{2}\right]}_{=: \mathrm{MSE}} = \mathbb{V}[\hat{Q}^{\mathrm{MC}}] + \left(\mathbb{E}[\hat{Q}^{\mathrm{MC}}] - \mathbb{E}[Q]\right)^{2}$$
$$= \frac{\mathbb{V}[Q_{h,s}]}{N} + \left(\mathbb{E}[Q_{h,s} - Q]\right)^{2}$$

sampling error

model error ("bias")

• Typical: $\alpha = 1 \Rightarrow$

 $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(h^2) \leq TOL^2$ and so $h \sim TOL$ and $N \sim TOL^{-2}$

• Using optimal PDE solver: $Cost = O(Nh^{-d}) = O(TOL^{-(d+2)})$

(e.g. for TOL = 10^{-3} : $h \sim 10^{-3}$, $N \sim 10^{6}$ and Cost = $\mathcal{O}(10^{12})$ in 2D!!)

Quickly becomes prohibitively expensive !

Numerical Experiment with Standard Monte Carlo

 $D = (0,1)^2$, $Q = \| -a \frac{\partial u}{\partial x_1} \|_{L^1(D)}$, sampling via truncated KL expansion, and using mixed FEs and the AMG solver amg1r5 [Ruge, Stüben, 1992]

- Numerically observed FE-error: $\approx \mathcal{O}(h^{3/4}) \implies \alpha \approx 3/4.$
- Numerically observed cost/sample: $\approx \mathcal{O}(h^{-2}) \implies \gamma \approx 1.$
- Total cost to get RMSE $\mathcal{O}(\text{TOL})$: $\approx \mathcal{O}(\text{TOL}^{-14/3})$

To get error reduction by a factor 2 \longrightarrow Cost grows by a factor 25!

Case 1: $\sigma^2 = 1$, $\lambda = 0.3$, $\nu = 0.5$

TOL	h^{-1}	N	Cost
0.01	129	1.4×10^4	$21\mathrm{min}$
0.002	1025	3.5×10^5	$30\mathrm{days}$

Case 2: $\sigma^2 = 3$, $\lambda = 0.1$, $\nu = 0.5$

TOL	h^{-1}	N	Cost	
0.01	513	$8.5 imes 10^3$	$4\mathrm{h}$	
0.002	Prohibitively large!!			

(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 2. Computational Challenges Penn State '21 17/43

Alternatives

- Polynomial quadrature: stochastic Galerkin/collocation methods
 - Cost grows very fast with dimension s & polynomial order q
 - \rightarrow #stochastic DOFs $N_{SC} = \mathcal{O}\left(\frac{(s+q)!}{s!q!}\right)$ (faster than exponential!)
 - Lower number with sparse grids (Smolyak), but still exponential growth with s!

The "Curse of Dimensionality"

- ► Anisotropic sparse grids or adaptive best *N*-term approximation can be dimension independent with sufficient smoothness! [Zech, 2018]
- Monte Carlo type methods
 - Convergence of plain vanilla Monte Carlo is always dimension independent ! (No smoothness needed!) **BUT** (as shown) order is way too slow: $\mathcal{O}(N^{-1/2})!$
 - Quasi-Monte Carlo can also be dimension independent and (almost) $\mathcal{O}(N^{-1})!$ But requires also (some) smoothness !

Focus here instead: Use a multilevel hierarchy of numerical models !!

3. Convergence & Complexity of Basic Monte Carlo

Basic Monte Carlo Simulation – Convergence Results

• Given a sequence $\{X_k\}$ of i.i.d. copies of a given random variable X, basic MC simulation uses the estimator

$$\mathbb{E}[X] \approx \frac{S_N}{N}, \qquad S_N = X_1 + \dots + X_N.$$

• Strong Law of Large Numbers: $\frac{S_N}{N} \to \mathbb{E}[X]$ a.s.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 3. Monte Carlo Converge

- Also, for any measurable function $f: \quad \frac{1}{N} \sum_{k=1}^{N} f(X_k) \to \mathbb{E}\left[f(X)\right]$ a.s.
- Central Limit Theorem: If $\mathbb{E}[X] = \mu$ and $\operatorname{Var}[X] = \sigma^2$, then

$$\mathbb{E}\left[S_N\right] = N\mu, \quad \mathbf{Var}[S_N] = N\sigma^2 \quad \text{and} \quad S_N^* = \frac{S_N - N\mu}{\sqrt{N}\sigma} \to \mathcal{N}(0, 1),$$

i.e. the estimate is unbiased, the standard error is $\sigma N^{-1/2}$ and the distribution of the normalised RV S_N^* becomes Gaussian as $N \to \infty$.

(if $\operatorname{Var}[X] < \infty$ then the normalised RV $X^* := \frac{X - \mathbb{E}[X]}{\sqrt{\operatorname{Var}[X]}}$ has $\mathbb{E}[X^*] = 0$, $\operatorname{Var}[X^*] = 1$)

Penn State '21 19/43

Basic Monte Carlo Simulation - Convergence Results

• Mean square convergence:

$$\mathbb{E}\left[\left(\frac{S_N}{N}-\mu\right)^2\right] = \operatorname{Var}\frac{S_N}{N} = \frac{\sigma^2}{N} \to 0.$$

• Chebyshev's Inequality implies, for any $\epsilon > 0$:

$$\mathbb{P}\left\{ \left| \frac{S_N}{N} - \mu \right| > N^{-1/2+\epsilon} \right\} \le \frac{\sigma^2}{N^{2\epsilon}},$$

(i.e. the probability of the error being $> N^{-1/2+\epsilon}$ converges to zero as $N \to \infty$)

• If $\rho := \mathbb{E}\left[|X - \mu|^3\right] < \infty$, then the *Berry-Esseen Inequality* gives

$$\left| \mathbb{P}\{S_N^* \le x\} - \Phi(x) \right| \le \frac{\rho}{2\sigma^3 \sqrt{N}},$$

where Φ denotes *cumulative density function (CDF*) of N(0,1).

• Using Berry-Esseen, the asymptotic 95% confidence interval for S_N/N is

$$0.95 - \frac{\rho}{\sigma^3 \sqrt{N}} \le \mathbb{P}\left\{\mu \in \left[\frac{S_N}{N} - \frac{1.96\sigma}{\sqrt{N}}, \frac{S_N}{N} + \frac{1.96\sigma}{\sqrt{N}}\right]\right\} \le 0.95 + \frac{\rho}{\sigma^3 \sqrt{N}}$$

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 3. Monte Carlo Convergence Penn State '21 21/43

4. A Simple ODE Example

Predator-Prey Dynamical System

Now apply Monte Carlo in a UQ application. Consider the Lotka-Volterra (or **predator-prey**) model of the dynamics of two interacting populations

$$\dot{\mathbf{u}} = \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix} = \begin{bmatrix} \theta_1 u_1 - \theta_{12} u_1 u_2 \\ \theta_{21} u_1 u_2 - \theta_2 u_2 \end{bmatrix} = \mathbf{f}(\mathbf{u}), \quad \mathbf{u}(0) = \mathbf{u}_0,$$

where u_1 is the number of *prey*, u_2 is the number of *predator* and $\theta_1, \theta_2, \theta_{12}, \theta_{21} > 0$ are *parameters* describing the interaction of the two species.

• For simplicity, assume that

$$\theta_1 = \theta_2 = \theta_{12} = \theta_{21} = 1$$

and only the vector of initial conditions \mathbf{u}_0 is **uncertain**.

• We model it as a (uniform) random vector $\mathbf{u}_0 \sim \mathrm{U}(\Gamma)$, where Γ denotes the square

$$\Gamma = \overline{\mathbf{u}}_0 + [-\delta, \delta]^2.$$

Goal: estimate $\mathbb{E}[u_1(T)]$ at time T > 0 using the Monte Carlo method.

```
Scheichl (Heidelberg)
```

Multilevel Monte Carlo Methods / Part I / 4. ODE Example

Penn State '21 23/43

Predator-Prey Dynamical System - Sample Trajectories

Population dynamics problem (with $\theta_1 = \theta_2 = \theta_{12} = \theta_{21} = 1$) integrated over [0, T]with $\overline{\mathbf{u}}_0 = [0.5, 2]^{\mathsf{T}}$, $\delta = 0.2$ and T = 6. Unperturbed trajectory (black) alongside 15 perturbed trajectories. For the unperturbed trajectory $u_1(T) = 1.3942$.

Modelling Epidemics like COVID-19

- Obviously there are arbitrarily many variations to this simple UQ problem (the distribution of \mathbf{u}_0 may be more complicated, the interaction parameters may also be uncertain, there may be more species, or the quantity of interest may be something more complicated) ... in particular . . .
- A special case of the Lotka-Volterra model is the simplest and most widely used model for the spread of diseases (such as COVID-19):

SIR model

 $\dot{S} = -\frac{\beta}{N}SI$ $\dot{I} = \frac{\beta}{N}SI - \gamma I$ $\dot{R} = \gamma I$

where population of N individuals is divided into categories susceptibles (S), infecteous (I) and recovered (R). The total number N = S + I + Rof individuals is assumed to be constant (i.e. birth/death processes negligible)

• For constant N, this problem can be reduced to solving the first two ODEs, which is the Lotka-Volterra system with $\theta_1 = 0$, $\theta_{12} = \theta_{21} = \beta/N$, $\theta_2 = \gamma$.

Modelling Epidemics like COVID-19

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 4. ODE Example

The current situation, including lock-down measures, is modelled more accurately with the **SEIR model**, which includes a category exposed (E):

SEIR model

 $\dot{S} = \mu(N-S) - \frac{\beta}{N}SI$ $\dot{E} = \frac{\beta}{N}SI - (\mu + \alpha)E$ $\dot{I} = \alpha E - (\gamma + \mu)I$ $\dot{R} = \gamma I - \mu R$

One of my postdocs, Tobias Siems, has been collaborating with the *Heidelberg* Institute for Global Health and the regional health authority last year to model the **Rhein-Neckar-Kreis** with **SEIR** (and a further refinement **SEIHR**) in order to predict case numbers and the resulting need for hospital beds.

Penn State '21 25/43

Explicit Euler Discretisation

• Denote by $\mathbf{u}_M = \mathbf{u}_M(\omega)$ the explicit Euler approximation after $M = M_h$ time steps of length $h = \frac{T}{M}$, starting with initial data $\mathbf{u}_0 = \mathbf{u}_0(\omega)$, i.e.

$$\mathbf{u}_j = \mathbf{u}_{j-1} + h\mathbf{f}(\mathbf{u}_{j-1}), \quad j = 1, \dots, M_h.$$

• Explicit Euler has consistency order 1 and thus there exists a constant K > 0sucht that the discretisation error can be bounded by

$$\|\mathbf{u}(T) - \mathbf{u}_{M_h}\| \le K h \, .$$

- Define the quantity of interest (QoI) $Q = \phi(\mathbf{u}(T)) = u_1(T)$ for $\mathbf{u} = [u_1, u_2]^{\mathsf{T}}$ and estimate $\mathbb{E}[Q_h]$ using the MC method just described with $Q_h = \phi(\mathbf{u}_{M_h})$.
- The QoI ϕ is Lipschitz-continuous with constant L = 1, such that also

$$|\mathbb{E}[Q] - \mathbb{E}[Q_h]| = |\mathbb{E}[Q - Q_h]| \le Kh.$$
(4.1)

• Denote the Monte Carlo estimator for $\mathbb{E}[Q_h]$ by

$$\widehat{Q}_h := \widehat{Q}_{h,N} = \frac{1}{N} \sum_{k=1}^N Q_h^{(k)} \quad N \text{ i.i.d. samples } Q_h^{(1)}, \dots, Q_h^{(N)} \text{ of } Q_h.$$

Expect better approximations for N large and h small.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 4. ODE Example Penn State '21 27/43

Bias-Variance Decomposition – Balancing Error Contributions

Lemma 4.1 (Bias-Variance Decomposition)

The mean square error (MSE) can be expanded

$$\mathbb{E}\left[\left(\mathbb{E}\left[Q\right] - \widehat{Q}_{h}\right)^{2}\right] = \left(\mathbb{E}\left[Q - Q_{h}\right]\right)^{2} + \frac{\mathsf{Var}[Q_{h}]}{N}$$

Proof. Demonstrated on tablet.

Hint: Note that $\mathbb{E}[Q]$ is constant and only \widehat{Q}_h is actually random.

Thus, using the bias error bound above and the fact that, for h sufficiently small, $\operatorname{Var}[Q_h] \leq \sigma_{\operatorname{bnd}}^2 \leq 1.1 \operatorname{Var}[Q]$ (independently of h), we get the following bound:

$$\mathsf{MSE} := \mathbb{E}\left[\left(\mathbb{E}\left[Q\right] - \widehat{Q}_{h}\right)^{2}\right] \leq K^{2}h^{2} + \sigma_{\mathsf{bnd}}^{2}N^{-1}$$
(4.2)

Balancing Discretisation and Sampling Error (in probability)

Using above convergence results, error can also be bounded in probability:

• Error with N samples and M = T/h time steps:

$$e_{h,N} := |\mathbb{E}\left[Q\right] - \widehat{Q}_{h}| \leq \underbrace{|\mathbb{E}\left[Q\right] - \mathbb{E}\left[Q_{h}\right]|}_{\text{discretisation error}} + \underbrace{|\mathbb{E}\left[Q_{h}\right] - \widehat{Q}_{h}|}_{\text{Monte Carlo error}}$$

• Using the asymptotic 95% confidence interval for the MC error on Slide 21 (with $\operatorname{Var}[Q_h] = \sigma_h^2 \leq \sigma_{\operatorname{bnd}}^2$) we get

$$\mathbb{P}\left\{\left|\mathbb{E}\left[Q_{h}\right]-\widehat{Q}_{h}\right|\leq\frac{1.96\sigma_{h}}{\sqrt{N}}\right\}>0.95+\mathcal{O}(N^{-1/2})$$

• Combining this with discretisation error in (4.1) (using triangle inequality):

$$\mathbb{P}\Big\{e_{h,N} \le K \, h + 1.96\sigma_h N^{-1/2}\Big\} > 0.95 + \mathcal{O}(N^{-1/2}). \tag{4.3}$$

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 4. ODE Example

Penn State '21 29/43

Monte Carlo Complexity for Predator-Prey Problem

Finally noting that the cost in each time step is 8 FLOPs, the total cost for the MC estimator is

$$\operatorname{Cost}(\widehat{Q}_h) = 8M_h N = 8T \, h^{-1} N \quad (\text{FLOPs}) \tag{4.4}$$

and we have the following complexity result:

Proposition 4.2 (Monte Carlo Complexity)

The total cost to compute a standard Monte Carlo estimator for $\mathbb{E}[u_1(T)]$ for the predator-prey model with explicit Euler time discretisation, such that $MSE < \varepsilon^2$ or $\mathbb{P}\{e_{h,N} < \varepsilon\} > \theta$ for any $\theta \in (0,1)$, satisfies

$$Cost(\widehat{Q}_h) = \mathcal{O}(\varepsilon^{-3}).$$

Proof. (only the proof for in probability) A sufficient condition for $e_{h,N} < \varepsilon$ is

$$Kh = \varepsilon/2$$
 and $1.96\sigma_h N^{-1/2} = \varepsilon/2$ (balancing the two terms).

This leads to

$$h = \frac{1}{2}K\varepsilon$$
 and $N = 3.92^2 \sigma_h^2 \varepsilon^{-2} \Rightarrow \operatorname{Cost}(\widehat{Q}_h) \le \frac{256T \sigma_{\mathsf{bnd}}^2}{K} \varepsilon^{-3}$

Penn State '21

5. The Multilevel Monte Carlo Method

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

Penn State '21 31/43

History

- The **multilevel Monte Carlo** method is a powerful "new" variance reduction technique (especially for UQ applications).
- First ideas for high-dimensional quadrature by [Heinrich, 2000].
- Independently discovered and popularised by [Giles, 2007] in the context of stochastic DEs in mathematical finance.
- First papers in the context of UQ:
 - ▶ [Barth, Schwab, Zollinger, 2011] & [Cliffe, Giles, RS, Teckentrup, 2011]
- Stochastic simulation of discrete state systems (biology, chemistry)
 - [Anderson, Higham, 2012]
- Ο...

Goal: Estimate $\mathbb{E}[Q]$ of an inaccessible RV Q (e.g. derived from the solution of DE)

Assume: Access to sequence of approximations $Q_h \approx Q$, parametrised by h, such that $\lim_{h\to 0} Q_h = Q$ (#time steps, #grid points, ...)

Idea: Reduce variance by a clever use of the hierarchy of approximations.

Abstract Complexity Result for Standard MC

Recall from Lemma 4.1 that mean square error (MSE) for standard MC estimator $Q_{h,N}$ (using samples from the approximation Q_h instead of Q) expands as

$$\mathbb{E}\left[\left(\widehat{Q}_{h,N} - \mathbb{E}\left[Q\right]\right)^2\right] = \left(\mathbb{E}\left[Q_h - Q\right]\right)^2 + \frac{\mathsf{Var}[Q_h]}{N}.$$

Thus, we can derive an abstract version of Proposition 4.2 (with identical proof):

Theorem 5.1 (Abstract Complexity Theorem for standard MC)
Assume that there exist constants
$$\alpha, \gamma > 0$$
, such that
 $|\mathbb{E}[Q_h - Q]| = \mathcal{O}(h^{\alpha}),$ as $h \to 0$, (5.1)
 $Cost(Q_h^{(k)}) = \mathcal{O}(h^{-\gamma}),$ as $h \to 0$, (5.2)
where $Cost(Q_h^{(k)})$ denotes the cost to compute a sample from approximation Q_h .
Then, for any $\varepsilon > 0$ and $\theta \in (0, 1)$, the **total cost** to compute a standard Monte
Carlo estimator for $\mathbb{E}[Q]$, such that $MSE < \varepsilon^2$ or $\mathbb{P}\{e_{h,N} < \varepsilon\} > \theta$, satisfies
 $Cost(\widehat{Q}_{h}, n) = \mathcal{O}(\varepsilon^{-2-\gamma/\alpha})$

$$Cost(Q_{h,N}) = \mathcal{O}(\varepsilon^{-2-\gamma/\alpha}).$$

Scheichl (Heidelberg

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

Penn State '21 33/43

Multilevel Estimator

• Key idea: use samples of Q_h on a hierarchy of different levels, i.e., for different values h_0, \ldots, h_L of the discretization parameter, and decompose

$$\mathbb{E}\left[Q_{h_L}\right] = \mathbb{E}\left[Q_{h_0}\right] + \sum_{\ell=1}^{L} \mathbb{E}\left[Q_{h_\ell} - Q_{h_{\ell-1}}\right] =: \sum_{\ell=0}^{L} \mathbb{E}\left[Y_\ell\right],$$

- For simplicity, we will often choose $h_{\ell-1} = mh_{\ell}$, $\ell = 1, \ldots, L$, for some $m \in \mathbb{N} \setminus \{1\}$ and $h_0 > 0$) (uniform grid refinement).
- Given estimators $\{\widehat{Y}_\ell\}_{\ell=0}^L$ for $\mathbb{E}\left[Y_\ell\right]$, we refer to

$$\widehat{Q}_L^{\mathsf{ML}} := \sum_{\ell=0}^L \widehat{Y}_\ell$$

as a multilevel estimator for Q.

• Different variants of this multilevel estimator now arise from different choices of the level estimators, e.g. standard Monte Carlo, quasi-Monte Carlo, etc ...

Multilevel Monte Carlo (MLMC) Estimator

• If each \widehat{Y}_{ℓ} is itself a standard Monte Carlo estimator, i.e.,

$$\widehat{Y}_0 = \widehat{Y}_{0,N_0} := \frac{1}{N_0} \sum_{k=1}^{N_0} Q_{h_0}^{(k)}$$

and

$$\widehat{Y}_{\ell} = \widehat{Y}_{\ell,N_{\ell}} := \frac{1}{N_{\ell}} \sum_{k=1}^{N_{\ell}} \left(Q_{h_{\ell}}^{(k)} - Q_{h_{\ell-1}}^{(k)} \right), \qquad \ell = 1, \dots, L$$

one obtains the multilevel Monte Carlo estimator and \widehat{Q}_L^{ML} is **unbiased**.

• If all expectations $\mathbb{E}[Y_{\ell}]$ are sampled independently (not neccessary), then

$$\operatorname{Var} \widehat{Q}_L^{\mathsf{ML}} \;=\; \sum\limits_{\ell=0}^L \operatorname{Var} \widehat{Y}_\ell.$$

and the associated MSE has the standard decomposition

$$\mathbb{E}\left[\left(\widehat{Q}_{L,\{N_{\ell}\}}^{\mathsf{ML}} - \mathbb{E}\left[Q\right]\right)^{2}\right] = \mathbb{E}\left[Q_{h_{L}} - Q\right]^{2} + \sum_{\ell=0}^{L} \frac{\mathsf{Var}\,Y_{\ell}}{N_{\ell}}$$

into bias and sample variance (shown identically to Lemma 4.1 for standard MC).

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC Penn State '21 35/43

MLMC variance reduction

- Choose the discretisation parameter h_L on the highest level and the numbers of samples $(N_{\ell})_{\ell=0}^{L}$ again to balance the terms in the MSE.
- The bias term is the same as for the standard MC estimator if $h_L = h$, so that under Assumption (5.1), this leads again to a choice of $h_L = \mathcal{O}(\varepsilon^{1/\alpha})$.
- But why do we get variance reduction or lower cost for the same variance?
- Two reasons:
- 1. As we coarsen the problem, the cost per sample **decays** rapidly from level to level under Assumption (5.2); by a factor m^{γ} if $h_{\ell-1}/h_{\ell} = m$.
- 2. Since $Q_h \to Q$, then $\operatorname{Var}[Y_\ell] = \operatorname{Var}[Q_{h_\ell} Q_{h_{\ell-1}}] \to 0$ as $\ell \to \infty$, allowing for smaller and smaller sample sizes N_{ℓ} on higher and higher levels.

Optimal Sample Sizes

• The cost of the MLMC estimator is

$$\operatorname{Cost}(\widehat{Q}_{L,\{N_\ell\}}^{\mathsf{ML}}) = \sum_{\ell=0}^L N_\ell \mathcal{C}_\ell, \qquad \mathcal{C}_\ell := \operatorname{Cost}(Y_\ell^{(k)}).$$

• Treating the N_ℓ as continuous variables, the cost of the MLMC estimator can be minimised for a fixed variance

$$\sum_{\ell=0}^{L} \frac{\operatorname{Var} Y_{\ell}}{N_{\ell}} = \frac{\varepsilon^2}{2}$$

• The solution to this constrained minimisation problem is

$$N_{\ell} = \gamma \sqrt{\mathsf{Var}[Y_{\ell}]/\mathcal{C}_{\ell}} \tag{5.3}$$

with the constant γ chosen such that the total variance is $rac{arepsilon^2}{2}$, leading to the constant $\gamma = \frac{2}{\varepsilon^2} \sum_{\ell} \sqrt{C_{\ell} \operatorname{Var}[Y_{\ell}]}.$ Demonstrated on tablet.

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

Cost Comparison MLMC vs. Standard MC

• Thus the total cost on level ℓ is proportional to $\sqrt{\mathcal{C}_{\ell} \operatorname{Var}[Y_{\ell}]}$ and therefore

$$\mathsf{Cost}(\widehat{Q}_{L,\{N_\ell\}}^{\mathsf{ML}}) \leq \frac{2}{\varepsilon^2} \left(\sum_{\ell=0}^L \sqrt{\mathcal{C}_\ell \operatorname{Var}[Y_\ell]} \right)^2$$

- For comparison, standard MC has $\operatorname{Cost}(\widehat{Q}_{h_L,N}) = \frac{2}{\varepsilon^2} C_L \operatorname{Var}[Q_{M_L}].$
- If $Var[Y_{\ell}]$ decays faster than C_{ℓ} increases, the cost on level $\ell = 0$ dominates. Since $Var[Q_{h_0}] \approx Var[Q_{h_L}]$, the cost ratio of MLMC to MC estimation is then approximately

$$\mathcal{C}_0/\mathcal{C}_L \approx (m^{-\gamma})^L$$

• If C_{ℓ} increases faster than **Var** $[Y_{\ell}]$ decays, the cost on level $\ell = L$ dominates. Then the cost ratio is approximately

$$\operatorname{Var}[Y_L]/\operatorname{Var}[Q_{h_L}] \ = \ \varepsilon^2$$

(provided $\mathbb{E}\left[(Q-Q_L)^2\right] \approx (\mathbb{E}\left[Q-Q_L\right])^2$, which is problem dependent).

Penn State '21 37/43

General Multilevel Monte Carlo Complexity Theorem

Theorem 5.2

Scheichl (Heidelberg)

Let $\varepsilon < \exp(-1)$ and assume that there are constants $\alpha, \beta, \gamma > 0$ such that $\alpha \geq \frac{1}{2}\min\{\beta,\gamma\}$ and, for all $\ell = 0, \ldots, L$,

 $(M1) |\mathbb{E}[Q_{h_{\ell}}] - \mathbb{E}[Q]| = \mathcal{O}(h_{\ell}^{\alpha}),$ (M2) $\operatorname{Var}[Y_{\ell}] = \mathcal{O}(h_{\ell}^{\beta}),$

(M3)
$$\mathcal{C}_{\ell} = \mathcal{O}(h_{\ell}^{-\gamma}).$$

Then there are L and $\{N_\ell\}_{\ell=0}^L$ such that $\mathbb{E}\left[\left(\widehat{Q}_{L,\{N_\ell\}}^{ML} - \mathbb{E}\left[Q\right]\right)^2\right] \leq \varepsilon^2$ and

$$\operatorname{Cost}(\widehat{Q}_{L,\{N_{\ell}\}}^{\mathsf{ML}}) = \begin{cases} \mathcal{O}(\varepsilon^{-2}), & \text{if } \beta > \gamma, \\ \mathcal{O}(\varepsilon^{-2} |\log \varepsilon|^{2}), & \text{if } \beta = \gamma, \\ \mathcal{O}(\varepsilon^{-2-(\gamma-\beta)/\alpha}), & \text{if } \beta < \gamma. \end{cases}$$

Proof. Demonstrated on tablet.

[Giles, 2007] for special case of SDEs with $\alpha = \gamma = 1$. [Cliffe, Giles, **RS**, Teckentrup, 2011] for the general case.

Application to the Predator-Prey Problem

In the case of the predator-prey model problem we have already seen in (4.1) and (4.4) that (M1) and (M3) hold with $\alpha = 1$ and $\gamma = 1$, respectively.

Finally, it can be proved similarly to (M1) that (M2) holds with $\beta = 2$. Indeed

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

$$\begin{aligned} \operatorname{Var}[Y_{\ell}] &= \operatorname{Var}[Q_{h_{\ell}} - Q_{h_{\ell-1}}] \leq \mathbb{E}\left[\left(Q_{h_{\ell}} - Q_{h_{\ell-1}}\right)^{2}\right] \\ &\leq 2\left(\mathbb{E}\left[\left(Q - Q_{h_{\ell-1}}\right)^{2}\right] + \mathbb{E}\left[\left(Q - Q_{h_{\ell}}\right)^{2}\right]\right) \\ &\leq 2\left(K^{2}h_{\ell-1}^{2} + K^{2}h_{\ell}^{2}\right) \\ &\leq \underbrace{2K^{2}(1+m^{2})}_{\operatorname{constant}}h_{\ell}^{2}.\end{aligned}$$

Thus, $\beta > \gamma$ and it follows from **Theorem 5.2** that

$$\mathsf{Cost}\big(\widehat{Q}_{L,\{N_\ell\}}^{\mathsf{ML}}\big) = \mathcal{O}\big(\varepsilon^{-2}\big).$$

Recall that for standard MC we had $Cost(\widehat{Q}_{h,N}) = \mathcal{O}(\varepsilon^{-3})$, so we gained a whole order of magnitude.

Penn State '21 39/43

Numerical Results - CPU time vs. Root Mean Square Error

Comparing standard MC & MLMC for the predator-prey model (and anithetic MC)

The cost of the standard MC method grows like $\mathcal{O}(\varepsilon^{-3})$, as predicted, while the cost for MLMC grows like $\mathcal{O}(\varepsilon^{-2})$ (actual cost depends on number of levels). (We can also observe the variance reduction through antithetic sampling.)

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

Adaptive MLMC Algorithm

• The following MLMC algorithm computes the optimal values of L and N_ℓ adaptively using the sample averages $\widehat{Y}_{\ell,N_\ell}$ and sample variances

$$s_{\ell}^2 := \frac{1}{N-1} \sum_{k=1}^{N_{\ell}} \left(Y_{\ell}^{(k)} - \widehat{Y}_{\ell,N_{\ell}} \right)^2 \text{ of } Y_{\ell}.$$

- Sample variances can be used directly to estimate the MC error on each level.
- To bound the bias error, we assume there exists an $h^* > 0$ such that the error decay in $|\mathbb{E}[Q_h Q]|$ is monotonic for $h \le h^*$ and satisfies

$$ch^{\alpha} \leq |\mathbb{E}[Q_h - Q]| \leq Ch^{\alpha}.$$

• This ensures that in the case $\frac{h_{\ell-1}}{h_{\ell}} = m$ (via inverse triangle inequality) DIY

$$|\mathbb{E}\left[Q_{h_{\ell}}-Q
ight]| \leq rac{1}{rm^{\alpha}-1}\widehat{Y}_{\ell} \qquad ext{for} \quad r=c/C.$$

• For the predator-prey problem $r = c/C \approx 1$ (c can safely be chosen as 0.9) and this gives a computable error estimator on level L to determine whether h_L is sufficiently small or whether L needs to be increased.

Scheichl (Heidelberg)

Penn State '21 41/43

Adaptive MLMC Algorithm

Adaptive MLMC Algorithm

- 1. Set h_0 , m, arepsilon, L=1 and $N_0=N_1=N_{ ext{Init}}$.
- 2. For $\ell = 0, \ldots, L$
 - a. Compute new samples $Y_\ell^{(k)}$ on level ℓ until there are $N_\ell.$
 - b. Compute \widehat{Y}_ℓ and s_ℓ^2 , and estimate \mathcal{C}_ℓ .
- 3. Update estimates for N_ℓ using the formula in (5.3) and if $\widehat{Y}_L > \frac{rm^{\alpha}-1}{\sqrt{2}}\varepsilon$, increase $L \to L+1$ and set $N_L = N_{\text{Init}}$.
- 4. While $\widehat{Y}_L > \frac{rm^{\alpha}-1}{\sqrt{2}}\varepsilon$ or $\sum_{\ell=0}^L s_{\ell}^2/N_{\ell} > \varepsilon^2/2$ Return to 2.

5. Set
$$\widehat{Q}_{L,\{N_\ell\}}^{\mathrm{ML}} = \sum_{\ell=0}^L \widehat{Y}_\ell$$
.

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part I / 5. Multilevel MC

Penn State '21 43/43