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6. Random Fields
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Model Elliptic PDE & Random Fields

We return to our model elliptic boundary value problem. In particular, we consider
—V-(aVu) = f, on D C R, ujpp = 0, (6.1)

where a and f are random fields defined on D.

Definition 6.1

Let D C RY, d €N, and let (Q,2A,P) be a probability space (see Appendix A). A
(real-valued) random field is a mapping

a:DxQ—R

such that each function a(x,-) : @ — R, x € D, is a random variable.

Definition 6.2

For each fixed w € () the associated function a(-,w) : D — R is called a
realization of the random field.

Let RY denote the set of all real-valued functions f : D — R. The mapping w — a(-,w) from
(2,2) to (RP,A(RP)) is measurable and hence a random variable with values in RP.
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Second-order and Gaussian Random Fields

Similar to a random vector or stochastic process, a random field is a family of
random variables indexed by a parameter. Instead of an ordered parameter set
(e.g. N or Ry), for random fields the parameter is a spatial coordinate.

Definition 6.3

A random field @ on D C R9 is said to be of second order if for all x € D there
holds a(x,-) € L?(Q;R) (see Appendix A). We say a second-order random field a
has mean function @(x) := E [a(x, -)] and covariance function

c(x,y) := Cov(a(x,-),a(y,")), x,y € D.

A sufficient and necessary condition is that ¢(x,y) is symmetric and positive semidefinite.

Definition 6.4
A random field on D c R? is called Gaussian if, for any n € N and for any
X1,...,Xy € D, the random vector [a(x1,"),...,a(xy, )] follows an n-variate

normal distribution. It is uniquely determined by its mean and covariance function.

v
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Random Fields in L?(D) — Karhunen-Loéve Expansion

Let a be a 2nd-order random field on D C R? with mean @. Then the centred field
a — @ can be expanded in any complete orthonormal system {4, }men of L?(D).

The Karhunen-Loéve expansion of a results from choosing as a particular CONS
the eigenfunctions of the covariance operator C : L?(D) — L?(D) of a, given by

(Cu)(x) :/ u(y)e(x,y)dy, =xé€ D. (6.2)

D

Theorem 6.5 (Karhunen-Loéve (KL) Expansion)

Let a € L*(2; L*(D)) (see Appendix A) with mean function @(x) and denote by
(Am> @m)men, ||am||2(py = 1, the sequence of eigenpairs of the covariance
operator C' in descending order. Then

a(x,w) = AX) + Y VAm am(x) n(w), (6.3)
m=1
where the random variables &,,(w) = %(a(-,w) — @, am)r2(p) have mean zero,

unit variance and are pairwise uncorrelated. The series converges in L*(2; L2(D)).
If the random field is, in addition, Gaussian, then &,, ~ N(0,1) are i.i.d.

v
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One-Dimensional Example [Ghanem & Spanos, 1991]

Example. For d =1, D = [—1, 1] and the exponential covariance function
—lz—y|
clr,y) =e >0,

the eigenvalues of the associated covariance operator are given by

20 20

Am = %—H, (m even), Am = Wn——l_l7 (

m odd)

where w,,, and @,,, denote the solutions of the transcendental equations
1 —wltan(w) =0 and @f¢+tan(w) =0, respectively.

The associated eigenfunctions are given by
fm(x) = ,/Hsfnw—(’gwm) cos(wm ), fm(x) = «/Hs?n&—(’ga]m sin(@p, ).

However, in general it is not possible to compute the KL-expansion analytically.
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Practical Application — Truncated KL Expansion

@ The KL expansion suggests a convenient approach for approximating a
random field to a specified accuracy by truncation:

a(x,w) & as(x,w):=a(x)+ Z VAm o (%) Em(w). (6.4)

@ The truncated RF a. has the same mean as a and the covariance function

cs(x,y) = Z A G (X)m (Y), x,y €D, (6.5)
m=1
converges uniformly to ¢ as S — oo.
@ For the variance of the truncated KL expansion, we have DIY
Var(a(x,-)) — Var(as(x,-)) = > Anam(x)? > 0.
m=s-+1

Hence, as always underestimates the variance of a. Moreover, this implies
2 o0 S
la—aslZoirsmy = 3 Am :/ Vara(x)dx — 3> A,
m=s+1 D m=1

i.e. the truncation error in L?(Q; L?(D)) is explicitly computable.
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Stationary and Isotropic Random Fields

Definition 6.6

(a) A random field a is stationary or homogeneous if it is invariant under
translation, i.e. if the multivariate distributions of (a(x1,-),...,a(x,,)) and
(a(xy +h,-),...,a(x, + h,-)) are the same, for any x;,...,%, and h.

(b) A stationary random field a is isotropic if its covariance function is invariant
under rotations, i.e.,

cx,y)=clr),  r=|lx=yl2.

Example (Isotropic Gaussian covariance).

A simple and widely used example of an isotropic covariance function is the
Gaussian covariance c(r) = o2e=""/P" where 2 and p are two constants defining
the variance and the correlation length of the field.
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The Matérn Class

A family of isotropic covariance functions that is very popular in spatial statistics
or machine learning, is the Matérn class with covariance function given by

R i I e e e L

where

=

is the modified (second-kind) Bessel function of order v,
denotes the Gamma-function,

is known as the smoothness parameter,

is the variance parameter,

is the correlation length parameter.

T Q< H

It contains exponential, Gaussian, as well as Bessel covariance functions as special cases:

v=1: c(r) = o’ exp(—V/2r/p) exponential covariance
v=1: c(r) = o’ (ﬁ> K (2—7) Bessel covariance

P P
vV — 00 : c(r) = o exp(—r?/p?) Gaussian covariance
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The Matérn Class

—_—v=1/2 —v=1/2
—v=1 —v=1
—v=2 | 0.8 —v=2
v=3 v=3
— Gauss —Gauss
0.6f
5
0.4
0.2r
4 5 00 1 2 3 4 5
r
p=1 p=3

@ By reducing the correlation length p the Matérn covariance function can be
concentrated more strongly near r = 0.

@ By increasing the smoothness parameter v the Matérn covariance function
becomes smoother at » = 0. (It is analytic everywhere else.)

o Flexible parametrisation allows its application to many statistical situations.

(Parameters may be estimated from observed data using statistical techniques.)
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Eigenvalue Decay for the Matérn Class

A result by H. Widom from 1963 allows us to analyse the decay rate of the
eigenvalues of the covariance operator of isotropic random fields:

Theorem 6.7 (Widom, 1963)

Let ¢ = ¢(r) be the (isotropic) Matérn covariance function with parameters v, o2
and p. Let D be a bounded domain in R® and let {\,,}.en denote the
(nonincreasing) eigenvalues of the covariance operator C' given by (6.2).

A, = m~(+2v/d) for m — oco.

@ Allows to estimate truncation error and thus dimensionality of the problem.

@ Rate of convergence of the eigenvalues is crucial to obtain dimension-
independent QMC and sparse grid quadrature and approximation results.

@ The (spatial) smoothness of realizations is also linked directly to the
parameter v: in particular, a random field with Matérn covariance function is
k-times mean-square differentiable if and only if v > k.
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Asymptotic Eigenvalue Decay & Plateau (Matérn)

Before asymptotic decay sets in (rate determined by smoothness parameter /), there is a
preasymptotic plateau. Its length is determined by the correlation length p.

—e—v=1/2, p=1
4 —A—v=1/2, p=1/10
10 '

—v—v=1/2, p=1/50
—e—v=1, p=1
—A—v=1, p=1/10
—v—v=1, p=1/50

10’ 10
m

Eigenvalue decay, Matérn covariance kernel, D = [—1, 1].
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Realizations of Gaussian Random Fields

Matérn covariance: v =1/2, 0 =1, £ = 0.5
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Realizations of Gaussian Random Fields

Matérn covariance: v =1/2, 0 =1, £ = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: v =3/2, 0 =1, £ = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: v =5/2, 0 =1, £ = 0.05
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Further Reading on Random Fields

@ KL expansion is widely used (especially in theoretical NA literature), but especially
for rough fields (e.g. v < 1), cost can grow very quickly.

e For isotropic RF more efficient: circulant embedding and other FFT methods:

> Dietrich & Newsam, Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix, SIAM J Sci Comput 18, 1997

» Graham, Kuo, Nuyens, RS & Sloan, Analysis of circulant embedding methods for
sampling stationary random fields, SIAM J Num Anal 56, 2018

» Bachmayr, Graham, Nguyen & RS, Unified analysis of periodization-based sampling
methods for Matérn covariances, Preprint arXiv:1905.13522, 2019

@ Exploiting a link between the inverse C~! of the covariance operator and
stochastic PDEs, e.g. Matérn fields a can be sampled by solving the sPDE

(k2 — A)Pa(x,w) = W(x,w) in R

where A is the Laplacian and W is Gaussian white noise on R<.
(The parameters are related by v = 23 — g, p= 2% and 02 = 02(k,8).)
» Lindgren, Rue & Lindstrom, An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic PDE approach, J Roy Statist Soc B 73, 2011

» Bolin, Kirchner, Kovacs, Numerical solution of fractional elliptic stochastic PDEs with
spatial white noise, IMA J Num Anal 40, 2020

» Drzisga, Gmeiner, Riide, RS & WohlImuth, Scheduling massively parallel multigrid for
multilevel Monte Carlo methods, SIAM J Sci Comput 39, 2017
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7. Monte Carlo Finite Element Methods
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Elliptic Boundary Value Problems with Random Data

We return again to our model elliptic boundary value problem with random data
—V-(aVu) = f, on D C R ujpp = 0, (7.1)
where a and f are random fields on D with respect to a probability space (€2, 2, P).

e If f is random, we assume f(:,w) € L?(D) for (almost) all w € Q.

@ Could require coefficient a to satisfy Assumption 1 in Appendix B uniformly
to ensure existence & uniqueness of u(:,w) € Ha (D) with ||- lat oy = |11 (p)-
But in many situations too restrictive! The following assumption suffices:

Assumption 1

For almost all w € Q0 (P-a.s.), realizations a(-,w) of the coefficient function a are
strictly positive and lie in L>(D), i.e.

0 < amin(w) < a(X,w) < amax(w) < 0o almost everywhere (a.e.) in D, (7.2)
where

Amin(w) := essinf a(x, w), Amax (W) 1= esssup a(x,w). (7.3)
xeD xeD

v
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Realization-Wise Solvability

For any realization w for which Assumption 1 holds and f(-,w) € L?*(D), we may
apply the Lax-Milgram Lemma (Lemma B.5) and obtain a unique solution of (7.1).

Theorem 7.1
Let Assumption 1 hold and f(-,w) € L?(D) P-a.s. Then (7.1) has a unique
solution u(-,w) € Hi(D) and |u(-,w)|g1(p)y < Ca_} W f(,w)||z2(py P-a.s.

min

Recall Definition A.21, of Banach space-valued LP-spaces over a probability space
(Q,2A,P) — so-called Bochner spaces. These spaces provide a generalisation of
standard Lebesgues spaces. A result that we will use throughout is:

Lemma 7.2 (Holder’s Inequality)
Let p,q,r € [1,00] be such that % = % + % Then

XY |er@w) < | Xlza@w) 1Y |zr@wy, forall X € LY(Q,W),Y € L"(Q,W).

v

Note that the case of ¢ = oo is explicitly included; in that case p = r.
For p =1 & g = r = 2, Holder's Inequality reduces to the Cauchy-Schwarz inequality.

The inequality holds over any measure space 2; in particular, also in standard Lebesgues spaces.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part 11 / 7. (ML)MC FE Methods Penn State '21 18/68

Summability

The following theorem provides sufficient conditions for u to have finite p-th
moments, i.e., to lie in LP(Q; H}(D)).

Theorem 7.3

Let Assumption 1 hold. Assume further that the mappings a : Q0 — L°°(D) and
f:Q — L*(D) are measurable and that a_}. € LI(S%;R) for some q € [1, 00].

min

(a) If fe L? (D) deterministic (i.e. a degenerate constant RF), then
HU||LP(Q;H5(D)) < CHar:nlnHLp(Q;R)||fHL2(D) , forall p<q.

(b) If f € L™(Q; L?(D)) withr € [1, 00] and% = % +1 <1, then

el Lo ;13 (D)) < CllaminllLasmyl1fll 2 9:22 ()

v

Proof. Follows directly from Theorem 7.1 (using Holder's Inequality for Part (b)).
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Finite Element Discretization

e Let V}, C H}(D) denote a closed subspace, e.g., the finite element (FE)
space of piecewise polynomial functions with respect to a triangulation .7},
of D with mesh width A > 0 (see Appendix B).

e FE system: Suppose uy : 2 — V), satisfies P-a.s.

/D a(x,w)Vup(x,w) - Vo (x) dx = /D f(x,w)vp(x)dx Vo, € V3. (7.4)

@ Since V}, is a closed subspace of Hj (D) with norm |- |1 (py all the above
results hold in an identical form also for uy:

Theorem 7.4

The results about solvability and summability, as well as the norm bounds in
Theorems 7.1 and 7.3 hold under the same assumptions on a and f also
for (7.4) and its solution uy,.
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H? Regularity Assumption & Error Analysis

The regularity assumption, which is necessary to bound the finite element error
(cf. Assumption 2 in Appendix B), is again made only realization-wise.

Assumption 2

For almost all w € (2, there exists a constant C';(w) > 0 such that, for every
f(-,w) € L*(D), we have u(-,w) € H*(D) and

[u(, w)| 2Dy < Co(W)[|f (-, w)llL2(D)-

@ For Assumption 2 to hold, it suffices that D is convex, a(-,w) is Lipschitz
continuous and Assumption 1 holds.

@ A careful derivation how > (w) depends on |la(:, w)||co.1 (D), Gmin (W), Gmax(w)
can be found in [Charrier, RS, Teckentrup, SIAM J Num Anal, 2013].

@ In particular, it is shown there that for lognormal a with Matérn covariance,
we have C5 € LP(Q;R) for all p < oo.

The constant C' in the interpolation result on Slide 84 of Appendix B is independent of w.
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Finite Element Convergence Results

Theorem 7.5 (Deterministic or L> RHS)

Let Assumptions 1 and 2 hold, and let V" C H}(D) be the space of piecewise
linear FEs with respect to a shape-regular triangulation 7}, (see Appendix B).
Furthermore, suppose that f € L°°(Q; L?(D)) (in particular includes deterministic ),
amllrfz e € Li(Q;R) and Cy € L™ (4 R) with ¢,r € [1,00] s.t. 7 1+ 1<,
then

lw = unllr;m1(D)) < chllfllLee@;r2(D))-

Proof. | Demonstrated on tablet.

@ The general case of f € L"(Q; L?(D)), r < oo can be proved similarly.

@ Via duality arguments it is possible to show faster convergence in the
(spatial) L?(D)-norm and for suff. smooth functionals G(u) on H}(D), i.e.

lu = sl o onrz oy = O(h) and [[G(u) = Glun) | o (em) = O(R). (7.5)
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Monte Carlo Finite Element Method

@ Our goal now is to use the MC method to estimate a quantity of interest that
depends on the (random) solution u. This could be the mean E [u(x, )], the
variance Var[u(x, -)] or the expected value of a functional G(u).

o Consider N i.i.d. realizations ') = a(-,w;) and fU) = f(-,w,) and let
u) = u(-,w;) € H}(D) and ug) = up(-,w;j) € V3, be the associated unique
solution and its FE approximation, respectively.

e Compute the (H&(D)—valued) MC estimates
1 N ‘ 2
ﬂh’N = ZU(J) S%L,N = ﬁ Z (ugj) — ah’N) R
—14

and the (scalar—valued) estimate

. N
Qn.v = ; G(u)),

2= |

for Q := G(u) with G : H}(D) — R bounded or Fréchet differentiable.

@ To estimate the complexity of these estimators we can use the abstract
Theorem 5.1. We simply have to verify Assumptions (5.1) and (5.2).
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Let us first consider Assumption (5.1):

@ For a scalar functional Q = G(u) with G : H}(D) — R suff. smooth, using
Jensen’s inequality (Thm. A.20), it follows from (7.5) that

E[Q - Qu]| <E[|G(u) — G(up)|] = O(1?).
Thus, Assumption (5.1) holds with o = 2.

e For Q = u € H}(D), measuring the bias error in |- |1 (D), We get again using
Jensen’s inequality (noting that norms are convex functions) and Theorem 7.5 that

|E [u — uh] |H1(D) < EUU — Uthl(D)} = O(h)
Thus in that case, Assumption (5.1) holds with ov = 1.
Next consider Assumption (5.2):

o If the meshes .7, are (quasi-)uniform (not only shape-regular), then the number
of unknowns M}, in the resulting FE system (B.8) satisfies Mj;, = O(h™9).

e Using a multigrid iterative method it is possible to solve the FE system (B.8)
in linear complexity, i.e.

Cost(Q)) = O(My) = O(h™%).

Thus, Assumption (5.2) holds with v = d.
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Monte Carlo Finite Element Complexity Result
Corollary 7.6

Consider the Monte Carlo FE method with p.w. linear FEs applied to the
elliptic BVP (7.1) in RY to estimate E [u] or E [G(u)], with G : H}(D) — R
suff. smooth. For any e >0 and 6 € (0,1) there exist h > 0, N € N, such that

Case Q = G(u): |E[Q] — @h’NHLz(Q;R) <eorP{E[Q] — Qnn| < e} > 0 and
Cost(@h,N) = O(e7279/2),
Case Q = u: [|E [u] —un, || p2(0;m2 (D)) < € or P{|E [u] — Un,N|m1(D) <€} >0

d
2" Cost(up n) = O(s727%).

Proof. For Q = G(u), we can simply apply Theorem 5.1 with & = 2 and v = d.

For @ = u, the bias-variance decomposition also works in the | - |f1(py-norm
(both in mean squared and in probability). To bound the sampling error, we only require
square-summability of uy, : Q@ — H}(D), which is guaranteed by Theorem 7.4

(under suitable conditions on a and f). []
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Multilevel Acceleration

@ Especially in 2D or 3D this is a very high complexity, but it is straightforward
again to accelerate the Monte Carlo FE method via a multilevel approach.

e Consider a hierarchy of FE meshes Ty, ..., Tz, for simplicity using uniform
grid refinement of an (arbitrary) coarsest grid 7o, i.e. hy = hy—1/2 (m = 2)

(These grids are also needed in the MG solver assumed above, so no extra overhead!)

@ We now use the abstract complexity theorem, Theorem 5.2, to estimate
the complexity of a multilevel MC-FE estimator for (7.1).

e Assumptions (M1) and (M3) in Theorem 5.2 have already been verified
above. So it only remains to prove Assumption (M2).

@ For scalar (smooth) @ := G(u), using (7.5)

Var [V;] <E [(Qr — Qr—1)?]
< 2E [(G(u) — G(un,))’] + 2E [(G(u) — G(un, ,))*] = O(hi)

Thus, Assumption (M2) in Theorem 5.2 holds with 5 = 4.

e For @) := u we can show similarly that 7 = 2.
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Grid & Model Hierarchy for Elliptic BVP

Grids KL Truncation
L ‘

Have not really discussed how to sample the field or how

to also change the truncation dimension across the levels.
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Multilevel Complexity Theorem for the Elliptic BVP
Corollary 7.7 (Case of scalar functional Q := G(u))

Consider the Multilevel Monte Carlo FE method with p.w. linear FEs (uniform
refinement) applied to the elliptic BVP (7.1) in R? to estimate E[G(u)], with
G : H}(D) — R suff. smooth. For any 0 < ¢ < exp(—1) and 0 € (0,1) there exist

L, N €N, such that |E[Q] — QY| 12 am) < € or P{|E[Q] — QMt| < €} > 0 and
Cost(QVL) = O(e7?).

@ For Q = u (see above), for less smooth functionals, or for less smooth data,
we often obtain only &« = 1 and 8 = 2, so that for d = 2, 3 the other regimes
in the MLMC complexity theorem become important.

@ Also, for rough coefficients often only v > d is possible (even with a MG solver).
@ Thus, we can make the following very important observation (for d = 2, 3):

Optimality of MLMC (for v > 8 = 2a)

In that case, the MLMC cost is asymptotically the same as one deterministic
solve to accuracy ¢, i.e. Cost(QY'') = O(e72-(0=A)/a) = O(e=/*) Il
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Comparison of Complexities

We compare MLMC-FE and MC-FE for (7.1) in the two regimes discussed above:

Case o =2, 5 =4, v=d:

MC MLMC Gain One Sample Q7.
O(™5/2) O(E?) 012 O(e=1/2)
OE™3) 0E™2) 0@E=Y O(e™1)
O(e™™?) 0™ 077 0E*?)

LW N |,

Case =1, =2,v=d:

MC MLMC Gain  One Sample Q7
O@E™) 0(?) 0= O(=™)
O(™) O(2) 0O ?) O(e™?)
O(e™®) O(E™3) 02 O(e73)

W N~ |

(ignoring log-factors)

Can we achieve such huge gains in practice?
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Multilevel MC-FE Method for Radioactive Waste Disposal Problem

D = (0,1)?%; lognormal a w. exponential covariance; Q = ||u||,(p); p-w. linear FE

S
]
% " .
@ o, +w X 5N ]
k= ™ ~ ~
pd S - ¥ \\
2 \\ o ~ ~
ks N So N h
& o, 0% S
po] ~ ~ ~ ~
o ~ ~ ~ ~
[ ™~ S ™
~ ~
o ~ ~
— -3 ~ ~ ~ ~N
@ 10°F| —© —Standard MC M N N \\O ]
2 —% =2 level MC a8 +* ]
- =+ =3 level MC
b —& -4 level MC
1 M | 1 o1 gl 1 [ A | 1 1 1111
10’ 10° 10° 10* 10°

CPU-time (seconds)
hy = 1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,
3.2GByte RAM, with sparse direct solver, i.e. v~ 2.4
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Verifying Assumptions in Complexity Theorem Numerically

Lognormal a with exponential covariance (i.e. v =1/2). 602 =1 and A = 0.3.

10’ T T 10t

o,

Expected value of error in outflow
Variance of difference in second moment of outflow
3

0’ 0 5 ] 3 10 L .
10 10 10 10 1’ 10' 1o 10
1/h 1/h
[E[G1(u) — G (un)]| V [Go(un) — Ga(uzn)]
where, given V(z) = z, where
1 2
Gl (U) = (f, ‘II)L2(D) - (CLV’LL, V\I’)LQ(D) GQ(U) = (W fD* u(:c) d.Q?)
(average flow through D). (i.e. 2nd moment of u over patch D*)

= a«a=1 and =2

Can be proved rigorously! [Teckentrup, RS Giles, Ullmann, Numer Math 125, 2013] J
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Smoother Coefficients & Outlook to Multilevel QMC

Q= ﬁ [p- udz & lognormal a with Matérn covariance and

v=250°=1, =1

a - MC
D -—MLMC
. -- QMC |5
—-—MLQMC

Cost (in sec)

10 10 107
€
For QMC using a randomised lattice rule with product weights v; = 1/52.

[Kuo, RS, Schwab, Sloan, Ullmann, Math Comput 86, 2017]
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Further Reading on Multilevel Monte Carlo

@ Analysis simplifies considerably for uniformly bounded, affine coefficients, i.e.,

0 < Qpin — const < a(x,w) < Qmax = const < 0O P —a.s.

> Barth, Schwab & Zollinger, Multi-level Monte Carlo Finite Element method for
elliptic PDEs with stochastic coefficients, Numer Math 119, 2011

@ The MLMC-FE method has been applied to many other PDEs. For a
comprehensive list see Mike Giles’ MLMC Community Webpage

> http://people.maths.ox.ac.uk/ gilesm/mlmc_community.html

@ Particular current interest in adaptive FEs and sample-adaptive hierarchies:
» Kornhuber & Youett, Adaptive Multilevel Monte Carlo Methods for Stochastic
Variational Inequalities, SIAM J Numer Anal 56, 2018
» Detommaso, Dodwell & RS, Continuous Level Monte Carlo and Sample-Adaptive
Model Hierarchies, SIAM/ASA J Uncertain Q 7, 2019

@ In the latter, we have also extended the concept of MLMC to allow for a
continuous level parameter /.
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Other Multilevel Quadrature Methods in UQ

@ As stated above, it is not essential to use Monte Carlo estimators to
estimate the contributions E[Y;] from each level.

o Multilevel quasi-Monte Carlo uses quasi-MC quadrature rules, i.e. special
deterministic point sets (can be unbiased through randomisation):

» Kuo, Schwab & Sloan, Multi-level quasi-Monte Carlo finite element methods for a
class of elliptic PDEs with random coefficients, Found Comput Math 15, 2015

> Dick, Kuo, Le Gia & Schwab, Multilevel higher order QMC Petrov—Galerkin discre-
tization for affine parametric operator equations, SIAM J Numer Anal 54, 2016

» Kuo, RS, Schwab, Sloan & Ullmann, Multilevel quasi-Monte Carlo methods for
lognormal diffusion problems, Math Comput 86, 2017

with rigorous theory proving almost O(=~ ') complexity (or better).

e Multilevel sparse grid approximation/quadrature uses sparse grid
polynomial quadrature rules, with rigorous complexity theory:

> Teckentrup, Jantsch, Webster & Gunzburger, A multilevel stochastic collocation
method for PDEs with random input data, SIAM/ASA J Uncertain Q 3, 2015

» Zech, Dung & Schwab, Multilevel approximation of parametric and stochastic
PDEs, Math Mod Meth Appl Sci 29, 2019

» Lang, RS & Silvester, A fully adaptive multilevel stochastic collocation strategy
for solving elliptic PDEs with random data, J Comput Phys 419, 2020

Under strong regularity conditions allows significantly better complexity.
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8. Conditioning on Data — Bayesian Inverse Problems
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Inverse Problems

Data Parameter

z)

+ 7
\e observation/model errors

y = F(
forward model (PDE) J

y € R™ Data y are limited in number, noisy, and indirect.
xec H Parameter = often a function (discretisation needed).
F:H—R™ Continuous, bounded, and sufficiently smooth.

Penn State '21 36/68

Examples of Inverse Problems

e Deblurring a noisy image:

y: image; F: blurring operator
@ Seismic inversion

y: reflected wave image; F': wave equation
e Computer tomography

y: radial x-ray attenuation; F: line integral of absorption

Weather forecasting
y: satellite data, sparse indirect measurem.; F: atmospheric flow

History matching in oil reservoir simulation
y: well pressure/flow rates; F: subsurface flow

e Predator-prey model
y: state of uy(7); F: dynamical system

Classically [Hadamard, 1923]: Inverse map “F~!" (y — ) is typically ill-posed,
i.e. lack of (a) existence, (b) uniqueness or (c) boundedness
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Linear Inverse Problems & Least Squares

o Consider the linear forward operator F'(z) = Az from R® to R™ with
A € R and assume that 7 ~ N(0,571).

@ Least squares minimisation seeks “best” solution = by minimising residual

norm
y — Az|?

argmin,, cps
@ In the case of full rank (for m > s), this actually leads to a unique map
7 = (AT A)~1 ATy
which also minimises the mean-square error E [||Z — z||?] and the covariance
matrix E [(Z — 2)(Z — 2)”| and satisfies

EZ]=2 and E[(Z—2)(@—-2)"] = si(ATA)_l

Using singular value decomposition of ATA = UXVT with U = [ug, ..., U],
V = [v1,...,v,] unitary and ¥ = diag(c?,...,02,) we have in fact

i i o

p=) Eu=z+ Y Ho

k=1 k=1
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Error Amplification & Tikhonov Regularisation

@ In typical physical systems o) < 1, for k> 1, and so the "high frequency”
components ul 7 in the error get amplified with 1 /0.

e In addition, if m < s or if A is not full rank, then AT A is not invertible and
so 7 is not unique (what is the physically best choice?)

@ An approach that guarantees uniqueness of the least squares minimiser and
prevents amplification of high frequency errors is regularisation, i.e solving
instead

argmin 37;2“3/ — Az||* + allz — xo]?

reR™
o is called the regularisation parameter and controls how much we trust the
data or how much we trust the a priori knowledge about .

@ In general, with n ~ N(0,Q) and ' : H — R we solve

argmin [ly — F(2)[%-1 + [|o — o]%0
zeH
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Bayesian Interpretation (Conditional Parameter Distribution)

Cause Model of Effect
Parar)rtleters — System — Obsez;,vatlon

(Physical) model gives 7 (y|x), the conditional probability of observing y given x,
but to predict, control, optimise or to do UQ we are really interested in 7 (z|y),
the conditional probability of possible causes x given the observed data y.

Bayes’ rule states:

r(aly) = “ADT)
™(y)
@ 7(x) = prior density:  what we know/believe about x prior to observing y
e 7(x|y) = posterior density: what we know about z after observing y
e 7(y|x) = likelihood: (physical) model or how likely it is to observe y given x
e 7m(y) = evidence: marginal of 7(z,y) over all possible

(scaling factor that can be determined by normalisation)
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Link between Bayes' Rule and Tikhonov Regularisation

@ Bayesian interpretation of the least squares solution 7, is to find the
maximum likelihood estimate.

@ Bayesian equivalent of the regularisation term is the prior distribution 7(x):
for Tikhonov z ~ N(aj‘o, R) (could be different distribution).

@ Bayes interpretation of the regularised least squares solution is the
maximum a posteriori (MAP) estimate. In the simple linear case it is

ZVAP — (AT A + as%])_l(ATy + 048727$0)

However, in the Bayesian setting, the full posterior contains more information
than the MAP estimator alone, e.g. the posterior covariance matrix
Pl = (ATQ 1A+ R~1)~! reveals more or less certain components of ..

@ In the linear Gaussian case, posterior mean (MAP) and covariance matrix
describe the entire distribution. What about general case? Can we do better?
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Metropolis-Hastings Markov Chain Monte Carlo

YES.| We can sample from the posterior distribution and/or

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

compute posterior expectations [, [G/(2)] using
importance sampling
rejection sampling
variational inference methods
filtering
Markov chain Monte Carlo methods:

Choose initial state 2° € X.
At state n generate proposal 2/ € X from distribution ¢(z’ | z™)
(e.g. via a random walk ' ~ N(z", £2I))

n+1

Accept 2’ as a sample and set x = 2/ with probability

a(z'|z") = min <1’ W(fﬂ’\y)Q(ﬂf”\m’)>

m(x™ |y) q(z" |z™)

Otherwise set 2" T1 = 27,

v
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Links to what | have told you so far and to Machine Learning

What does this all have to do with UQ?

In context of what | said so far, we want to “condition” our uncertain models
on information about input data (prior) and output data (likelihood).
Again we have to distinguish whether we are interested

» only in statistics about some Qol (quadrature w.r.t. the posterior) or

> in the whole posterior distribution of the inputs and/or of the state

Allows to learn something about a model parameter or physically relevant,
derived quantity from noisy, indirect measurements.
Outcome crucially depends on choice of prior (curse and blessing):

» If nothing is known use non-informative prior!

» If we have solid/complicated prior knowledge can use it!

Updating prior belief given measured data. In that sense optimal and
theoretically rigorous (Bayes optimality).

Most importantly: can rigorously quantify uncertainties !
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9. Model Problems & Markov Chain Monte Carlo
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Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied so far that
leads to a Bayesian UQ problem is:

1. Prior: ugp ~ U(ﬁo + [—6, 5]2)
2. Data: y = u$"™ at time 7" with measurement error 7 ~ N(0, s7)
3. Likelihood: (with bias due to the numerical approximation of F):

2
5

—ly - UM,2(110)\2)

(yluy) < exp(

4. Posterior: 7, (uply) = 7, (y|ug) mpe (1)
——

—=const

5. Statistic: Eﬂh(uow) [uM,l(uo)] ~ expected value of u1(T) under the posterior)

Depending on size of 5727 uncertainty in expected value of u;(7") is vastly reduced.

(can be computed, e.g., with Metropolis-Hastings MCMC).
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Example 2: Deep Geological Disposal of Radioactive Waste

@ Area where UQ has played central role in past 25 years.

@ Deep geological disposal favoured by nearly all countries with a radioactive
waste disposal programme.

e Storage in containers in tunnels, hundreds of meters deep in stable geological
formations. No human intervention required after sealing repository.

@ Several barriers: chemical, physical, geological.
@ Ccontainment must be assured for at least 10,000 years.
@ Main escape route for radionuclides: groundwater pathway.

o Assessing safety of potential sites of utmost importance
long timescales — modelling essential!

o Key aspect: How to quantify uncertainties in the models?
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WIPP — Waste Isolation Pilot Plant

e US DOE repository for radioactive waste . -
situated near Carlsbad, NM. L e

(Fully operational since 1999.)

1000
o Extensive site characterisation and |
performance assessment since 1976, also in
course of compliance certification and wl

recertification by US EPA (every 5 years).

@ Lots of publicly available data at
http://www.wipp.energy.gov so

; Elwa;on (m)
T

Castile Formation

@ Repository located at 655m depth in

Bell Canyon
Formation

bedded evaporites (mainly halite, a salt). .\_1/‘\

@ Most transmissive rock layer in the region
. . . &3 sandan
is the Culebra Dolomite: principal pathway B Sivstone and Sancutone T Mk
. . . Mudstone and Siltstone [E=-5] Limestone
for transport of radionuclides in the event
of an accidental breach.
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Groundwater Flow Model

Stationary Darcy flow q=—-KVp q : Darcy flux
K : hydraulic conductivity
p : hydraulic head

mass conservation V-u=0 u : pore velocity
q = ¢u ¢ : porosity
transmissivity k= Kb b : aquifer thickness
. . k(x) . "
particle transport x(t) = —WVp(x) x : particle position
x(0) = xg Xo : release location

Quantity of interest: log;, of particle travel time to reach boundary
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UQ Problem — PDE with Random Coefficient

Primal form of Darcy equations is our “fruit fly” with ¢ = k and v = p:
—V:a(x)Vu(x)] =0, x€ D, u = ugp along 9D.

Model transmissivity as a random field (RF) a = a(x,w), w € 2, with respect to
underlying probability space (€2, 4, P).

Modeling Assumptions (standard in 2D hydrogeology):

@ finite mean and covariance

a(x) = E[a(x, )], x € D,
Cova(x,y) = E[(a(x,) —a(x)) (aly,-) —a(y))], X,y € D.

@ a is lognormal, i.e., Z(x,w) := loga(x,w) is a Gaussian RF.

@ Covy is stationary and isotropic, i.e., Covz(x,y) = c(||x — y]|2)
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Data for Radioactive Waste Example (WIPP)

Prior Model [Ernst et al, 2014]

loga ~ S /I 6= ()0, (w) with i.id. 0; ~ N(0,1)
71=1

Karhunen Loeve modes (5 = 1,2,9, 16) conditioned on 38 transmissivity observations
(via Imgmg Gaussian process regression): a simple low-rank change to covariance operator)

' \0

Prior model: 7y, 5(6) is the multivariate standard Gaussian density for 8 € R®.
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Data for Radioactive Waste Example (WIPP)

Likelihood Model [Ernst et al, 2014]

Locations of 2000 Head Data
° 940.000
3590000. o ° 935.000
930.000
L ]
g | o °g ,.- s25.000 @ Data y are pressure
5 o] e f’s. _E w000 measurements.
2 oo s )
. . = 915,000 @ [},(0) is the model
3570000 _- 910.000 response.
. o 905.000
900.000
595000, 600000, 605000, 610000, 515000, 620000, 625000.
Easting (m)

Likelihood model: assuming Gaussian errors with covariance 3

h,s(yl8) = exp(—lly — Fa(0)[5-1)

Posterior through Bayes’ rule: 7, (0 |y) = 7h,s(y|0) mpr,s(0) J
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Markov Chain Monte Carlo (Metropolis-Hastings Algorithm)

(for the discretised fruit fly problem)

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

@ Choose 0° € Rs.

@ At state 8" generate a 8’ € R* from the proposal distribution ¢(6"|6")
(e.g. basic or preconditioned Crank-Nicholson random walk [Cotter et al, 2012])

o Accept sample 8’ and set 8" = @’ with probability

/ n /
v o(6]6") = min (17 m,s(an!y)q(el \0n>>
Th,s(0™]y) (6" | 6™)

Otherwise 1! = 9"

Samples 0, ...,0% used as usual for inference (even though not i.i.d.):

N
1 n AN
Er() [Q) % Eny o) [@nsl ~ 5 D Q)0 = Q™
=1

where Q;an = G(0") = ¥ (up(0")) is nth sample of the Qol using Model(%, s).
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Markov Chain Monte Carlo Theory (for simplicity only finite dimensional)

Theorem 9.1 (Metropolis et al. 1953, Hastings 1970, ...)

The Markov chain simulated by the Metropolis-Hastings algorithm is reversible
with respect to 7w(-|y). If we also have

w(z'ly) >0 = q(z'|z"™), forallneN
P(a(a'|z™) =1) <1, foralln €N,

then it defines a geometrically ergodic Markov chain with unique equilibrium
density 7(-|y) (for any initial state 2°) and the Central Limit Theorem gives

VI (@Y — ) [G(X)]) —2= N(0,02) (9.1)
withasymptotic variance
¢ = Var(G(X1)) +2 ) Cov (G(X1), G(X145)). (9.2)
j=1

v

Crudely speaking geometrically ergodic means that there exists an r € (0,1) s.t. the TV-distance
between the target distribution and the distribution of the nth state converges with O(r=").
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Markov Chain Monte Carlo

Comments in the context of our UQ problem

Pros:
@ Produces a Markov chain {®"},,cy with ®" ~ 7}, (-|y) as n — oo,
@ Can be made dimension independent (e.g. via pCN sampler).
@ Therefore often referred to as “gold standard” (Stuart et al)

Cons:
e Evaluation of «v, ((0'|0") very expensive for small h (cost/sample > O(h 1))

@ Acceptance rate ay, s can be very low for large s (< 10%)

o Cost(QMH) = O(==27%) as above, but the constant is multiplied by the
integrated autorcorrelation time (= relative asymptotic variance)

e
TG !

= Var(G(X))) =1+ 22 Corr (G(X1),G(X14,)) (9.3)

Jj=1
(which depends on stepsize in ¢ and on o, )

@ In addition, require burn-in to reduce the initiation bias.

Prohibitively expensive — significantly worse than standard MC w. iid. samples! )
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10. Multilevel Markov Chain Monte Carlo

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part 11 / 10. Multilevel MCMC Penn State '21 55/68



Multilevel Markov Chain Monte Carlo — ldea

[Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015] & [Dodwell et al, SIAM Rev. 2019]
@ What were the key ingredients of “standard” multilevel Monte Carlo?

> Telescoping sum: E[Qr] =E[Qo] + 37 E[Qr — Q1]
> Models on coarser levels much cheaper to solve (h, ¢ < h,?).

¢ .
> V[Qr — Qr1] =3 — 0 as = much fewer samples on finer levels.

e But Important! Now target distribution 7y := 7, 5, (- | y) depends on /:

Er, [Qu] = Er [Q] +) Er [Q —Er,_, [Qe1]

standard MCMC multilevel MCMC (NEW)
1 No L 1 Ny
= No PACIDEDS N, (Qe(©7 ) — Qu-1(©7, 1))
n=1 /=1 n=1

with correlated Markov chains {©}, ;} and {®},} (see below).

@ For simplicity we describe only the case sy = sy 1 = ... = sq.

(In practice, useful to reduce also number sy_; of random parameters on coarser levels.
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Multilevel Markov Chain Monte Carlo — Algorithm

Choose subsampling rates t,....1;, € N (see below) and set 7} ;, := Hf;i t;.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for Qy — Q¢—1)

Given realisations 0, ..., 0/, at state n of Markov chains on levels k = 0,.. ., /.

1. k=0: Set x{) := 0} ,. Use Algorithm 1 (standard Metropolis-Hastings) to

. . 1 T
generate samples x{, ~ 7o, i = 1,...,Tyo. Set )" :=x,"".
2. k> 0: Set x)) := 6}, Generate samples xj, ~ m, i = 1,..., T as follows:
1)ty .
a) Propose %) = x(zj Y1 Subsample to reduce correlation!
p k k—1

b) Accept x,, and set x'"" = x/ with probability
k

) / n
" (x4 |x%) = min (1, Wk(xfl)m“‘l(x’f)) JS Liu, 2001
e (Xp ) Te—1(x},)

Otherwise set x, " = x;,.

T : _
(c) Set 0?};1 = x, " with Ty, = Hﬁzi -

3. Set Y := Qu(607,) — Qr1(6)41).
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MLMCMC — Comments

e Each {®}, },>1, k =0,...,/, is a Markov chain with ©, ~ 7 as n — o0
and t, — oo.

@ Theoretically need t, — oo to guarantee consistency of multilevel algorithm

(no bias between levels)

@ In practice, it suffices to choose ¢, ~ C'r s with C' =1 or 2.

e States may differ between level ¢ and ¢/ — 1:

State n + 1 Level £ —1 | Level ¢
accept on level /7 6?;_11 9?2@1
reject on level ¢ 9??_11 07,

: . - 1
but this does not happen often for larger £ since acceptance probability a?’”- = 1.

Lemma 10.1 (Dodwell, Ketelsen, RS, Teckentrup, '15)

Erym |1 = o™ ()] = O(En,

F(8) - F(9)l]) = O(hg)

. o ¢
@ Note that this also implies 7¢ ; ~% 1.
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Complexity Theorem for Multilevel MCMC (Dodwell et al. '15)

Suppose there are constants «, 3,~,n > 0 such that, forall / =0,...,L,

M1 |E,[Qd — Er1»[Q]] = O(hY) (discretisation and truncation error)
M2’ Var,[Y,] + <Ea.gm] — By, [E])QZ Vary, -, ,[Ye] O(N; ') (MCMC-error)
M2 Var,, ., ,[Y)] = Oh)) (multilevel variance decay)
M3 Cost(YMC) = O(Nyh,"). (cost per sample)
Then there exist L, {N,}/-, s.t. MSE < £? and

C-(QP™) = O (6_2_“"“(0’7;5)) (+ log-factor when 5 = ~)

(This is totally abstract & applies not only to our subsurface model problem!)

@ Proof of Assumptions M1 and M3 similar to i.i.d. case.
e M2’ not specific to multilevel MCMC: first steps in [Hairer, Stuart, Vollmer, '11].

Proof of Assumption M2 for lognormal diffusion & linear FEs (Dodwell et al '15)
Varwﬂ_l [QK(G)ZK) = Qf—l((-)?,é—l)] = O(hg‘) (unfortunately 8 = « not 2a)

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part 11 / 10. Multilevel MCMC Penn State '21 59/68




More Comments — Related Literature

@ Typically also increase number of parameters s, from level to level and use
standard proposal kernel for new parameters (see paper).

@ Subsampling essential (exact only in limit of infinite subsampling), but small bias
for sampling rates with C' =1 or 2.

e New (“multiplicative”) version: Current work with Colin Fox (Otago, NZ).

@ Algorithm 2 is a special case of a surrogate transition method
[Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]

e and of delayed acceptance Metropolis-Hastings [Christen, Fox, '05]

But crucially exploiting variance reduction & proved rates in MLMCMC are new!J

(Corollaries on adaptive error estimates using the Markov chains, current work with Colin Fox)

@ Other references on related mutlilevel Monte Carlo methods recently
developed for Bayesian inverse problems:
» Hoang, Schwab & Stuart, Complexity analysis of accelerated MCMC methods for
Bayesian inversion, Inverse Prob 29, 2013

> Beskos, Jasra, Law & Zhou, Multilevel sequential Monte Carlo samplers, Stoch Proc
Appl 127, 2017
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Numerical Example
Fruit fly (2D lognormal diffusion) on D = (0, 1)? with linear FEs

@ Prior: Separable exponential covariance with 02 =1, \ = 0.5.

_le—a'| _ ly—y|
A

ie. E[Z(x)Z(2")] = o%e
@ “Data” y: Pressure at 16 points z € D and covariance ¥ = 10~ 1.

Permeability Permeability

szﬂe‘m 1.261+01

=5

1.0
10

@

n
o

—22

1
Eu.dﬁ
2.2758-01

0.8
0.8

0.6

W\HIIIH"
8 »

0.6

2.275¢-01

Y-Axis
Y-Axis

04
0.4

0.2
0.2

0.0
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X-Axis X-Axis

Synthetic Data Posterior Sample
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Numerical Example
Quantity of interest: Q = fol k¥ pdxo; coarsest mesh size: hg = %

@ 5-level method with #KL modes increasing from so = 50 to s4 = 150

10° : 10° ' i ;
=0.04 MLMCMC
€=0.066
- € =0.0033 ’é\ 5
G g0y
%E’L 104 F ;E;
® F oot
2 510
@ o
2 o
2 10 1 £
Q.
3 1 §103 L IA
= o
2 L | | 2 s s s
1% 1 2 3 4 10 0.01 002 003 004
Level €
, N : L
@ #independent samples = T_Z (T¢ ...integrated autocorrelation time)
Level ¢ 0 1 2 3 4

i.a.c. time 7, | 136.23 | 3.66 | 2.93 | 1.46 | 1.23
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Choice of Proposal Distribution

Multilevel DILI (recent preprint with T Cui & G Detommaso)

@ So far: pCN random walk proposal (uses no gradient/Hessian info)
[Cotter, Dashti, Stuart, '12]

@ Problem: Dimension independent but very high IACT for s — oc!

70 =~ 136 above, i.e. need 136 samples to obtain one independent sample!!

@ However, can use any other proposal (c.g. MALA, stochastic Newton)
e DILI MCMC [Cui, Law, Marzouk, '16]:

(DILI = dimension-independent likelihood-informed)

samples from preconditioned Langevin equation using low-rank
approximation of data-misfit Hessian at some points (incl. MAP point)

e New multilevel construction of DILI (with T Cui and G Detommaso) ...

Cui, Detommaso, RS, Multilevel dimension-independent likelihood-informed MCMC for
large-scale inverse problems, submitted, 2019 [arXiv:1910.12431]
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Testing on a Much Harder Example

True parameter Pressure

logy, true permeability pressure field
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Model:
oce -V (ez(x)Vu(s)) =0, z€l0,1)?

Top/bottom: zero Neumann b.c.; left/right: Dirichlet b.c. zero/one, respectively.
Gaussian process prior for z = log a with covariance fct. k(x,z') = exp(—5|x — 2'|)
71 sensors; signal to noise ratio 50.

Qol: Q") = average flux over the left boundary
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Numerical Comparison: IACTs & CPU Times

Refined parameters Qe(07 ) — Qe—1(07,_1)

Level ¢ 0 1 2 3 Level / 0 1 2 3
iact(pCN) | 4300 | 45 | 48 | 24 iact(pCN) | 4100 | 49 | 2.8 | 1.9
iact(DILI) | 34 | 11|36 |20 iact(DILI) | 9.0 |46 |24 1.8

107

~ 1 CPU Month
~ 9 CPU Days 108

~ 2 CPU Days

+— 1 CPU Day

—e—MLpCN -wv-pCN
—6—MLmixed - A -DILI
—=—MLDILI

CPU time (in sec)
103

28 x 1078 57 x 1078 127 x 1072
€
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11. Conclusions

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part 11 / 11. Conclusions Penn State '21 67/68



Conclusions

@ | hope the course gave you a basic understanding of the questions &
challenges in modern uncertainty quantification.

@ The focus of the course was on the design of computationally tractable and
efficient multilevel Monte Carlo methods for high-dimensional and large-scale
UQ problems in science and engineering.

@ Of course it was only possible to give you a snapshot of the methods and we
went over some parts too quickly.

e Finally, | apologise that the course was of course also strongly biased in the
direction of my research and my expertise and was probably not doing some
other methods enough justice.

@ But | hope | managed to interest you in the subject and persuade you of the
huge potential of multilevel sampling methods.

Thanks!

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part Il / 11. Conclusions Penn State '21 68/68



