Multilevel Monte Carlo Methods for UQ Part II

Robert Scheichl r.scheichl@uni-heidelberg.de

Institut für Angewandte Mathematik, Universität Heidelberg

Short Course, Penn State University, 21 & 23 April 2021 https://katana.iwr.uni-heidelberg.de/teaching/pennstate2021/

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II

Penn State '21 1/68

- 1. What is Uncertainty Quantification?
- 2. Computational Challenges
- 3. Convergence & Complexity of Basic Monte Carlo
- 4. A Simple ODE Example
- 5. The Multilevel Monte Carlo Method
- 6. Random Fields
- 7. (Multilevel) Monte Carlo Finite Element Methods
- 8. Conditioning on Data Bayesian Inverse Problems
- 9. Model Problems & Markov Chain Monte Carlo
- 10. Multilevel Markov Chain Monte Carlo
- 11. Conclusions & Outlook

6. Random Fields

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Penn State '21 3/68

Model Elliptic PDE & Random Fields

We return to our model elliptic boundary value problem. In particular, we consider

 $-\nabla \cdot (a\nabla u) = f, \quad \text{on } D \subset \mathbb{R}^d, \qquad u_{|\partial D} = 0, \tag{6.1}$

where a and f are random fields defined on D.

Definition 6.1

Let $D \subset \mathbb{R}^d$, $d \in \mathbb{N}$, and let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space (see Appendix A). A (real-valued) random field is a mapping

$$a: D \times \Omega \to \mathbb{R}$$

such that each function $a(\mathbf{x}, \cdot) : \Omega \to \mathbb{R}$, $\mathbf{x} \in D$, is a random variable.

Definition 6.2

For each fixed $\omega \in \Omega$ the associated function $a(\cdot, \omega) : D \to \mathbb{R}$ is called a realization of the random field.

Let \mathbb{R}^D denote the set of all real-valued functions $f: D \to \mathbb{R}$. The mapping $\omega \mapsto a(\cdot, \omega)$ from (Ω, \mathfrak{A}) to $(\mathbb{R}^D, \mathfrak{A}(\mathbb{R}^D))$ is measurable and hence a random variable with values in \mathbb{R}^D .

Second-order and Gaussian Random Fields

Similar to a random vector or stochastic process, a random field is a family of random variables indexed by a parameter. Instead of an ordered parameter set (e.g. \mathbb{N} or \mathbb{R}_0^+), for random fields the parameter is a spatial coordinate.

Definition 6.3

A random field a on $D \subset \mathbb{R}^d$ is said to be of second order if for all $\mathbf{x} \in D$ there holds $a(\mathbf{x}, \cdot) \in L^2(\Omega; \mathbb{R})$ (see Appendix A). We say a second-order random field ahas mean function $\overline{a}(\mathbf{x}) := \mathbb{E}[a(\mathbf{x}, \cdot)]$ and covariance function

$$c(\mathbf{x},\mathbf{y}) := \mathbf{Cov}(a(\mathbf{x},\cdot),a(\mathbf{y},\cdot)), \qquad \mathbf{x},\mathbf{y} \in D.$$

A sufficient and necessary condition is that $c(\mathbf{x}, \mathbf{y})$ is symmetric and positive semidefinite.

Definition 6.4

A random field on $D \subset \mathbb{R}^d$ is called Gaussian if, for any $n \in \mathbb{N}$ and for any $\mathbf{x}_1, \ldots, \mathbf{x}_n \in D$, the random vector $[a(\mathbf{x}_1, \cdot), \ldots, a(\mathbf{x}_n, \cdot)]$ follows an *n*-variate normal distribution. It is uniquely determined by its mean and covariance function.

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Penn State '21 5/68

Random Fields in $L^2(D)$ – Karhunen-Loève Expansion

Let a be a 2nd-order random field on $D \subset \mathbb{R}^d$ with mean \overline{a} . Then the centred field $a - \overline{a}$ can be expanded in any complete orthonormal system $\{\psi_m\}_{m \in \mathbb{N}}$ of $L^2(D)$.

The Karhunen-Loève expansion of a results from choosing as a particular CONS the eigenfunctions of the covariance operator $C: L^2(D) \to L^2(D)$ of a, given by

$$(Cu)(\mathbf{x}) = \int_D u(\mathbf{y})c(\mathbf{x}, \mathbf{y}) \, \mathrm{d}\mathbf{y}, \quad \mathbf{x} \in D.$$
(6.2)

Theorem 6.5 (Karhunen-Loève (KL) Expansion)

Let $a \in L^2(\Omega; L^2(D))$ (see Appendix A) with mean function $\overline{a}(\mathbf{x})$ and denote by $(\lambda_m, a_m)_{m \in \mathbb{N}}$, $\|a_m\|_{L^2(D)} = 1$, the sequence of eigenpairs of the covariance operator C in descending order. Then

$$a(\mathbf{x},\omega) = \overline{a}(\mathbf{x}) + \sum_{m=1}^{\infty} \sqrt{\lambda_m} a_m(\mathbf{x}) \xi_m(\omega), \qquad (6.3)$$

where the random variables $\xi_m(\omega) = \frac{1}{\sqrt{\lambda_m}} (a(\cdot, \omega) - \overline{a}, a_m)_{L^2(D)}$ have mean zero, unit variance and are pairwise uncorrelated. The series converges in $L^2(\Omega; L^2(D))$. If the random field is, in addition, Gaussian, then $\xi_m \sim N(0, 1)$ are i.i.d.

One-Dimensional Example [Ghanem & Spanos, 1991]

Example. For d = 1, D = [-1, 1] and the exponential covariance function

$$c(x,y) = e^{\frac{-|x-y|}{\ell}}, \qquad \ell > 0,$$

the eigenvalues of the associated covariance operator are given by

$$\lambda_m = \frac{2\ell}{\ell^2 \omega_m^2 + 1}, \ (m \text{ even}), \qquad \lambda_m = \frac{2\ell}{\ell^2 \tilde{\omega}_m^2 + 1}, \ (m \text{ odd})$$

where ω_m and $\tilde{\omega}_m$ denote the solutions of the transcendental equations

$$1 - \omega \ell \tan(\omega) = 0$$
 and $\tilde{\omega} \ell + \tan(\tilde{\omega}) = 0$, respectively.

The associated eigenfunctions are given by

$$f_m(x) = \sqrt{\frac{2\omega_m}{1+\sin(2\omega_m)}} \cos(\omega_m x), \qquad \tilde{f}_m(x) = \sqrt{\frac{2\tilde{\omega}_m}{1+\sin(2\tilde{\omega}_m)}} \sin(\tilde{\omega}_m x).$$

However, in general it is not possible to compute the KL-expansion analytically.

 Scheichl (Heidelberg)
 Multilevel Monte Carlo Methods / Part II / 6. Random Fields
 Penn State '21 7/68

Practical Application – Truncated KL Expansion

• The KL expansion suggests a convenient approach for approximating a random field to a specified accuracy by truncation:

$$a(\mathbf{x},\omega) \approx a_s(\mathbf{x},\omega) := \overline{a}(\mathbf{x}) + \sum_{m=1}^s \sqrt{\lambda_m} a_m(\mathbf{x}) \xi_m(\omega).$$
 (6.4)

• The truncated RF a_s has the same mean as a and the covariance function

$$c_s(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^s \lambda_m a_m(\mathbf{x}) a_m(\mathbf{y}), \qquad \mathbf{x}, \mathbf{y} \in D,$$
(6.5)

converges uniformly to c as $S \to \infty.$

• For the variance of the truncated KL expansion, we have

$$\operatorname{Var}(a(\mathbf{x}, \cdot)) - \operatorname{Var}(a_s(\mathbf{x}, \cdot)) = \sum_{m=s+1}^{\infty} \lambda_m a_m(\mathbf{x})^2 \ge 0.$$

Hence, a_s always underestimates the variance of a. Moreover, this implies

$$\|a - a_s\|_{L^2(\Omega; L^2(D))}^2 = \sum_{m=s+1}^{\infty} \lambda_m = \int_D \operatorname{Var} a(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \sum_{m=1}^s \lambda_m \,,$$

i.e. the truncation error in $L^2(\Omega; L^2(D))$ is explicitly computable.

DIY

Stationary and Isotropic Random Fields

Definition 6.6

- (a) A random field a is stationary or homogeneous if it is invariant under translation, i.e. if the multivariate distributions of $(a(\mathbf{x}_1, \cdot), \ldots, a(\mathbf{x}_n, \cdot))$ and $(a(\mathbf{x}_1 + \mathbf{h}, \cdot), \dots, a(\mathbf{x}_n + \mathbf{h}, \cdot))$ are the same, for any $\mathbf{x}_1, \dots, \mathbf{x}_n$ and \mathbf{h} .
- (b) A stationary random field a is isotropic if its covariance function is invariant under rotations, i.e.,

$$c(\mathbf{x}, \mathbf{y}) = c(r), \qquad r = \|\mathbf{x} - \mathbf{y}\|_2.$$

Example (Isotropic Gaussian covariance).

A simple and widely used example of an isotropic covariance function is the Gaussian covariance $c(r) = \sigma^2 e^{-r^2/\rho^2}$, where σ^2 and ρ are two constants defining the *variance* and the *correlation length* of the field.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Penn State '21 9/68

The Matérn Class

A family of isotropic covariance functions that is very popular in spatial statistics or machine learning, is the Matérn class with covariance function given by

$$c(r) = \frac{\sigma^2}{2^{\nu-1} \Gamma(\nu)} \left(\frac{2\sqrt{\nu} r}{\rho}\right)^{\nu} K_{\nu} \left(\frac{2\sqrt{\nu} r}{\rho}\right), \qquad r = \|\mathbf{x} - \mathbf{y}\|_2, \tag{6.6}$$

where

- K_{ν} is the modified (second-kind) Bessel function of order ν ,
- Г denotes the Gamma-function.
- is known as the smoothness parameter, ν
- σ^2 is the variance parameter,
- is the correlation length parameter. ρ

It contains exponential, Gaussian, as well as Bessel covariance functions as special cases: $\nu = \frac{1}{2}$: $c(r) = \sigma^2 \exp(-\sqrt{2}r/\rho)$ exponential covariance

$\nu = \frac{1}{2}$:	$c(r) = \sigma \exp(-\sqrt{2r/\rho})$	exponential covariance
$\nu = 1:$	$c(r) = \sigma^2 \left(\frac{2r}{\rho}\right) K_1 \left(\frac{2r}{\rho}\right)$	Bessel covariance
$\nu \to \infty$:	$c(r) = \sigma^2 \exp(-r^2/\rho^2)$	Gaussian covariance

- By reducing the correlation length ρ the Matérn covariance function can be concentrated more strongly near r = 0.
- By increasing the smoothness parameter ν the Matérn covariance function becomes smoother at r = 0. (It is analytic everywhere else.)
- Flexible parametrisation allows its application to many statistical situations. (Parameters may be estimated from observed data using statistical techniques.)

Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Eigenvalue Decay for the Matérn Class

A result by H. Widom from 1963 allows us to analyse the decay rate of the eigenvalues of the covariance operator of isotropic random fields:

Theorem 6.7 (Widom, 1963)

Let c = c(r) be the (isotropic) Matérn covariance function with parameters ν, σ^2 and ρ . Let D be a bounded domain in \mathbb{R}^d and let $\{\lambda_m\}_{m\in\mathbb{N}}$ denote the (nonincreasing) eigenvalues of the covariance operator C given by (6.2).

 $\lambda_m \approx m^{-(1+2\nu/d)}, \quad \text{for } m \to \infty.$

- Allows to estimate truncation error and thus dimensionality of the problem.
- Rate of convergence of the eigenvalues is crucial to obtain dimensionindependent QMC and sparse grid quadrature and approximation results.
- The (spatial) smoothness of realizations is also linked directly to the parameter ν : in particular, a random field with Matérn covariance function is k-times mean-square differentiable if and only if $\nu > k$.

Scheichl (Heidelberg)

Penn State '21 11/68

Asymptotic Eigenvalue Decay & Plateau (Matérn)

Before asymptotic decay sets in (rate determined by smoothness parameter ν), there is a preasymptotic plateau. Its length is determined by the correlation length ρ .

Eigenvalue decay, Matérn covariance kernel, D = [-1, 1].

Scheichl (Heidelberg)	Multilevel Monte Carlo Methods / Part II / 6. Random Fields	Penn State '21 13/68

Realizations of Gaussian Random Fields

Matérn covariance: $\nu = 1/2$, $\sigma = 1$, $\ell = 0.5$

Realizations of Gaussian Random Fields

Matérn covariance: $\nu=1/2$, $\sigma=1$, $\ell=0.05$

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Penn State '21 14/68

Realizations of Gaussian Random Fields

Matérn covariance: $\nu=3/2$, $\sigma=1$, $\ell=0.05$

Realizations of Gaussian Random Fields

Matérn covariance: $\nu = 5/2$, $\sigma = 1$, $\ell = 0.05$

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 6. Random Fields

Penn State '21 14/68

Further Reading on Random Fields

- KL expansion is widely used (especially in theoretical NA literature), but especially for rough fields (e.g. $\nu < 1$), cost can grow very quickly.
- For isotropic RF more efficient: circulant embedding and other FFT methods:
 - Dietrich & Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J Sci Comput 18, 1997
 - Graham, Kuo, Nuyens, RS & Sloan, Analysis of circulant embedding methods for sampling stationary random fields, *SIAM J Num Anal* 56, 2018
 - Bachmayr, Graham, Nguyen & RS, Unified analysis of periodization-based sampling methods for Matérn covariances, Preprint arXiv:1905.13522, 2019
- Exploiting a link between the inverse C^{-1} of the covariance operator and stochastic PDEs, e.g. Matérn fields a can be sampled by solving the sPDE

$$(\kappa^2 - \Delta)^\beta a(\mathbf{x}, \omega) \ =^d \ \mathcal{W}(\mathbf{x}, \omega) \quad \text{in} \ \ \mathbb{R}^d,$$

where Δ is the Laplacian and \mathcal{W} is Gaussian white noise on \mathbb{R}^d .

(The parameters are related by $\nu = 2\beta - \frac{d}{2}$, $\rho = 2\frac{\sqrt{\nu}}{\kappa}$ and $\sigma^2 = \sigma^2(\kappa, \beta)$.)

- Lindgren, Rue & Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic PDE approach, *J Roy Statist Soc B* 73, 2011
- Bolin, Kirchner, Kovács, Numerical solution of fractional elliptic stochastic PDEs with spatial white noise, IMA J Num Anal 40, 2020
- Drzisga, Gmeiner, Rüde, RS & Wohlmuth, Scheduling massively parallel multigrid for multilevel Monte Carlo methods, SIAM J Sci Comput 39, 2017

7. Monte Carlo Finite Element Methods

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods

Penn State '21 16/68

Elliptic Boundary Value Problems with Random Data

We return again to our model elliptic boundary value problem with random data

$$-\nabla \cdot (a\nabla u) = f, \quad \text{on } D \subset \mathbb{R}^d, \qquad u_{|\partial D} = 0, \tag{7.1}$$

where a and f are random fields on D with respect to a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.

- If f is random, we assume $f(\cdot, \omega) \in L^2(D)$ for (almost) all $\omega \in \Omega$.
- **Could** require coefficient a to satisfy Assumption 1 in Appendix B **uniformly** to ensure existence & uniqueness of $u(\cdot, \omega) \in H_0^1(D)$ with $\|\cdot\|_{H_0^1(D)} = |\cdot|_{H^1(D)}$. But in many situations too restrictive! The following assumption suffices:

Assumption 1

For almost all $\omega \in \Omega$ (P-a.s.), realizations $a(\cdot, \omega)$ of the coefficient function a are strictly positive and lie in $L^{\infty}(D)$, i.e.

$$0 < a_{\min}(\omega) \le a(\mathbf{x}, \omega) \le a_{\max}(\omega) < \infty$$
 almost everywhere (a.e.) in D, (7.2)

where

$$a_{\min}(\omega) := \operatorname{ess\,inf}_{\mathbf{x}\in D} a(\mathbf{x},\omega), \qquad a_{\max}(\omega) := \operatorname{ess\,sup}_{\mathbf{x}\in D} a(\mathbf{x},\omega).$$
 (7.3)

Realization-Wise Solvability

For any realization ω for which Assumption 1 holds and $f(\cdot, \omega) \in L^2(D)$, we may apply the Lax-Milgram Lemma (Lemma B.5) and obtain a unique solution of (7.1).

Theorem 7.1

Let Assumption 1 hold and $f(\cdot,\omega)\in L^2(D)$ \mathbb{P} -a.s. Then (7.1) has a unique solution $u(\cdot,\omega) \in H^1_0(D)$ and $|u(\cdot,\omega)|_{H^1(D)} \leq Ca^{-1}_{\min}(\omega) ||f(\cdot,\omega)||_{L^2(D)}$ \mathbb{P} -a.s.

Recall Definition A.21, of Banach space-valued L^p -spaces over a probability space $(\Omega, \mathfrak{A}, \mathbb{P})$ – so-called *Bochner spaces*. These spaces provide a generalisation of standard Lebesgues spaces. A result that we will use throughout is:

Lemma 7.2 (Hölder's Inequality)

Let $p,q,r \in [1,\infty]$ be such that $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Then

 $\|XY\|_{L^{p}(\Omega,W)} \leq \|X\|_{L^{q}(\Omega,W)} \|Y\|_{L^{r}(\Omega,W)}, \text{ for all } X \in L^{q}(\Omega,W), Y \in L^{r}(\Omega,W).$

Note that the case of $q = \infty$ is explicitly included; in that case p = r. For p = 1 & q = r = 2, Hölder's Inequality reduces to the Cauchy-Schwarz inequality. The inequality holds over any measure space Ω ; in particular, also in standard Lebesgues spaces. Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods

Summability

The following theorem provides sufficient conditions for u to have finite p-th moments, i.e., to lie in $L^p(\Omega; H^1_0(D)).$

Theorem 7.3

Let Assumption 1 hold. Assume further that the mappings $a: \Omega \to L^{\infty}(D)$ and $f: \Omega \to L^2(D)$ are measurable and that $a_{\min}^{-1} \in L^q(\Omega; \mathbb{R})$ for some $q \in [1, \infty]$. (a) If $f \in L^2(D)$ deterministic (i.e. a degenerate constant RF), then $||u||_{L^p(\Omega; H^1_0(D))} \le C ||a_{\min}^{-1}||_{L^p(\Omega; \mathbb{R})} ||f||_{L^2(D)}, \text{ for all } p \le q.$ (b) If $f \in L^r(\Omega; L^2(D))$ with $r \in [1, \infty]$ and $\frac{1}{p} = \frac{1}{q} + \frac{1}{r} \leq 1$, then

$$\|u\|_{L^{p}(\Omega; H^{1}_{0}(D))} \leq C \|a_{\min}^{-1}\|_{L^{q}(\Omega; \mathbb{R})} \|f\|_{L^{r}(\Omega; L^{2}(D))}.$$

Proof. Follows directly from Theorem 7.1 (using Hölder's Inequality for Part (b)).

Penn State '21 18/68

Finite Element Discretization

- Let V_h ⊂ H¹₀(D) denote a closed subspace, e.g., the finite element (FE) space of piecewise polynomial functions with respect to a triangulation *S*_h of D with mesh width h > 0 (see Appendix B).
- **FE system:** Suppose $u_h : \Omega \to V_h$ satisfies \mathbb{P} -a.s.

$$\int_{D} a(\mathbf{x},\omega) \nabla u_h(\mathbf{x},\omega) \cdot \nabla v_h(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int_{D} f(\mathbf{x},\omega) v_h(\mathbf{x}) \, \mathrm{d}\mathbf{x} \quad \forall v_h \in V_h \,.$$
(7.4)

• Since V_h is a closed subspace of $H_0^1(D)$ with norm $|\cdot|_{H^1(D)}$ all the above results hold in an identical form also for u_h :

Theorem 7.4

The results about solvability and summability, as well as the norm bounds in Theorems 7.1 and 7.3 hold under the same assumptions on a and f also for (7.4) and its solution u_h .

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods

Penn State '21 20/68

H^2 Regularity Assumption & Error Analysis

The regularity assumption, which is necessary to bound the finite element error (cf. Assumption 2 in Appendix B), is again made only realization-wise.

Assumption 2

For almost all $\omega \in \Omega$, there exists a constant $C_2(\omega) > 0$ such that, for every $f(\cdot, \omega) \in L^2(D)$, we have $u(\cdot, \omega) \in H^2(D)$ and

 $|u(\cdot,\omega)|_{H^2(D)} \leq \frac{C_2(\omega)}{\|f(\cdot,\omega)\|_{L^2(D)}}.$

- For Assumption 2 to hold, it suffices that D is convex, $a(\cdot, \omega)$ is Lipschitz continuous and Assumption 1 holds.
- A careful derivation how $C_2(\omega)$ depends on $||a(\cdot, \omega)||_{C^{0,1}(D)}, a_{\min}(\omega), a_{\max}(\omega)$ can be found in [Charrier, **RS**, Teckentrup, *SIAM J Num Anal*, 2013].
- In particular, it is shown there that for lognormal a with Matérn covariance, we have C₂ ∈ L^p(Ω; ℝ) for all p < ∞.

The constant C in the interpolation result on Slide 84 of Appendix B is independent of ω .

Finite Element Convergence Results

Theorem 7.5 (Deterministic or L^{∞} RHS)

Let Assumptions 1 and 2 hold, and let $V^h
ightarrow H_0^1(D)$ be the space of piecewise linear FEs with respect to a shape-regular triangulation \mathscr{T}_h (see Appendix B). Furthermore, suppose that $f \in L^{\infty}(\Omega; L^2(D))$ (in particular includes deterministic f), $a_{\min}^{-1/2} a_{\max}^{1/2} \in L^q(\Omega; \mathbb{R})$ and $C_2 \in L^r(\Omega; \mathbb{R})$ with $q, r \in [1, \infty]$ s.t. $\frac{1}{p} = \frac{1}{q} + \frac{1}{r} \leq 1$, then

$$||u - u_h||_{L^p(\Omega; H^1_0(D))} \le ch||f||_{L^\infty(\Omega; L^2(D))}.$$

Proof. Demonstrated on tablet.

- The general case of $f \in L^r(\Omega; L^2(D))$, $r < \infty$ can be proved similarly.
- Via duality arguments it is possible to show faster convergence in the (spatial) $L^2(D)$ -norm and for suff. smooth functionals G(u) on $H_0^1(D)$, i.e.

 $||u - u_h||_{L^p(\Omega; L^2(D))} = \mathcal{O}(h^2) \text{ and } ||G(u) - G(u_h)||_{L^p(\Omega; \mathbb{R})} = \mathcal{O}(h^2).$ (7.5)

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods

Penn State '21 22/68

Monte Carlo Finite Element Method

- Our goal now is to use the MC method to estimate a quantity of interest that depends on the (random) solution u. This could be the mean E [u(x, ·)], the variance Var[u(x, ·)] or the expected value of a functional G(u).
- Consider N i.i.d. realizations $a^{(j)} = a(\cdot, \omega_j)$ and $f^{(j)} = f(\cdot, \omega_j)$ and let $u^{(j)} = u(\cdot, \omega_j) \in H^1_0(D)$ and $u^{(j)}_h = u_h(\cdot, \omega_j) \in V_h$ be the associated unique solution and its FE approximation, respectively.
- Compute the $(H_0^1(D)$ -valued) MC estimates

$$\overline{u}_{h,N} := \frac{1}{N} \sum_{j=1}^{N} u_h^{(j)}, \quad s_{h,N}^2 := \frac{1}{N-1} \sum_{j=1}^{N} \left(u_h^{(j)} - \overline{u}_{h,N} \right)^2,$$

and the (scalar-valued) estimate

$$\widehat{Q}_{h,N} := \frac{1}{N} \sum_{j=1}^{N} G(u_h^{(j)}),$$

for Q := G(u) with $G : H^1_0(D) \to \mathbb{R}$ bounded or Fréchet differentiable.

• To estimate the complexity of these estimators we can use the abstract Theorem 5.1. We simply have to verify Assumptions (5.1) and (5.2).

Let us first consider **Assumption** (5.1):

• For a scalar functional Q = G(u) with $G : H_0^1(D) \to \mathbb{R}$ suff. smooth, using Jensen's inequality (Thm. A.20), it follows from (7.5) that

 $|\mathbb{E}[Q - Q_h]| \le \mathbb{E}[|G(u) - G(u_h)|] = \mathcal{O}(h^2).$

Thus, Assumption (5.1) holds with $\alpha = 2$.

• For $Q = u \in H_0^1(D)$, measuring the bias error in $|\cdot|_{H^1(D)}$, we get again using Jensen's inequality (noting that norms are convex functions) and Theorem 7.5 that

$$|\mathbb{E}[u-u_h]|_{H^1(D)} \le \mathbb{E}\big[|u-u_h|_{H^1(D)}\big] = \mathcal{O}(h).$$

Thus in that case, Assumption (5.1) holds with $\alpha = 1$.

Next consider Assumption (5.2):

- If the meshes \mathscr{T}_h are (quasi-)uniform (not only shape-regular), then the number of unknowns M_h in the resulting FE system (B.8) satisfies $M_h = \mathcal{O}(h^{-d})$.
- Using a multigrid iterative method it is possible to solve the FE system (B.8) in linear complexity, i.e.

$$\operatorname{Cost}(Q_h^j) = \mathcal{O}(M_h) = \mathcal{O}(h^{-d}).$$

Thus, Assumption (5.2) holds with $\gamma = d$.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods Penn State '21 24/68

Monte Carlo Finite Element Complexity Result

Corollary 7.6

Consider the Monte Carlo FE method with p.w. linear FEs applied to the elliptic BVP (7.1) in \mathbb{R}^d to estimate $\mathbb{E}[u]$ or $\mathbb{E}[G(u)]$, with $G: H_0^1(D) \to \mathbb{R}$ suff. smooth. For any $\varepsilon > 0$ and $\theta \in (0, 1)$ there exist h > 0, $N \in \mathbb{N}$, such that

$$\begin{array}{l} \text{Case } Q = G(u) \colon \|\mathbb{E}\left[Q\right] - \widehat{Q}_{h,N}\|_{L^{2}(\Omega;\mathbb{R})} < \varepsilon \text{ or } \mathbb{P}\{|\mathbb{E}\left[Q\right] - \widehat{Q}_{h,N}| < \varepsilon\} > \theta \text{ and} \\ \\ \hline \text{Cost}(\widehat{Q}_{h,N}) \ = \ \mathcal{O}(\varepsilon^{-2-d/2}). \end{array}$$

$$\begin{array}{ll} \textit{Case } Q = u \colon \|\mathbb{E}\left[u\right] - \overline{u}_{h,N}\|_{L^{2}(\Omega; H^{1}_{0}(D))} < \varepsilon \textit{ or } \mathbb{P}\{|\mathbb{E}\left[u\right] - \overline{u}_{h,N}|_{H^{1}(D)} < \varepsilon\} > \theta \\ \textit{and} \\ \textit{Cost}(\overline{u}_{h,N}) = \mathcal{O}(\varepsilon^{-2-d}). \end{array}$$

Proof. For Q = G(u), we can simply apply Theorem 5.1 with $\alpha = 2$ and $\gamma = d$.

For Q = u, the bias-variance decomposition also works in the $|\cdot|_{H^1(D)}$ -norm (both in mean squared and in probability). To bound the sampling error, we only require square-summability of $u_h : \Omega \to H^1_0(D)$, which is guaranteed by Theorem 7.4 (under suitable conditions on a and f).

Multilevel Acceleration

- Especially in 2D or 3D this is a very high complexity, but it is straightforward again to accelerate the Monte Carlo FE method via a **multilevel approach**.
- Consider a hierarchy of FE meshes \$\mathcal{T}_0, \ldots, \$\mathcal{T}_L\$, for simplicity using uniform grid refinement of an (arbitrary) coarsest grid \$\mathcal{T}_0\$, i.e. \$h_{\ell} = h_{\ell-1}/2\$ (m = 2) (These grids are also needed in the MG solver assumed above, so no extra overhead!)
- We now use the **abstract complexity theorem**, Theorem 5.2, to estimate the complexity of a multilevel MC-FE estimator for (7.1).
- Assumptions (M1) and (M3) in Theorem 5.2 have already been verified above. So it only remains to prove Assumption (M2).
- For scalar (smooth) Q := G(u), using (7.5)

 $\begin{aligned} \operatorname{Var}\left[Y_{\ell}\right] &\leq \mathbb{E}\left[\left(Q_{\ell} - Q_{\ell-1}\right)^{2}\right] \\ &\leq 2\mathbb{E}\left[\left(G(u) - G(u_{h_{\ell}})\right)^{2}\right] + 2\mathbb{E}\left[\left(G(u) - G(u_{h_{\ell-1}})\right)^{2}\right] = \mathcal{O}(h_{\ell}^{4}) \end{aligned}$

Thus, Assumption (M2) in Theorem 5.2 holds with $\beta = 4$.

• For Q := u we can show similarly that $\beta = 2$.

Scheichl (Heidelberg)	Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods	Penn State '21 26/68

Grid & Model Hierarchy for Elliptic BVP

Have not really discussed how to sample the field or how to also change the truncation dimension across the levels.

0

Multilevel Complexity Theorem for the Elliptic BVP

Corollary 7.7 (Case of scalar functional Q := G(u))

Consider the Multilevel Monte Carlo FE method with p.w. linear FEs (uniform refinement) applied to the elliptic BVP (7.1) in \mathbb{R}^d to estimate $\mathbb{E}[G(u)]$, with $G: H_0^1(D) \to \mathbb{R}$ suff. smooth. For any $0 < \varepsilon < \exp(-1)$ and $\theta \in (0,1)$ there exist $L, N_{\ell} \in \mathbb{N}$, such that $\|\mathbb{E}[Q] - \widehat{Q}_{L}^{ML}\|_{L^{2}(\Omega;\mathbb{R})} < \varepsilon$ or $\mathbb{P}\{|\mathbb{E}[Q] - \widehat{Q}_{L}^{ML}| < \varepsilon\} > \theta$ and

 $Cost(\widehat{Q}_{L}^{ML}) = \mathcal{O}(\varepsilon^{-2}).$

- For Q = u (see above), for less smooth functionals, or for less smooth data, we often obtain only $\alpha = 1$ and $\beta = 2$, so that for d = 2, 3 the other regimes in the MLMC complexity theorem become important.
- Also, for rough coefficients often only $\gamma > d$ is possible (even with a MG solver).
- Thus, we can make the following very important observation (for d = 2, 3):

Optimality of MLMC (for $\gamma > \beta = 2\alpha$)

In that case, the MLMC cost is asymptotically the same as **one deterministic** solve to accuracy ε , i.e. $\operatorname{Cost}(\widehat{Q}_L^{\mathsf{ML}}) = \mathcal{O}(\varepsilon^{-2-(\gamma-\beta)/\alpha}) = \mathcal{O}(\varepsilon^{-\gamma/\alpha}) !!$

Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods Scheichl (Heidelberg) Penn State '21 28/68

Comparison of Complexities

We compare MLMC-FE and MC-FE for (7.1) in the two regimes discussed above:

Case $\alpha = 2$, $\beta = 4$, $\gamma = d$:

d	MC	MLMC	Gain	One Sample Q_L^j
1	$\mathcal{O}(\varepsilon^{-5/2})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-1/2})$	$\mathcal{O}(arepsilon^{-1/2})$
2	$\mathcal{O}(\varepsilon^{-3})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-1})$	$\mathcal{O}(\varepsilon^{-1})$
3	$\mathcal{O}(\varepsilon^{-7/2})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-3/2})$	$\mathcal{O}(arepsilon^{-3/2})$

Case $\alpha = 1$, $\beta = 2$, $\gamma = d$:

d	MC	MLMC	Gain	One Sample Q_L^j
1	$\mathcal{O}(\varepsilon^{-3})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-1})$	$\mathcal{O}(\varepsilon^{-1})$
2	$\mathcal{O}(\varepsilon^{-4})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-2})$
3	$\mathcal{O}(\varepsilon^{-5})$	$\mathcal{O}(arepsilon^{-3})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(arepsilon^{-3})$

(ignoring log-factors)

Can we achieve such huge gains in practice?

Multilevel MC-FE Method for Radioactive Waste Disposal Problem $D = (0,1)^2$; lognormal a w. exponential covariance; $Q = ||u||_{L_2(D)}$; p.w. linear FE

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor, 3.2GByte RAM, with sparse direct solver, i.e. $\gamma \approx 2.4$

```
Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods Penn State '21 30/68
```

Verifying Assumptions in Complexity Theorem Numerically

Lognormal a with exponential covariance (i.e. $\nu = 1/2$). $\sigma^2 = 1$ and $\lambda = 0.3$. moment of outflow Expected value of error in outflow 10 10 Variance of difference in second 10 10 10 10 10⁻⁸ 10 10 10 10 10 10 10 1/ŀ 1/h $\left|\mathbb{E}[G_1(u) - G_1(u_h)]\right|$ $\mathbb{V}\left[G_2(u_h) - G_2(u_{2h})\right]$ where, given $\Psi(x) = x$, where $G_2(u) := \left(\frac{1}{|D^*|} \int_{D^*} u(x) \, \mathrm{d}x\right)^2$ $G_1(u) := (f, \Psi)_{L^2(D)} - (a\nabla u, \nabla \Psi)_{L^2(D)}$ (average flow through D). (i.e. 2nd moment of u over patch D^*) lpha=1 and eta=2Can be proved rigorously! [Teckentrup, RS Giles, Ullmann, Numer Math 125, 2013]

Smoother Coefficients & Outlook to Multilevel QMC

For QMC using a randomised lattice rule with product weights $\gamma_j = 1/j^2$.

[Kuo, RS, Schwab, Sloan, Ullmann, Math Comput 86, 2017]

Penn State '21 32/68 Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods

Further Reading on Multilevel Monte Carlo

• Analysis simplifies considerably for uniformly bounded, affine coefficients, i.e.,

 $0 < a_{\min} = ext{const} < a(\mathbf{x}, \omega) < a_{\max} = ext{const} < \infty$ $\mathbb{P}-a.s.$

- Barth, Schwab & Zollinger, Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients, Numer Math 119, 2011
- The MLMC-FE method has been applied to many other PDEs. For a comprehensive list see Mike Giles' MLMC Community Webpage
 - http://people.maths.ox.ac.uk/~gilesm/mlmc_community.html
- Particular current interest in adaptive FEs and sample-adaptive hierarchies:
 - Kornhuber & Youett, Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities, SIAM J Numer Anal 56, 2018
 - Detommaso, Dodwell & RS, Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies, SIAM/ASA J Uncertain Q 7, 2019
- In the latter, we have also extended the concept of MLMC to allow for a continuous level parameter ℓ .

Other Multilevel Quadrature Methods in UQ

- As stated above, it is not essential to use Monte Carlo estimators to estimate the contributions $\mathbb{E}[Y_{\ell}]$ from each level.
- Multilevel quasi-Monte Carlo uses quasi-MC quadrature rules, i.e. special deterministic point sets (can be unbiased through randomisation):
 - ▶ Kuo, Schwab & Sloan, Multi-level guasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients, Found Comput Math 15, 2015
 - Dick, Kuo, Le Gia & Schwab, Multilevel higher order QMC Petrov–Galerkin discretization for affine parametric operator equations, SIAM J Numer Anal 54, 2016
 - Kuo, RS, Schwab, Sloan & Ullmann, Multilevel guasi-Monte Carlo methods for lognormal diffusion problems, Math Comput 86, 2017

with rigorous theory proving almost $\mathcal{O}(\varepsilon^{-1})$ complexity (or better).

- Multilevel sparse grid approximation/quadrature uses sparse grid polynomial quadrature rules, with rigorous complexity theory:
 - ► Teckentrup, Jantsch, Webster & Gunzburger, A multilevel stochastic collocation method for PDEs with random input data, SIAM/ASA J Uncertain Q 3, 2015
 - Zech, Dung & Schwab, Multilevel approximation of parametric and stochastic PDEs, Math Mod Meth Appl Sci 29, 2019
 - Lang, RS & Silvester, A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data, J Comput Phys 419, 2020

Under strong regularity conditions allows significantly better complexity.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods Penn State '21 34/68

8. Conditioning on Data – Bayesian Inverse Problems

Inverse Problems

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 8. Bayesian Inverse Problems Penn State '21 36/68

Examples of Inverse Problems

٩	Deblurring a noisy image: y: image;		F: blurring operator
•	Seismic inversion y: reflected wave image;		F: wave equation
•	Computer tomography <i>y</i> : radial x-ray attenuation;	F:	line integral of absorption
٩	Weather forecasting y: satellite data, sparse indirect measurem.;		F: atmospheric flow
•	History matching in oil reservoir simulation <i>y</i> : well pressure/flow rates;	ו	F: subsurface flow
•	Predator-prey model y: state of $u_2(T)$;		F: dynamical system

Classically [Hadamard, 1923]: Inverse map " F^{-1} " $(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

Linear Inverse Problems & Least Squares

- Consider the linear forward operator F(x) = Ax from \mathbb{R}^s to \mathbb{R}^m with $A \in \mathbb{R}^{m \times s}$ and assume that $\eta \sim \mathrm{N}(0, s_\eta^2 I).$
- Least squares minimisation seeks "best" solution \hat{x} by minimising residual norm $\operatorname{argmin}_{x \in \mathbb{R}^s} \|y - Ax\|^2$
- In the case of full rank (for m > s), this actually leads to a unique map $\widehat{x} = (A^T A)^{-1} A^T y$

which also minimises the mean-square error $\mathbb{E}\left[\|\widehat{x}-x\|^2\right]$ and the covariance matrix $\mathbb{E}\left[(\widehat{x}-x)(\widehat{x}-x)^T\right]$ and satisfies

$$\mathbb{E}\left[\widehat{x}\right] = x \quad \text{and} \quad \mathbb{E}\left[(\widehat{x} - x)(\widehat{x} - x)^T\right] = s_\eta^2 (A^T A)^{-1}$$

Using singular value decomposition of $A^T A = U \Sigma V^T$ with $U = [u_1, ..., u_m]$, $V = [v_1, ..., v_n]$ unitary and $\Sigma = \mathsf{diag}(\sigma_1^2, \ldots, \sigma_m^2)$ we have in fact

$$\widehat{x} = \sum_{k=1}^{m} \frac{u_k^T y}{\sigma_k} v_k = x + \sum_{k=1}^{m} \frac{u_k^T \eta}{\sigma_k} v_k$$

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 8. Bayesian Inverse

Error Amplification & Tikhonov Regularisation

- In typical physical systems $\sigma_k \ll 1$, for $k \gg 1$, and so the "high frequency" components $u_k^T \eta$ in the error get amplified with $1/\sigma_k$.
- In addition, if m < s or if A is not full rank, then $A^T A$ is not invertible and so \widehat{x} is not unique (what is the physically best choice?)
- An approach that guarantees uniqueness of the least squares minimiser and prevents amplification of high frequency errors is *regularisation*, i.e solving instead

$$\underset{x \in \mathbb{R}^m}{\operatorname{argmin}} \ s_{\eta}^{-2} \|y - Ax\|^2 + \alpha \|x - x_0\|^2$$

 α is called the *regularisation parameter* and controls how much we trust the data or how much we trust the a priori knowledge about x.

• In general, with $\eta \sim \mathcal{N}(0, Q)$ and $F: H \to \mathbb{R}^m$ we solve

$$\underset{x \in H}{\operatorname{argmin}} \|y - F(x)\|_{Q^{-1}}^2 + \|x - x_0\|_{R^{-1}}^2$$

Penn State '21 38/68

Bayesian Interpretation (Conditional Parameter Distribution)

(Physical) model gives $\pi(y|x)$, the conditional probability of observing y given x, but to predict, control, optimise or to do UQ we are really interested in $\pi(x|y)$, the conditional probability of possible causes x given the observed data y.

Bayes' rule states:

$$\pi(x|y) = \frac{\pi(y|x)\pi(x)}{\pi(y)}$$

- $\pi(x) =$ prior density: what we know/believe about x prior to observing y
- $\pi(x|y) =$ **posterior density**: what we know about x after observing y
- $\pi(y|x) =$ **likelihood**: (physical) model or how likely it is to observe y given x
- $\pi(y) = \text{evidence}$: marginal of $\pi(x, y)$ over all possible x

(scaling factor that can be determined by normalisation)

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 8. Bayesian Inverse Problems Penn State '21 40/68

Link between Bayes' Rule and Tikhonov Regularisation

- Bayesian interpretation of the least squares solution \hat{x} , is to find the maximum likelihood estimate.
- Bayesian equivalent of the regularisation term is the prior distribution $\pi(x)$: for Tikhonov $x \sim N(x_0, R)$ (could be different distribution).
- Bayes interpretation of the regularised least squares solution is the maximum a posteriori (MAP) estimate. In the simple linear case it is

 $\widehat{x}^{\mathsf{MAP}} = (A^T A + \alpha s_n^2 I)^{-1} (A^T y + \alpha s_n^2 x_0)$

However, in the Bayesian setting, the **full posterior** contains **more information** than the MAP estimator alone, e.g. the posterior covariance matrix $P^{-1} = (A^T Q^{-1} A + R^{-1})^{-1}$ reveals more or less certain components of x...

• In the linear Gaussian case, posterior mean (MAP) and covariance matrix describe the entire distribution. What about general case? Can we do better?

Metropolis-Hastings Markov Chain Monte Carlo

YES. We can sample from the posterior distribution and/or compute posterior expectations $\mathbb{E}_{\pi(x|y)}[G(x)]$ using

- importance sampling
- rejection sampling
- variational inference methods
- filtering
- Markov chain Monte Carlo methods:

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^0 \in X$.
- At state n generate proposal $x' \in X$ from distribution $q(x' | x^n)$ (e.g. via a random walk $x' \sim N(x^n, \varepsilon^2 I)$)
- Accept x' as a sample and set $x^{n+1} = x'$ with probability

$$\boldsymbol{\alpha}(x'|x^{n}) = \min\left(1, \frac{\pi(x' \mid y) \, q(x^{n} \mid x')}{\pi(x^{n} \mid y) \, q(x' \mid x^{n})}\right)$$

Otherwise set $x^{n+1} = x^n$.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 8. Bayesian Inverse Problems Penn State '21 42/68

Links to what I have told you so far and to Machine Learning

- What does this all have to do with UQ?
- In context of what I said so far, we want to "condition" our uncertain models on information about input data (prior) and output data (likelihood).
- Again we have to distinguish whether we are interested
 - only in statistics about some Qol (quadrature w.r.t. the posterior) or
 - ▶ in the whole posterior distribution of the inputs and/or of the state
- Allows to **learn** something about a model parameter or physically relevant, derived quantity from noisy, indirect measurements.
- Outcome **crucially** depends on **choice of prior** (curse and blessing):
 - If nothing is known use non-informative prior!
 - If we have solid/complicated prior knowledge can use it!
- Updating prior belief given measured data. In that sense optimal and theoretically rigorous (**Bayes optimality**).
- Most importantly: can rigorously quantify uncertainties !

9. Model Problems & Markov Chain Monte Carlo

Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied so far that leads to a Bayesian UQ problem is:

- 1. Prior: $\mathbf{u}_0 \sim \mathrm{U}\left(\overline{\mathbf{u}}_0 + [-\delta, \delta]^2\right)$
- 2. **Data:** $y = u_2^{obs}$ at time T with measurement error $\eta \sim N(0, s_\eta^2)$
- 3. **Likelihood**: (with bias due to the numerical approximation of *F*):

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC

$$\pi_h(y|\mathbf{u}_0) \approx \exp\left(rac{-|y-u_{M,2}(\mathbf{u}_0)|^2}{s_\eta^2}
ight)$$

- 4. Posterior: $\pi_h(\mathbf{u}_0|y) \approx \pi_h(y|\mathbf{u}_0) \underbrace{\pi_{\mathsf{pr}}(\mathbf{u}_0)}_{=\mathsf{const}}$
- 5. Statistic: $\mathbb{E}_{\pi_h(\mathbf{u}_0|y)}[u_{M,1}(\mathbf{u}_0)]$ (\approx expected value of $u_1(T)$ under the posterior)

Depending on size of s_{η}^2 uncertainty in expected value of $u_1(T)$ is vastly reduced. (can be computed, e.g., with Metropolis-Hastings MCMC).

Penn State '21 44/68

Example 2: Deep Geological Disposal of Radioactive Waste

- Area where UQ has played central role in past 25 years.
- Deep geological disposal favoured by nearly all countries with a radioactive waste disposal programme.
- Storage in containers in tunnels, hundreds of meters deep in stable geological formations. No human intervention required after sealing repository.
- Several barriers: chemical, physical, geological.
- Ccontainment must be assured for at least 10,000 years.
- Main escape route for radionuclides: groundwater pathway.
- Assessing safety of potential sites of utmost importance long timescales \rightarrow modelling essential!
- Key aspect: How to quantify uncertainties in the models?

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC Penn State '21 46/68

WIPP – Waste Isolation Pilot Plant

- US DOE repository for radioactive waste situated near Carlsbad, NM. (Fully operational since 1999.)
- Extensive site characterisation and performance assessment since 1976, also in course of compliance certification and recertification by US EPA (every 5 years).
- Lots of publicly available data at http://www.wipp.energy.gov
- Repository located at 655m depth in bedded evaporites (mainly halite, a salt).
- Most transmissive rock layer in the region is the Culebra Dolomite: principal pathway for transport of radionuclides in the event of an accidental breach.

Groundwater Flow Model

Stationary Darcy flow	$\mathbf{q} = -K\nabla p$	\mathbf{q} : Darcy flux	
		K: hydraulic conductivity	
		p: hydraulic head	
mass conservation	$\nabla \cdot \mathbf{u} = 0$	${f u}$: pore velocity	
	$\mathbf{q} = \phi \mathbf{u}$	$\phi: ext{ porosity}$	
transmissivity	k = Kb	b: aquifer thickness	
particle transport	$\dot{\mathbf{x}}(t) = -\frac{\kappa(\mathbf{x})}{b\phi} \nabla p(\mathbf{x})$	\mathbf{x} : particle position	
	$\mathbf{x}(0) = \mathbf{x}_0$	\mathbf{x}_0 : release location	
Quantity of interest: \log_{10} of particle travel time to reach boundary			

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC Penn State '21 48/68

UQ Problem - PDE with Random Coefficient

Primal form of Darcy equations is our "fruit fly" with a = k and u = p:

 $-\nabla \cdot [a(\mathbf{x})\nabla u(\mathbf{x})] = 0, \quad \mathbf{x} \in D, \qquad u = u_0 \text{ along } \partial D.$

Model transmissivity as a random field (RF) $a = a(\mathbf{x}, \omega), \omega \in \Omega$, with respect to underlying probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

Modeling Assumptions (standard in 2D hydrogeology):

• finite mean and covariance

$$\overline{a}(\mathbf{x}) = \mathbb{E}\left[a(\mathbf{x}, \cdot)\right], \qquad \mathbf{x} \in D,$$
$$\mathbf{Cov}_a(\mathbf{x}, \mathbf{y}) = \mathbb{E}\left[\left(a(\mathbf{x}, \cdot) - \overline{a}(\mathbf{x})\right)\left(a(\mathbf{y}, \cdot) - \overline{a}(\mathbf{y})\right)\right], \qquad \mathbf{x}, \mathbf{y} \in D.$$

- *a* is lognormal, i.e., $Z(\mathbf{x}, \omega) := \log a(\mathbf{x}, \omega)$ is a Gaussian RF.
- Cov_Z is stationary and isotropic, i.e., $Cov_Z(\mathbf{x}, \mathbf{y}) = c(||\mathbf{x} \mathbf{y}||_2)$

Data for Radioactive Waste Example (WIPP)

Prior Model [Ernst et al, 2014]

$$\log a \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j^{\text{cond}}(x) \theta_j(\omega)$$
 with i.i.d. $\theta_j \sim N(0, 1)$

Karhunen-Loeve modes (j = 1, 2, 9, 16) conditioned on 38 transmissivity observations (via kriging (Gaussian process regression): a simple low-rank change to covariance operator)

Prior model: $\pi_{pr,s}(\theta)$ is the multivariate standard Gaussian density for $\theta \in \mathbb{R}^s$.

Data for Radioactive Waste Example (WIPP)

Likelihood Model [Ernst et al, 2014]

• Data *y* are pressure measurements.

• $F_h(\theta)$ is the model response.

Likelihood model: assuming Gaussian errors with covariance Σ

 $\pi_{h,s}(y|\boldsymbol{\theta}) \approx \exp(-\|y-F_h(\boldsymbol{\theta})\|_{\Sigma^{-1}}^2)$

Posterior through **Bayes' rule**: $\pi_{h,s}(\boldsymbol{\theta} \mid y) \approx \pi_{h,s}(y \mid \boldsymbol{\theta}) \pi_{pr,s}(\boldsymbol{\theta})$

Markov Chain Monte Carlo (Metropolis-Hastings Algorithm)

(for the discretised fruit fly problem)

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

- Choose $\theta^0 \in \mathbb{R}^s$.
- At state θ^n generate a $\theta' \in \mathbb{R}^s$ from the proposal distribution $q(\theta' | \theta^n)$ (e.g. basic or preconditioned Crank-Nicholson random walk [Cotter et al, 2012])
- Accept sample θ' and set $\theta^{n+1} = \theta'$ with probability

$$\boldsymbol{\alpha}_{h,s}(\boldsymbol{\theta}' \,|\, \boldsymbol{\theta}^n) = \min\left(1, \frac{\pi_{h,s}(\boldsymbol{\theta}' \,|\, y) \, q(\boldsymbol{\theta}^n \,|\, \boldsymbol{\theta}')}{\pi_{h,s}(\boldsymbol{\theta}^n \,|\, y) \, q(\boldsymbol{\theta}' \,|\, \boldsymbol{\theta}^n)}\right)$$

Otherwise $\theta^{n+1} = \theta^n$.

Samples $\theta^1, \ldots, \theta^N$ used as usual for inference (even though not i.i.d.):

$$\mathbb{E}_{\pi(\cdot|y)}\left[Q\right] \approx \mathbb{E}_{\pi_{h,s}(\cdot|y)}\left[Q_{h,s}\right] \approx \frac{1}{N} \sum_{i=1}^{N} Q_{h,s}^{(n)} =: \widehat{Q}^{\mathsf{M}\mathsf{H}}$$

where $Q_{h,s}^{(n)} = G(\boldsymbol{\theta}^n) = \Psi(u_h(\boldsymbol{\theta}^n))$ is *n*th sample of the QoI using Model(*h*, *s*).

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC Penn State '21 52/68

Markov Chain Monte Carlo Theory (for simplicity only finite dimensional)

Theorem 9.1 (Metropolis et al. 1953, Hastings 1970, ...)

The Markov chain simulated by the Metropolis-Hastings algorithm is reversible with respect to $\pi(\cdot|y)$. If we also have

$$\pi(x'|y) > 0 \implies q(x'|x^n), \text{ for all } n \in \mathbb{N}$$
$$\mathbb{P}(\alpha(x'|x^n) = 1) < 1, \text{ for all } n \in \mathbb{N},$$

then it defines a **geometrically ergodic** Markov chain with unique equilibrium density $\pi(\cdot|y)$ (for any initial state x^0) and the **Central Limit Theorem** gives

$$\sqrt{N} \left(\widehat{Q}^{\mathrm{MH}} - \mathbb{E}_{\pi(\cdot|y)}[G(X)] \right) \xrightarrow[N \to \infty]{d} \mathcal{N}(0, \sigma_G^2)$$
(9.1)

withasymptotic variance

$$\sigma_G^2 := \operatorname{Var}(G(X_1)) + 2\sum_{j=1}^{\infty} \operatorname{Cov} \left(G(X_1), G(X_{1+j}) \right).$$
(9.2)

Crudely speaking geometrically ergodic means that there exists an $r \in (0, 1)$ s.t. the TV-distance between the target distribution and the distribution of the *n*th state converges with $\mathcal{O}(r^{-n})$.

Markov Chain Monte Carlo

Comments in the context of our UQ problem

Pros:

- Produces a Markov chain $\{\Theta^n\}_{n\in\mathbb{N}}$ with $\Theta^n \sim \pi_{h,s}(\cdot|y)$ as $n \to \infty$.
- Can be made dimension independent (e.g. via pCN sampler).
- Therefore often referred to as "gold standard" (Stuart et al)

Cons:

- Evaluation of $\alpha_{h,s}(\theta'|\theta^n)$ very expensive for small h (cost/sample $\geq \mathcal{O}(h^{-d})$)
- Acceptance rate $\alpha_{h,s}$ can be very low for large s (< 10%)
- $\operatorname{Cost}(\widehat{Q}^{\mathsf{MH}}) = \mathcal{O}(\varepsilon^{-2-\frac{\gamma}{\alpha}})$ as above, **but** the constant is multiplied by the **integrated autorcorrelation time** (= relative asymptotic variance)

$$\tau_G := \frac{\sigma_G^2}{\mathsf{Var}(G(X_1))} = 1 + 2\sum_{j=1}^{\infty} \mathsf{Corr}\left(G(X_1), G(X_{1+j})\right)$$
(9.3)

(which depends on stepsize in q and on $\alpha_{h,s}$)

• In addition, require **burn-in** to reduce the initiation bias.

Prohibitively expensive – significantly worse than standard MC w. iid. samples! Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC Penn State 21 54/68

10. Multilevel Markov Chain Monte Carlo

Multilevel Markov Chain Monte Carlo – Idea

[Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015] & [Dodwell et al, SIAM Rev. 2019]

- What were the key ingredients of "standard" multilevel Monte Carlo?

 - ► Telescoping sum: E[Q_L] = E[Q₀] + ∑^L_{ℓ=1} E[Q_ℓ Q_{ℓ-1}]
 ► Models on coarser levels much cheaper to solve (h^{-d}₀ ≪ h^{-d}_L).
 - $\mathbb{V}[Q_{\ell} Q_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much fewer samples on finer levels.
- But Important! Now target distribution $\pi_{\ell} := \pi_{h_{\ell}, s_{\ell}}(\cdot | y)$ depends on ℓ :

$$\mathbb{E}_{\pi_{L}}\left[Q_{L}\right] = \underbrace{\mathbb{E}_{\pi_{0}}\left[Q_{0}\right]}_{\text{standard MCMC}} + \sum_{\ell} \underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell-1}}\left[Q_{\ell-1}\right]}_{\text{multilevel MCMC (NEW)}}$$

$$\widehat{Q}_{h,s}^{\text{mlmh}} := \frac{1}{N_0} \sum_{n=1}^{N_0} Q_0(\Theta_{0,0}^n) + \sum_{\ell=1}^L \frac{1}{N_\ell} \sum_{n=1}^{N_\ell} \left(Q_\ell(\Theta_{\ell,\ell}^n) - Q_{\ell-1}(\Theta_{\ell,\ell-1}^n) \right)$$

with **correlated** Markov chains $\{\Theta_{\ell,\ell-1}^n\}$ and $\{\Theta_{\ell,\ell}^n\}$ (see below).

• For simplicity we describe only the case $s_{\ell} = s_{\ell-1} = \ldots = s_0$. (In practice, useful to reduce also number $s_{\ell-1}$ of random parameters on coarser levels.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 10. Multilevel MCMC Penn State '21 56/68

Multilevel Markov Chain Monte Carlo – Algorithm

Choose subsampling rates $t_0, \ldots, t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{j=k}^{\ell-1} t_j$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n, \ldots, \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $k = 0, \ldots, \ell$.

1. k = 0: Set $\mathbf{x}_0^0 := \boldsymbol{\theta}_{\ell,0}^n$. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples $\mathbf{x}_0^i \sim \pi_0$, $i = 1, \dots, T_{\ell,0}$. Set $\boldsymbol{\theta}_{\ell,0}^{n+1} := \mathbf{x}_0^{T_{\ell,0}}$.

2. k > 0: Set $\mathbf{x}_k^0 := \boldsymbol{\theta}_{\ell,k}^n$. Generate samples $\mathbf{x}_k^i \sim \pi_k$, $i = 1, \dots, T_{\ell,k}$ as follows:

(a) Propose $\mathbf{x}'_{k} = \mathbf{x}^{(i+1)t_{k-1}}_{k-1}$

Subsample to reduce correlation!

(b) Accept \mathbf{x}'_k and set $\mathbf{x}^{i+1}_k = \mathbf{x}'_k$ with probability

 $\boldsymbol{\alpha}_{k}^{\mathsf{ML}}(\mathbf{x}_{k}'|\mathbf{x}_{k}^{i}) = \min\left(1, \frac{\pi_{k}(\mathbf{x}_{k}')\pi_{k-1}(\mathbf{x}_{k}^{n})}{\pi_{k}(\mathbf{x}_{k}^{n})\pi_{k-1}(\mathbf{x}_{k}')}\right) \quad \text{[JS Liu, 2001]}$

Otherwise set $\mathbf{x}_{k}^{i+1} = \mathbf{x}_{k}^{i}$.

(c) Set
$$\boldsymbol{\theta}_{\ell,k}^{n+1} := \mathbf{x}_k^{T_{\ell,k}}$$
 with $T_{\ell,k} := \prod_{j=k}^{\ell-1} t_j$.

3. Set
$$Y_{\ell}^n := Q_{\ell}(\boldsymbol{\theta}_{\ell,\ell}^n) - Q_{\ell-1}(\boldsymbol{\theta}_{\ell,\ell-1}^n).$$

MLMCMC – Comments

- Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k=0,\ldots,\ell$, is a Markov chain with $\Theta_{\ell,k}^n\sim\pi_k$ as $n\to\infty$ and $t_{\ell} \to \infty$.
- Theoretically need $t_\ell
 ightarrow \infty$ to guarantee **consistency** of multilevel algorithm (no bias between levels)
- In practice, it suffices to choose $t_{\ell} \approx C \tau_{G,\ell}$ with C = 1 or 2.
- States may differ between level ℓ and $\ell 1$:

State $n+1$	Level $\ell - 1$	Level ℓ
accept on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$
reject on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell}^n$

but this does not happen often for larger ℓ since acceptance probability $\alpha_{\ell}^{\mathsf{ML}} \stackrel{\ell \to \infty}{\longrightarrow} 1$.

Lemma 10.1 (Dodwell, Ketelsen, RS, Teckentrup, '15)

$$\mathbb{E}_{\pi_{\ell},\pi_{\ell}} \left[1 - \boldsymbol{\alpha}_{\ell}^{ML}(\cdot|\cdot) \right] = \mathcal{O} \left(\mathbb{E}_{\pi_{\boldsymbol{pr}}} \left[|F(\boldsymbol{\theta}) - F_{\ell}(\boldsymbol{\theta})| \right] \right) = \mathcal{O}(h_{\ell}^{\alpha})$$

• Note that this also implies $\tau_{G,\ell} \stackrel{\ell \to \infty}{\longrightarrow} 1$.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 10. Multilevel

Complexity Theorem for Multilevel MCMC (Dodwell et al. '15) Suppose there are constants $lpha,eta,\gamma,\eta>0$ such that, for all $\ell=0,\ldots,L$, **M1** $\left| \mathbb{E}_{\pi_{\ell}}[Q_{\ell}] - \mathbb{E}_{\pi(\cdot|y)}[Q] \right| = \mathcal{O}(h_{\ell}^{\alpha})$ (discretisation and truncation error) $\mathbf{M2' Var}_{\mathsf{alg}}[\widehat{Y}_{\ell}] + \left(\mathbb{E}_{\mathsf{alg}}[\widehat{Y}_{\ell}] - \mathbb{E}_{\pi_{\ell},\pi_{\ell-1}}[\widehat{Y}_{\ell}]\right)^2 = \mathbf{Var}_{\pi_{\ell},\pi_{\ell-1}}[Y_{\ell}] \mathcal{O}(N_{\ell}^{-1}) \text{ (MCMC-error)}$ M2 Var $_{\pi_{\ell},\pi_{\ell-1}}[Y_{\ell}] = \mathcal{O}(h_{\ell}^{\beta})$ (multilevel variance decay) **M3** Cost $(\widehat{Y}_{\ell}^{\mathsf{MC}}) = \mathcal{O}(N_{\ell} h_{\ell}^{-\gamma}).$ (cost per sample) Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ s.t. MSE $< \varepsilon^2$ and $\mathcal{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMH}}) = \mathcal{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) \quad (+ \text{ log-factor when } \beta = \gamma)$ (This is totally abstract & applies not only to our subsurface model problem!)

- Proof of Assumptions M1 and M3 similar to i.i.d. case.
- M2' not specific to multilevel MCMC; first steps in [Hairer, Stuart, Vollmer, '11].

Proof of Assumption M2 for lognormal diffusion & linear FEs (Dodwell et al '15)

$$\mathsf{Var}_{\pi_{\ell},\pi_{\ell-1}}\left[Q_{\ell}(\Theta_{\ell,\ell}^{n}) - Q_{\ell-1}(\Theta_{\ell,\ell-1}^{n})\right] = \mathcal{O}(h_{\ell}^{\alpha}) \quad (\text{unfortunately } \beta = \alpha \text{ not } 2\alpha)$$

More Comments – Related Literature

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- Subsampling essential (exact only in limit of infinite subsampling), but small bias for sampling rates with C = 1 or 2.
- New ("multiplicative") version: Current work with Colin Fox (Otago, NZ).
- Algorithm 2 is a special case of a surrogate transition method [Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]
- and of delayed acceptance Metropolis-Hastings [Christen, Fox, '05]

But crucially exploiting variance reduction & proved rates in MLMCMC are new!

(Corollaries on adaptive error estimates using the Markov chains, current work with Colin Fox)

- Other references on related **mutilevel Monte Carlo methods** recently developed for Bayesian inverse problems:
 - Hoang, Schwab & Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Prob 29, 2013
 - Beskos, Jasra, Law & Zhou, Multilevel sequential Monte Carlo samplers, Stoch Proc Appl 127, 2017

```
Scheichl (Heidelberg)
                           Multilevel Monte Carlo Methods / Part II / 10. Multilevel MCMC
```

Penn State '21 60/68

Numerical Example

Fruit fly (2D lognormal diffusion) on $D = (0, 1)^2$ with linear FEs

- **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$. i.e. $\mathbb{E}[Z(x)Z(x')] = \sigma^2 e^{-\frac{|x-x'|}{\lambda} - \frac{|y-y'|}{\lambda}}$
- "Data" y: Pressure at 16 points $x_i^* \in D$ and covariance $\Sigma = 10^{-4}I$.

Numerical Example

Quantity of interest: $Q = \int_0^1 k \nabla p \, dx_2$; coarsest mesh size: $h_0 = \frac{1}{9}$

• 5-level method with #KL modes increasing from $s_0 = 50$ to $s_4 = 150$

Choice of Proposal Distribution

Multilevel DILI (recent preprint with T Cui & G Detommaso)

- So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]
- **Problem:** Dimension independent but very high IACT for $s \to \infty$! $\tau_0 \approx 136$ above, i.e. need 136 samples to obtain one independent sample!!
- However, can use any other proposal (e.g. MALA, stochastic Newton)
- DILI MCMC [Cui, Law, Marzouk, '16]: (DILI = dimension-independent likelihood-informed) samples from preconditioned Langevin equation using low-rank approximation of data-misfit Hessian at some points (incl. MAP point)
- New multilevel construction of DILI (with T Cui and G Detommaso) ...

Cui, Detommaso, RS, Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems, submitted, 2019 [arXiv:1910.12431]

Testing on a Much Harder Example

Top/bottom: zero Neumann b.c.; left/right: Dirichlet b.c. zero/one, respectively.

Gaussian process prior for $z = \log a$ with covariance fct. $k(x, x') = \exp(-5|x - x'|)$ 71 sensors; signal to noise ratio 50.

Qol: $Q^{(\text{flux})} = \text{average flux over the left boundary}$

Scheichl (Heidelberg)	Multilevel Monte Carlo Methods	/ Part II / 10. Multilevel MCMC

Penn State '21 64/68

Numerical Comparison: IACTs & CPU Times

Refined parameters

Key References for Multilevel Bayesian Inference

- 1. JS Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, NY, 2001
- 2. JA Christen & C Fox, MCMC using an approximation, J Comput Graph Statist 14, 2005
- 3. VH Hoang, C Schwab & AM Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Prob. 29, 2013
- 4. TJ Dodwell, C Ketelsen, RS & AL Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J Uncertain Quant 3, 2015
- 5. RS, AM Stuart, and AL Teckentrup, Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems, SIAM/ASA J Uncertain Quantif 5, 2017
- 6. A Beskos, A Jasra, KJH Law & Y Zhou, Multilevel sequential Monte Carlo samplers, Stoch Proc Appl **127**, 2017
- 7. TJ Dodwell, C Ketelsen, RS & AL Teckentrup, Multilevel Markov chain Monte Carlo, SIAM Review (SIGEST) 61, 2019
- 8. MB Lykkegaard, G Mingas, RS, C Fox & TJ Dodwell, Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3, to appear in NeurIPS 2020
- 9. T Cui, G Detommaso & RS, Multilevel dimension-independent likelihood- Informed MCMC for large-scale inverse problems, submitted [arXiv:1910.12431]

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 10. Multilevel MCMC

Penn State '21 66/68

11. Conclusions

Conclusions

- I hope the course gave you a basic understanding of the questions & challenges in modern uncertainty quantification.
- The focus of the course was on the design of computationally tractable and efficient multilevel Monte Carlo methods for high-dimensional and large-scale UQ problems in science and engineering.
- Of course it was only possible to give you a snapshot of the methods and we went over some parts too quickly.
- Finally, I apologise that the course was of course also strongly biased in the direction of my research and my expertise and was probably not doing some other methods enough justice.
- But I hope I managed to interest you in the subject and persuade you of the huge potential of multilevel sampling methods.

Scheichl (Heidelberg)

Multilevel Monte Carlo Methods / Part II / 11. Conclusions

Penn State '21 68/68