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6. Random Fields
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Model Elliptic PDE & Random Fields
We return to our model elliptic boundary value problem. In particular, we consider

�r·(aru) = f, on D ⇢ Rd
, u|@D = 0, (6.1)

where a and f are random fields defined on D.

Definition 6.1

Let D ⇢ Rd, d 2 N, and let (⌦,A,P) be a probability space (see Appendix A). A
(real-valued) random field is a mapping

a : D ⇥ ⌦! R

such that each function a(x, ·) : ⌦! R, x 2 D, is a random variable.

Definition 6.2

For each fixed ! 2 ⌦ the associated function a(·,!) : D ! R is called a
realization of the random field.

Let RD
denote the set of all real-valued functions f : D ! R. The mapping ! 7! a(·,!) from

(⌦,A) to (RD,A(RD)) is measurable and hence a random variable with values in RD
.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 6. Random Fields Penn State ’21 4/68



Second-order and Gaussian Random Fields

Similar to a random vector or stochastic process, a random field is a family of
random variables indexed by a parameter. Instead of an ordered parameter set
(e.g. N or R+

0
), for random fields the parameter is a spatial coordinate.

Definition 6.3

A random field a on D ⇢ Rd is said to be of second order if for all x 2 D there
holds a(x, ·) 2 L

2(⌦;R) (see Appendix A). We say a second-order random field a

has mean function a(x) := E [a(x, ·)] and covariance function

c(x,y) := Cov(a(x, ·), a(y, ·)), x,y 2 D.

A sufficient and necessary condition is that c(x,y) is symmetric and positive semidefinite.

Definition 6.4

A random field on D ⇢ Rd is called Gaussian if, for any n 2 N and for any
x1, . . . ,xn 2 D, the random vector [a(x1, ·), . . . , a(xn, ·)] follows an n-variate
normal distribution. It is uniquely determined by its mean and covariance function.
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Random Fields in L
2(D) – Karhunen-Loève Expansion

Let a be a 2nd-order random field on D ⇢ Rd with mean a. Then the centred field
a� a can be expanded in any complete orthonormal system { m}m2N of L2(D).

The Karhunen-Loève expansion of a results from choosing as a particular CONS
the eigenfunctions of the covariance operator C : L2(D) ! L

2(D) of a, given by

(Cu)(x) =

Z

D

u(y)c(x,y) dy, x 2 D. (6.2)

Theorem 6.5 (Karhunen-Loève (KL) Expansion)

Let a 2 L
2(⌦;L2(D)) (see Appendix A) with mean function a(x) and denote by

(�m, am)m2N, kamkL2(D) = 1, the sequence of eigenpairs of the covariance

operator C in descending order. Then

a(x,!) = a(x) +
1X

m=1

p
�m am(x) ⇠m(!), (6.3)

where the random variables ⇠m(!) = 1p
�m

(a(·,!)� a, am)L2(D) have mean zero,

unit variance and are pairwise uncorrelated. The series converges in L
2(⌦;L2(D)).

If the random field is, in addition, Gaussian, then ⇠m ⇠ N(0, 1) are i.i.d.
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One-Dimensional Example [Ghanem & Spanos, 1991]

Example. For d = 1, D = [�1, 1] and the exponential covariance function

c(x, y) = e
�|x�y|

` , ` > 0,

the eigenvalues of the associated covariance operator are given by

�m =
2`

`2!2
m
+ 1

, (m even), �m =
2`

`2!̃2
m
+ 1

, (m odd)

where !m and !̃m denote the solutions of the transcendental equations

1� !` tan(!) = 0 and !̃`+ tan(!̃) = 0, respectively.

The associated eigenfunctions are given by

fm(x) =
q

2!m
1+sin(2!m)

cos(!mx), f̃m(x) =
q

2!̃m
1+sin(2!̃m)

sin(!̃mx).

However, in general it is not possible to compute the KL-expansion analytically.
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Practical Application – Truncated KL Expansion
The KL expansion suggests a convenient approach for approximating a
random field to a specified accuracy by truncation:

a(x,!) ⇡ as(x,!) := a(x) +
sX

m=1

p
�m am(x) ⇠m(!). (6.4)

The truncated RF as has the same mean as a and the covariance function

cs(x,y) =
sX

m=1

�mam(x)am(y), x,y 2 D , (6.5)

converges uniformly to c as S ! 1.

For the variance of the truncated KL expansion, we have DIY

Var(a(x, ·))� Var(as(x, ·)) =
1P

m=s+1

�mam(x)2 � 0.

Hence, as always underestimates the variance of a. Moreover, this implies

ka� ask
2

L2(⌦;L2(D))
=

1P
m=s+1

�m =

Z

D

Var a(x) dx�

sP
m=1

�m ,

i.e. the truncation error in L
2(⌦;L2(D)) is explicitly computable.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 6. Random Fields Penn State ’21 8/68



Stationary and Isotropic Random Fields

Definition 6.6

(a) A random field a is stationary or homogeneous if it is invariant under
translation, i.e. if the multivariate distributions of (a(x1, ·), . . . , a(xn, ·)) and
(a(x1 + h, ·), . . . , a(xn + h, ·)) are the same, for any x1, . . . ,xn and h.

(b) A stationary random field a is isotropic if its covariance function is invariant
under rotations, i.e.,

c(x,y) = c(r), r = kx� yk2.

Example (Isotropic Gaussian covariance).
A simple and widely used example of an isotropic covariance function is the
Gaussian covariance c(r) = �

2
e
�r

2
/⇢

2

, where �2 and ⇢ are two constants defining
the variance and the correlation length of the field.
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The Matérn Class
A family of isotropic covariance functions that is very popular in spatial statistics
or machine learning, is the Matérn class with covariance function given by

c(r) =
�
2

2⌫�1 �(⌫)

✓
2
p
⌫ r

⇢

◆⌫

K⌫

✓
2
p
⌫ r

⇢

◆
, r = kx� yk2, (6.6)

where
K⌫ is the modified (second-kind) Bessel function of order ⌫,
� denotes the Gamma-function,
⌫ is known as the smoothness parameter,
�
2 is the variance parameter,
⇢ is the correlation length parameter.

It contains exponential, Gaussian, as well as Bessel covariance functions as special cases:
⌫ = 1

2 : c(r) = �2 exp(�
p
2r/⇢) exponential covariance

⌫ = 1 : c(r) = �2
⇣

2r
⇢

⌘
K1

⇣
2r
⇢

⌘
Bessel covariance

⌫ ! 1 : c(r) = �2 exp(�r2/⇢2) Gaussian covariance
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The Matérn Class
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By reducing the correlation length ⇢ the Matérn covariance function can be
concentrated more strongly near r = 0.

By increasing the smoothness parameter ⌫ the Matérn covariance function
becomes smoother at r = 0. (It is analytic everywhere else.)

Flexible parametrisation allows its application to many statistical situations.
(Parameters may be estimated from observed data using statistical techniques.)
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Eigenvalue Decay for the Matérn Class
A result by H. Widom from 1963 allows us to analyse the decay rate of the
eigenvalues of the covariance operator of isotropic random fields:

Theorem 6.7 (Widom, 1963)

Let c = c(r) be the (isotropic) Matérn covariance function with parameters ⌫,�
2

and ⇢. Let D be a bounded domain in Rd
and let {�m}m2N denote the

(nonincreasing) eigenvalues of the covariance operator C given by (6.2).

�m h m
�(1+2⌫/d)

, for m ! 1.

Allows to estimate truncation error and thus dimensionality of the problem.

Rate of convergence of the eigenvalues is crucial to obtain dimension-
independent QMC and sparse grid quadrature and approximation results.

The (spatial) smoothness of realizations is also linked directly to the
parameter ⌫: in particular, a random field with Matérn covariance function is
k-times mean-square differentiable if and only if ⌫ > k.
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Asymptotic Eigenvalue Decay & Plateau (Matérn)

Before asymptotic decay sets in (rate determined by smoothness parameter ⌫), there is a
preasymptotic plateau. Its length is determined by the correlation length ⇢.
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Eigenvalue decay, Matérn covariance kernel, D = [�1, 1].
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 1/2, � = 1, ` = 0.5
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 1/2, � = 1, ` = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 3/2, � = 1, ` = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 5/2, � = 1, ` = 0.05
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Further Reading on Random Fields
KL expansion is widely used (especially in theoretical NA literature), but especially
for rough fields (e.g. ⌫ < 1), cost can grow very quickly.
For isotropic RF more efficient: circulant embedding and other FFT methods:

I Dietrich & Newsam, Fast and exact simulation of stationary Gaussian processes

through circulant embedding of the covariance matrix, SIAM J Sci Comput 18, 1997

I Graham, Kuo, Nuyens, RS & Sloan, Analysis of circulant embedding methods for

sampling stationary random fields, SIAM J Num Anal 56, 2018

I Bachmayr, Graham, Nguyen & RS, Unified analysis of periodization-based sampling

methods for Matérn covariances, Preprint arXiv:1905.13522, 2019

Exploiting a link between the inverse C
�1 of the covariance operator and

stochastic PDEs, e.g. Matérn fields a can be sampled by solving the sPDE

(2 ��)�a(x,!) =d
W(x,!) in Rd

,

where � is the Laplacian and W is Gaussian white noise on Rd.
(The parameters are related by ⌫ = 2� � d

2 , ⇢ = 2
p

⌫


and �2 = �2(,�).)

I Lindgren, Rue & Lindström, An explicit link between Gaussian fields and Gaussian

Markov random fields: the stochastic PDE approach, J Roy Statist Soc B 73, 2011

I Bolin, Kirchner, Kovács, Numerical solution of fractional elliptic stochastic PDEs with

spatial white noise, IMA J Num Anal 40, 2020

I Drzisga, Gmeiner, Rüde, RS & Wohlmuth, Scheduling massively parallel multigrid for

multilevel Monte Carlo methods, SIAM J Sci Comput 39, 2017
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7. Monte Carlo Finite Element Methods
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Elliptic Boundary Value Problems with Random Data
We return again to our model elliptic boundary value problem with random data

�r·(aru) = f, on D ⇢ Rd
, u|@D = 0, (7.1)

where a and f are random fields on D with respect to a probability space (⌦,A,P).

If f is random, we assume f(·,!) 2 L
2(D) for (almost) all ! 2 ⌦.

Could require coefficient a to satisfy Assumption 1 in Appendix B uniformly
to ensure existence & uniqueness of u(·,!) 2 H

1

0
(D) with k · k

H
1
0 (D) = | · |

H1(D).
But in many situations too restrictive! The following assumption suffices:

Assumption 1

For almost all ! 2 ⌦ (P-a.s.), realizations a(·,!) of the coefficient function a are

strictly positive and lie in L
1(D), i.e.

0 < amin(!)  a(x,!)  amax(!) < 1 almost everywhere (a.e.) in D, (7.2)

where

amin(!) := ess inf
x2D

a(x,!), amax(!) := ess sup
x2D

a(x,!). (7.3)
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Realization-Wise Solvability
For any realization ! for which Assumption 1 holds and f(·,!) 2 L

2(D), we may
apply the Lax-Milgram Lemma (Lemma B.5) and obtain a unique solution of (7.1).

Theorem 7.1

Let Assumption 1 hold and f(·,!) 2 L
2(D) P-a.s. Then (7.1) has a unique

solution u(·,!) 2 H
1

0
(D) and |u(·,!)|H1(D)  Ca

�1

min
(!)kf(·,!)kL2(D) P-a.s.

Recall Definition A.21, of Banach space-valued L
p-spaces over a probability space

(⌦,A,P) – so-called Bochner spaces. These spaces provide a generalisation of
standard Lebesgues spaces. A result that we will use throughout is:

Lemma 7.2 (Hölder’s Inequality)

Let p, q, r 2 [1,1] be such that
1

p
= 1

q
+ 1

r
. Then

kXY kLp(⌦,W )  kXkLq(⌦,W )kY kLr(⌦,W ) , for all X 2 L
q(⌦,W ), Y 2 L

r(⌦,W ).

Note that the case of q =1 is explicitly included; in that case p = r.

For p = 1 & q = r = 2, Hölder’s Inequality reduces to the Cauchy-Schwarz inequality.

The inequality holds over any measure space ⌦; in particular, also in standard Lebesgues spaces.
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Summability

The following theorem provides sufficient conditions for u to have finite p-th
moments, i.e., to lie in L

p(⌦;H1

0
(D)).

Theorem 7.3

Let Assumption 1 hold. Assume further that the mappings a : ⌦! L
1(D) and

f : ⌦! L
2(D) are measurable and that a

�1

min
2 L

q(⌦;R) for some q 2 [1,1].

(a) If f 2 L
2(D) deterministic (i.e. a degenerate constant RF), then

kukLp(⌦;H
1
0 (D))  Cka

�1

min
kLp(⌦;R)kfkL2(D) , for all p  q.

(b) If f 2 L
r(⌦;L2(D)) with r 2 [1,1] and

1

p
= 1

q
+ 1

r
 1, then

kukLp(⌦;H
1
0 (D))  Cka

�1

min
kLq(⌦;R)kfkLr(⌦;L2(D)).

Proof. Follows directly from Theorem 7.1 (using Hölder’s Inequality for Part (b)).
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Finite Element Discretization

Let Vh ⇢ H
1

0
(D) denote a closed subspace, e.g., the finite element (FE)

space of piecewise polynomial functions with respect to a triangulation Th

of D with mesh width h > 0 (see Appendix B).

FE system: Suppose uh : ⌦! Vh satisfies P-a.s.
Z

D

a(x,!)ruh(x,!) ·rvh(x) dx =

Z

D

f(x,!)vh(x) dx 8vh 2 Vh . (7.4)

Since Vh is a closed subspace of H1

0
(D) with norm | · |H1(D) all the above

results hold in an identical form also for uh:

Theorem 7.4

The results about solvability and summability, as well as the norm bounds in

Theorems 7.1 and 7.3 hold under the same assumptions on a and f also

for (7.4) and its solution uh.
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H
2 Regularity Assumption & Error Analysis

The regularity assumption, which is necessary to bound the finite element error
(cf. Assumption 2 in Appendix B), is again made only realization-wise.

Assumption 2

For almost all ! 2 ⌦, there exists a constant C2(!) > 0 such that, for every

f(·,!) 2 L
2(D), we have u(·,!) 2 H

2(D) and

|u(·,!)|H2(D)  C2(!)kf(·,!)kL2(D).

For Assumption 2 to hold, it suffices that D is convex, a(·,!) is Lipschitz
continuous and Assumption 1 holds.

A careful derivation how C2(!) depends on ka(·,!)kC0,1(D), amin(!), amax(!)
can be found in [Charrier, RS, Teckentrup, SIAM J Num Anal, 2013].

In particular, it is shown there that for lognormal a with Matérn covariance,
we have C2 2 L

p(⌦;R) for all p < 1.

The constant C in the interpolation result on Slide 84 of Appendix B is independent of !.

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 7. (ML)MC FE Methods Penn State ’21 21/68



Finite Element Convergence Results
Theorem 7.5 (Deterministic or L1 RHS)

Let Assumptions 1 and 2 hold, and let V
h
⇢ H

1

0
(D) be the space of piecewise

linear FEs with respect to a shape-regular triangulation Th (see Appendix B).
Furthermore, suppose that f 2 L

1(⌦;L2(D)) (in particular includes deterministic f),

a
�1/2

min
a
1/2

max 2 L
q(⌦;R) and C2 2 L

r(⌦;R) with q, r 2 [1,1] s.t.
1

p
= 1

q
+ 1

r
 1,

then

ku� uhkLp(⌦;H
1
0 (D))  chkfkL1(⌦;L2(D)).

Proof. Demonstrated on tablet.

The general case of f 2 L
r(⌦;L2(D)), r < 1 can be proved similarly.

Via duality arguments it is possible to show faster convergence in the
(spatial) L

2(D)-norm and for suff. smooth functionals G(u) on H
1

0
(D), i.e.

ku� uhkLp(⌦;L2(D)) = O(h2) and kG(u)�G(uh)kLp(⌦;R) = O(h2). (7.5)
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Monte Carlo Finite Element Method
Our goal now is to use the MC method to estimate a quantity of interest that
depends on the (random) solution u. This could be the mean E [u(x, ·)], the
variance Var[u(x, ·)] or the expected value of a functional G(u).

Consider N i.i.d. realizations a
(j) = a(·,!j) and f

(j) = f(·,!j) and let
u
(j) = u(·,!j) 2 H

1

0
(D) and u

(j)

h
= uh(·,!j) 2 Vh be the associated unique

solution and its FE approximation, respectively.

Compute the (H1

0
(D)-valued) MC estimates

uh,N :=
1

N

NP
j=1

u
(j)

h
, s

2

h,N
:=

1

N � 1

NP
j=1

⇣
u
(j)

h
� uh,N

⌘2

,

and the (scalar-valued) estimate
bQh,N :=

1

N

NP
j=1

G(u(j)

h
),

for Q := G(u) with G : H1

0
(D) ! R bounded or Fréchet differentiable.

To estimate the complexity of these estimators we can use the abstract
Theorem 5.1. We simply have to verify Assumptions (5.1) and (5.2).
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Let us first consider Assumption (5.1):

For a scalar functional Q = G(u) with G : H1

0
(D) ! R suff. smooth, using

Jensen’s inequality (Thm. A.20), it follows from (7.5) that

|E [Q�Qh] |  E [|G(u)�G(uh)|] = O(h2).

Thus, Assumption (5.1) holds with ↵ = 2.

For Q = u 2 H
1

0
(D), measuring the bias error in | · |H1(D), we get again using

Jensen’s inequality (noting that norms are convex functions) and Theorem 7.5 that

|E [u� uh] |H1(D)  E
⇥
|u� uh|H1(D)

⇤
= O(h).

Thus in that case, Assumption (5.1) holds with ↵ = 1.

Next consider Assumption (5.2):

If the meshes Th are (quasi-)uniform (not only shape-regular), then the number
of unknowns Mh in the resulting FE system (B.8) satisfies Mh = O(h�d).

Using a multigrid iterative method it is possible to solve the FE system (B.8)
in linear complexity, i.e.

Cost(Qj

h
) = O(Mh) = O(h�d).

Thus, Assumption (5.2) holds with � = d.
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Monte Carlo Finite Element Complexity Result
Corollary 7.6

Consider the Monte Carlo FE method with p.w. linear FEs applied to the

elliptic BVP (7.1) in Rd
to estimate E [u] or E [G(u)], with G : H1

0
(D) ! R

suff. smooth. For any " > 0 and ✓ 2 (0, 1) there exist h > 0, N 2 N, such that

Case Q = G(u): kE [Q]� bQh,NkL2(⌦;R) < " or P{|E [Q]� bQh,N | < "} > ✓ and

Cost( bQh,N ) = O("�2�d/2).

Case Q = u: kE [u]� uh,NkL2(⌦;H
1
0 (D)) < " or P{|E [u]� uh,N |H1(D) < "} > ✓

and
Cost(uh,N ) = O("�2�d).

Proof. For Q = G(u), we can simply apply Theorem 5.1 with ↵ = 2 and � = d.

For Q = u, the bias-variance decomposition also works in the | · |H1(D)-norm
(both in mean squared and in probability). To bound the sampling error, we only require
square-summability of uh : ⌦! H

1

0
(D), which is guaranteed by Theorem 7.4

(under suitable conditions on a and f).
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Multilevel Acceleration
Especially in 2D or 3D this is a very high complexity, but it is straightforward
again to accelerate the Monte Carlo FE method via a multilevel approach.

Consider a hierarchy of FE meshes T0, . . . , TL, for simplicity using uniform
grid refinement of an (arbitrary) coarsest grid T0, i.e. h` = h`�1/2 (m = 2)

(These grids are also needed in the MG solver assumed above, so no extra overhead!)

We now use the abstract complexity theorem, Theorem 5.2, to estimate
the complexity of a multilevel MC-FE estimator for (7.1).

Assumptions (M1) and (M3) in Theorem 5.2 have already been verified
above. So it only remains to prove Assumption (M2).

For scalar (smooth) Q := G(u), using (7.5)

Var [Y`]  E
⇥
(Q` �Q`�1)

2
⇤

 2E
⇥
(G(u)�G(uh`))

2
⇤
+ 2E

⇥
(G(u)�G(uh`�1))

2
⇤
= O(h4

`
)

Thus, Assumption (M2) in Theorem 5.2 holds with � = 4.

For Q := u we can show similarly that � = 2.
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Grid & Model Hierarchy for Elliptic BVP

L

0

Grids KL Truncation

Have not really discussed how to sample the field or how

to also change the truncation dimension across the levels.
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Multilevel Complexity Theorem for the Elliptic BVP
Corollary 7.7 (Case of scalar functional Q := G(u))

Consider the Multilevel Monte Carlo FE method with p.w. linear FEs (uniform

refinement) applied to the elliptic BVP (7.1) in Rd
to estimate E [G(u)], with

G : H1

0
(D) ! R suff. smooth. For any 0 < " < exp(�1) and ✓ 2 (0, 1) there exist

L,N` 2 N, such that kE [Q]� bQML
L

kL2(⌦;R) < " or P{|E [Q]� bQML
L

| < "} > ✓ and

Cost( bQML
L

) = O("�2).

For Q = u (see above), for less smooth functionals, or for less smooth data,
we often obtain only ↵ = 1 and � = 2, so that for d = 2, 3 the other regimes
in the MLMC complexity theorem become important.
Also, for rough coefficients often only � > d is possible (even with a MG solver).
Thus, we can make the following very important observation (for d = 2, 3):

Optimality of MLMC (for � > � = 2↵)

In that case, the MLMC cost is asymptotically the same as one deterministic
solve to accuracy ", i.e. Cost( bQML

L
) = O("�2�(���)/↵) = O("��/↵) !!
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Comparison of Complexities
We compare MLMC-FE and MC-FE for (7.1) in the two regimes discussed above:

Case ↵ = 2, � = 4, � = d:

d MC MLMC Gain One Sample Q
j

L

1 O("�5/2) O("�2) O("�1/2) O("�1/2)
2 O("�3) O("�2) O("�1) O("�1)
3 O("�7/2) O("�2) O("�3/2) O("�3/2)

Case ↵ = 1, � = 2, � = d:

d MC MLMC Gain One Sample Q
j

L

1 O("�3) O("�2) O("�1) O("�1)
2 O("�4) O("�2) O("�2) O("�2)
3 O("�5) O("�3) O("�2) O("�3)

(ignoring log-factors)

Can we achieve such huge gains in practice?
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Multilevel MC-FE Method for Radioactive Waste Disposal Problem

D = (0, 1)2; lognormal a w. exponential covariance; Q = kukL2(D); p.w. linear FE

hL = 1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,
3.2GByte RAM, with sparse direct solver, i.e. � ⇡ 2.4
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Verifying Assumptions in Complexity Theorem Numerically
Lognormal a with exponential covariance (i.e. ⌫ = 1/2), �2 = 1 and � = 0.3.

��E[G1(u)�G1(uh)]
��

where, given  (x) = x,
G1(u) := (f, )L2(D) � (aru,r )L2(D)

(average flow through D).

V [G2(uh)�G2(u2h)]

where
G2(u) :=

�
1

|D⇤|
R
D⇤ u(x) dx

�2

(i.e. 2nd moment of u over patch D⇤)

=) ↵ = 1 and � = 2

Can be proved rigorously! [Teckentrup, RS Giles, Ullmann, Numer Math 125, 2013]
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Smoother Coefficients & Outlook to Multilevel QMC

Q = 1

|D⇤|
R
D⇤ u dx & lognormal a with Matérn covariance and

ϵ
10-4 10-3 10-2

C
os

t (
in

 s
ec

)

10-1

100

101

102

103

104

105
ν = 2.5, σ2 = 1, λ = 1

MC
MLMC
QMC
MLQMC

1

32

For QMC using a randomised lattice rule with product weights �j = 1/j2.

[Kuo, RS, Schwab, Sloan, Ullmann, Math Comput 86, 2017]
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Further Reading on Multilevel Monte Carlo

Analysis simplifies considerably for uniformly bounded, affine coefficients, i.e.,

0 < amin = const < a(x,!) < amax = const < 1 P� a.s.
I Barth, Schwab & Zollinger, Multi-level Monte Carlo Finite Element method for

elliptic PDEs with stochastic coefficients, Numer Math 119, 2011

The MLMC-FE method has been applied to many other PDEs. For a
comprehensive list see Mike Giles’ MLMC Community Webpage

I http://people.maths.ox.ac.uk/~gilesm/mlmc_community.html

Particular current interest in adaptive FEs and sample-adaptive hierarchies:
I Kornhuber & Youett, Adaptive Multilevel Monte Carlo Methods for Stochastic

Variational Inequalities, SIAM J Numer Anal 56, 2018

I Detommaso, Dodwell & RS, Continuous Level Monte Carlo and Sample-Adaptive

Model Hierarchies, SIAM/ASA J Uncertain Q 7, 2019

In the latter, we have also extended the concept of MLMC to allow for a
continuous level parameter `.
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Other Multilevel Quadrature Methods in UQ
As stated above, it is not essential to use Monte Carlo estimators to
estimate the contributions E[Y`] from each level.

Multilevel quasi-Monte Carlo uses quasi-MC quadrature rules, i.e. special
deterministic point sets (can be unbiased through randomisation):

I Kuo, Schwab & Sloan, Multi-level quasi-Monte Carlo finite element methods for a

class of elliptic PDEs with random coefficients, Found Comput Math 15, 2015

I Dick, Kuo, Le Gia & Schwab, Multilevel higher order QMC Petrov–Galerkin discre-

tization for affine parametric operator equations, SIAM J Numer Anal 54, 2016

I Kuo, RS, Schwab, Sloan & Ullmann, Multilevel quasi-Monte Carlo methods for

lognormal diffusion problems, Math Comput 86, 2017

with rigorous theory proving almost O("�1) complexity (or better).

Multilevel sparse grid approximation/quadrature uses sparse grid
polynomial quadrature rules, with rigorous complexity theory:

I Teckentrup, Jantsch, Webster & Gunzburger, A multilevel stochastic collocation

method for PDEs with random input data, SIAM/ASA J Uncertain Q 3, 2015

I Zech, Dung & Schwab, Multilevel approximation of parametric and stochastic

PDEs, Math Mod Meth Appl Sci 29, 2019

I Lang, RS & Silvester, A fully adaptive multilevel stochastic collocation strategy

for solving elliptic PDEs with random data, J Comput Phys 419, 2020

Under strong regularity conditions allows significantly better complexity.
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8. Conditioning on Data – Bayesian Inverse Problems
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Inverse Problems

Data Parameter

y = F ( x ) + ⌘

forward model (PDE) observation/model errors

y 2 Rm

x 2 H

F : H ! Rm

Data y are limited in number, noisy, and indirect.
Parameter x often a function (discretisation needed).
Continuous, bounded, and sufficiently smooth.
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Examples of Inverse Problems

Deblurring a noisy image:
y: image; F : blurring operator

Seismic inversion
y: reflected wave image; F : wave equation

Computer tomography
y: radial x-ray attenuation; F : line integral of absorption

Weather forecasting
y: satellite data, sparse indirect measurem.; F : atmospheric flow

History matching in oil reservoir simulation
y: well pressure/flow rates; F : subsurface flow

Predator-prey model
y: state of u2(T ); F : dynamical system

Classically [Hadamard, 1923]: Inverse map “F�1” (y ! x) is typically ill-posed,
i.e. lack of (a) existence, (b) uniqueness or (c) boundedness
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Linear Inverse Problems & Least Squares
Consider the linear forward operator F (x) = Ax from Rs to Rm with
A 2 Rm⇥s and assume that ⌘ ⇠ N(0, s2

⌘
I).

Least squares minimisation seeks “best” solution bx by minimising residual
norm argmin

x2Rs ky �Axk
2

In the case of full rank (for m > s), this actually leads to a unique map

bx = (AT
A)�1

A
T
y

which also minimises the mean-square error E
⇥
kbx� xk

2
⇤

and the covariance
matrix E

⇥
(bx� x)(bx� x)T

⇤
and satisfies

E [bx] = x and E
⇥
(bx� x)(bx� x)T

⇤
= s

2

⌘
(AT

A)�1

Using singular value decomposition of AT
A = U⌃V T with U = [u1, ..., um],

V = [v1, ..., vn] unitary and ⌃ = diag(�2

1
, . . . ,�

2

m
) we have in fact

bx =
mX

k=1

u
T

k
y

�k
vk = x +

mX

k=1

u
T

k
⌘

�k
vk
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Error Amplification & Tikhonov Regularisation

In typical physical systems �k ⌧ 1, for k � 1, and so the “high frequency”
components u

T

k
⌘ in the error get amplified with 1/�k.

In addition, if m < s or if A is not full rank, then A
T
A is not invertible and

so bx is not unique (what is the physically best choice?)

An approach that guarantees uniqueness of the least squares minimiser and
prevents amplification of high frequency errors is regularisation, i.e solving
instead

argmin
x2Rm

s
�2

⌘
ky �Axk

2 + ↵kx� x0k
2

↵ is called the regularisation parameter and controls how much we trust the
data or how much we trust the a priori knowledge about x.

In general, with ⌘ ⇠ N(0, Q) and F : H ! Rm we solve

argmin
x2H

ky � F (x)k2
Q�1 + kx� x0k

2

R�1

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 8. Bayesian Inverse Problems Penn State ’21 39/68



Bayesian Interpretation (Conditional Parameter Distribution)

(Physical) model gives ⇡(y|x), the conditional probability of observing y given x,
but to predict, control, optimise or to do UQ we are really interested in ⇡(x|y),
the conditional probability of possible causes x given the observed data y.

Bayes’ rule states:
⇡(x|y) =

⇡(y|x)⇡(x)

⇡(y)

⇡(x) = prior density: what we know/believe about x prior to observing y

⇡(x|y) = posterior density: what we know about x after observing y

⇡(y|x) = likelihood: (physical) model or how likely it is to observe y given x

⇡(y) = evidence: marginal of ⇡(x, y) over all possible x

(scaling factor that can be determined by normalisation)
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Link between Bayes’ Rule and Tikhonov Regularisation

Bayesian interpretation of the least squares solution bx, is to find the
maximum likelihood estimate.

Bayesian equivalent of the regularisation term is the prior distribution ⇡(x):
for Tikhonov x ⇠ N(x0, R) (could be different distribution).

Bayes interpretation of the regularised least squares solution is the
maximum a posteriori (MAP) estimate. In the simple linear case it is

bxMAP = (AT
A+ ↵s

2

⌘
I)�1(AT

y + ↵s
2

⌘
x0)

However, in the Bayesian setting, the full posterior contains more information
than the MAP estimator alone, e.g. the posterior covariance matrix
P

�1 = (AT
Q

�1
A+R

�1)�1 reveals more or less certain components of x..

In the linear Gaussian case, posterior mean (MAP) and covariance matrix
describe the entire distribution. What about general case? Can we do better?
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Metropolis-Hastings Markov Chain Monte Carlo
YES. We can sample from the posterior distribution and/or

compute posterior expectations E⇡(x|y)[G(x)] using

importance sampling
rejection sampling
variational inference methods
filtering
Markov chain Monte Carlo methods:

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

Choose initial state x
0
2 X.

At state n generate proposal x0
2 X from distribution q(x0

|x
n)

(e.g. via a random walk x0
⇠ N(xn, "2I))

Accept x0 as a sample and set xn+1 = x
0 with probability

↵(x0
|x

n) = min

✓
1,
⇡(x0

| y) q(xn
|x

0)

⇡(xn | y) q(x0 |xn)

◆

Otherwise set xn+1 = x
n.
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Links to what I have told you so far and to Machine Learning

What does this all have to do with UQ?

In context of what I said so far, we want to “condition” our uncertain models
on information about input data (prior) and output data (likelihood).

Again we have to distinguish whether we are interested
I only in statistics about some QoI (quadrature w.r.t. the posterior) or
I in the whole posterior distribution of the inputs and/or of the state

Allows to learn something about a model parameter or physically relevant,
derived quantity from noisy, indirect measurements.

Outcome crucially depends on choice of prior (curse and blessing):
I If nothing is known use non-informative prior!
I If we have solid/complicated prior knowledge can use it!

Updating prior belief given measured data. In that sense optimal and
theoretically rigorous (Bayes optimality).

Most importantly: can rigorously quantify uncertainties !
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9. Model Problems & Markov Chain Monte Carlo
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Example 1: Predator-Prey Problem
In the predator-prey model, a typical variation on the problem studied so far that
leads to a Bayesian UQ problem is:

1. Prior: u0 ⇠ U
⇣
u0 + [��, �]2

⌘

2. Data: y = u
obs

2
at time T with measurement error ⌘ ⇠ N(0, s2

⌘
)

3. Likelihood: (with bias due to the numerical approximation of F ):

⇡h(y|u0) h exp

✓
�|y � uM,2(u0)|2

s2
⌘

◆

4. Posterior: ⇡h(u0|y) h ⇡h(y|u0)⇡pr(u0)| {z }
=const

5. Statistic: E⇡h(u0|y) [uM,1(u0)] (⇡ expected value of u1(T ) under the posterior)

Depending on size of s2
⌘

uncertainty in expected value of u1(T ) is vastly reduced.
(can be computed, e.g., with Metropolis-Hastings MCMC).
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Example 2: Deep Geological Disposal of Radioactive Waste

Area where UQ has played central role in past 25 years.

Deep geological disposal favoured by nearly all countries with a radioactive
waste disposal programme.

Storage in containers in tunnels, hundreds of meters deep in stable geological
formations. No human intervention required after sealing repository.

Several barriers: chemical, physical, geological.

Ccontainment must be assured for at least 10,000 years.

Main escape route for radionuclides: groundwater pathway.

Assessing safety of potential sites of utmost importance
long timescales ! modelling essential!

Key aspect: How to quantify uncertainties in the models?
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WIPP – Waste Isolation Pilot Plant

US DOE repository for radioactive waste
situated near Carlsbad, NM.
(Fully operational since 1999.)

Extensive site characterisation and
performance assessment since 1976, also in
course of compliance certification and
recertification by US EPA (every 5 years).

Lots of publicly available data at
http://www.wipp.energy.gov

Repository located at 655m depth in
bedded evaporites (mainly halite, a salt).

Most transmissive rock layer in the region
is the Culebra Dolomite: principal pathway
for transport of radionuclides in the event
of an accidental breach.
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Groundwater Flow Model

Stationary Darcy flow q = �Krp q : Darcy flux
K : hydraulic conductivity
p : hydraulic head

mass conservation r·u = 0 u : pore velocity
q = �u � : porosity

transmissivity k = Kb b : aquifer thickness

particle transport ẋ(t) = �
k(x)

b�
rp(x) x : particle position

x(0) = x0 x0 : release location

Quantity of interest: log
10

of particle travel time to reach boundary
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UQ Problem – PDE with Random Coefficient

Primal form of Darcy equations is our “fruit fly” with a = k and u = p:

�r·[a(x)ru(x)] = 0, x 2 D, u = u0 along @D.

Model transmissivity as a random field (RF) a = a(x,!), ! 2 ⌦, with respect to
underlying probability space (⌦,A,P).

Modeling Assumptions (standard in 2D hydrogeology):

finite mean and covariance

a(x) = E [a(x, ·)] , x 2 D,

Cova(x,y) = E [(a(x, ·)� a(x)) (a(y, ·)� a(y))] , x,y 2 D.

a is lognormal, i.e., Z(x,!) := log a(x,!) is a Gaussian RF.

CovZ is stationary and isotropic, i.e., CovZ(x,y) = c(kx� yk2)
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Data for Radioactive Waste Example (WIPP)
Prior Model [Ernst et al, 2014]

log a ⇡
sP

j=1

p
µj �

cond

j (x)✓j(!) with i.i.d. ✓j ⇠ N(0, 1)

Karhunen-Loeve modes (j = 1, 2, 9, 16) conditioned on 38 transmissivity observations
(via kriging (Gaussian process regression): a simple low-rank change to covariance operator)

Prior model: ⇡pr,s(✓) is the multivariate standard Gaussian density for ✓ 2 Rs.
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Data for Radioactive Waste Example (WIPP)
Likelihood Model [Ernst et al, 2014]

Data y are pressure
measurements.

Fh(✓) is the model
response.

Likelihood model: assuming Gaussian errors with covariance ⌃

⇡h,s(y|✓) h exp(�ky � Fh(✓)k2⌃�1)

Posterior through Bayes’ rule: ⇡h,s(✓ | y) h ⇡h,s(y|✓)⇡pr,s(✓)
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Markov Chain Monte Carlo (Metropolis-Hastings Algorithm)
(for the discretised fruit fly problem)

ALGORITHM 1 (Standard Metropolis Hastings MCMC)

Choose ✓0
2 Rs.

At state ✓n generate a ✓0
2 Rs from the proposal distribution q(✓0

|✓n)
(e.g. basic or preconditioned Crank-Nicholson random walk [Cotter et al, 2012])

Accept sample ✓0 and set ✓n+1 = ✓0 with probability

↵h,s(✓
0
|✓n) = min

✓
1,
⇡h,s(✓

0
| y) q(✓n

|✓0)

⇡h,s(✓
n
| y) q(✓0

|✓n)

◆

Otherwise ✓n+1 = ✓n.

Samples ✓1
, . . . ,✓N used as usual for inference (even though not i.i.d.):

E⇡(·|y) [Q] ⇡ E⇡h,s(·|y) [Qh,s] ⇡
1

N

NX

i=1

Q
(n)

h,s
=: bQMH

where Q
(n)

h,s
= G

�
✓n

�
=  

�
uh(✓

n)
�

is nth sample of the QoI using Model(h, s).

Scheichl (Heidelberg) Multilevel Monte Carlo Methods / Part II / 9. Model Problems & MCMC Penn State ’21 52/68

Markov Chain Monte Carlo Theory (for simplicity only finite dimensional)

Theorem 9.1 (Metropolis et al. 1953, Hastings 1970, . . . )

The Markov chain simulated by the Metropolis-Hastings algorithm is reversible
with respect to ⇡(·|y). If we also have

⇡(x0
|y) > 0 ) q(x0

|x
n), for all n 2 N

P
�
↵(x0

|x
n) = 1

�
< 1, for all n 2 N,

then it defines a geometrically ergodic Markov chain with unique equilibrium

density ⇡(·|y) (for any initial state x
0
) and the Central Limit Theorem gives

p

N

⇣
bQMH

� E⇡(·|y)[G(X)]
⌘

d
����!
N!1

N (0,�2

G
) (9.1)

withasymptotic variance

�
2

G
:= Var(G(X1)) + 2

1X

j=1

Cov
�
G(X1), G(X1+j)

�
. (9.2)

Crudely speaking geometrically ergodic means that there exists an r 2 (0, 1) s.t. the TV-distance

between the target distribution and the distribution of the nth state converges with O(r�n).
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Markov Chain Monte Carlo
Comments in the context of our UQ problem

Pros:
Produces a Markov chain {⇥n

}n2N with ⇥n
⇠ ⇡h,s(·|y) as n ! 1.

Can be made dimension independent (e.g. via pCN sampler).
Therefore often referred to as “gold standard” (Stuart et al)

Cons:
Evaluation of ↵h,s(✓

0
|✓n) very expensive for small h (cost/sample � O(h�d))

Acceptance rate ↵h,s can be very low for large s (< 10%)

Cost( bQMH) = O("�2� �
↵ ) as above, but the constant is multiplied by the

integrated autorcorrelation time (= relative asymptotic variance)

⌧G :=
�
2

G

Var(G(X1))
= 1 + 2

1X

j=1

Corr
�
G(X1), G(X1+j)

�
(9.3)

(which depends on stepsize in q and on ↵h,s)

In addition, require burn-in to reduce the initiation bias.

Prohibitively expensive – significantly worse than standard MC w. iid. samples!
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10. Multilevel Markov Chain Monte Carlo
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Multilevel Markov Chain Monte Carlo – Idea
[Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015] & [Dodwell et al, SIAM Rev. 2019]

What were the key ingredients of “standard” multilevel Monte Carlo?
I Telescoping sum: E [QL] = E [Q0] +

P
L

`=1 E [Q` �Q`�1]
I Models on coarser levels much cheaper to solve (h�d

0 ⌧ h�d

L
).

I V[Q` �Q`�1]
`!1�!! 0 as =) much fewer samples on finer levels.

But Important! Now target distribution ⇡` := ⇡h`,s`(· | y) depends on `:

E⇡L [QL] = E⇡0 [Q0]| {z }
standard MCMC

+
X

`

E⇡` [Q`]� E⇡`�1 [Q`�1]| {z }
multilevel MCMC (NEW)

bQMLMH

h,s
:=

1

N0

N0X

n=1

Q0(⇥
n

0,0
) +

LX

`=1

1

N`

NX̀

n=1

�
Q`(⇥

n

`,`
)�Q`�1(⇥

n

`,`�1
)
�

with correlated Markov chains {⇥n

`,`�1
} and {⇥n

`,`
} (see below).

For simplicity we describe only the case s` = s`�1 = . . . = s0.
(In practice, useful to reduce also number s`�1 of random parameters on coarser levels.
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Multilevel Markov Chain Monte Carlo – Algorithm
Choose subsampling rates t0, . . . , tL 2 N (see below) and set T`,k :=

Q
`�1

j=k
tj .

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for Q` �Q`�1)

Given realisations ✓n

`,0
, . . . ,✓n

`,`
at state n of Markov chains on levels k = 0, . . . , `.

1. k = 0: Set x0

0
:= ✓n

`,0
. Use Algorithm 1 (standard Metropolis-Hastings) to

generate samples xi

0
⇠ ⇡0, i = 1, . . . , T`,0. Set ✓n+1

`,0
:= x

T`,0

0
.

2. k > 0: Set x0

k
:= ✓n

`,k
. Generate samples xi

k
⇠ ⇡k, i = 1, . . . , T`,k as follows:

(a) Propose x0
k = x

(i+1)tk�1
k�1 Subsample to reduce correlation!

(b) Accept x0
k and set xi+1

k
= x0

k with probability

↵ML
k (x0

k|xi

k) = min

✓
1,

⇡k(x
0
k)⇡k�1(x

n

k )
⇡k(xn

k
)⇡k�1(x0

k
)

◆
JS Liu, 2001

Otherwise set xi+1
k

= xi

k.

(c) Set ✓n+1
`,k

:= x
T`,k

k
with T`,k :=

Q
`�1
j=k

tj .

3. Set Y n

`
:= Q`(✓

n

`,`
)�Q`�1(✓

n

`,`�1
).
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MLMCMC – Comments
Each {⇥n

`,k
}n�1, k = 0, . . . , `, is a Markov chain with ⇥n

`,k
⇠ ⇡k as n ! 1

and t` ! 1.

Theoretically need t` ! 1 to guarantee consistency of multilevel algorithm
(no bias between levels)

In practice, it suffices to choose t` ⇡ C⌧G,` with C = 1 or 2.

States may differ between level ` and `� 1:
State n+ 1 Level `� 1 Level `

accept on level ` ✓n+1
`,`�1 ✓n+1

`,`�1

reject on level ` ✓n+1
`,`�1 ✓n

`,`

but this does not happen often for larger ` since acceptance probability ↵ML
`

`!1
�! 1.

Lemma 10.1 (Dodwell, Ketelsen, RS, Teckentrup, ’15)

E⇡`,⇡`

h
1�↵ML

`
(·|·)

i
= O

⇣
E⇡pr [|F (✓)� F`(✓)|]

⌘
= O(h↵

`
)

Note that this also implies ⌧G,`

`!1
�! 1.
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Complexity Theorem for Multilevel MCMC (Dodwell et al. ’15)

Suppose there are constants ↵,�, �, ⌘ > 0 such that, for all ` = 0, . . . , L,

M1
��E⇡` [Q`]� E⇡(·|y)[Q]

�� = O(h↵

`
) (discretisation and truncation error)

M2’ Varalg[bY`] +
⇣
Ealg[bY`]� E⇡`,⇡`�1 [bY`]

⌘2

= Var⇡`,⇡`�1 [Y`]O(N�1

`
) (MCMC-error)

M2 Var⇡`,⇡`�1 [Y`] = O(h�

`
) (multilevel variance decay)

M3 Cost(bY MC

`
) = O(N` h

��

`
). (cost per sample)

Then there exist L, {N`}
L

`=0
s.t. MSE < "

2 and

C"( bQMLMH

h,s
) = O

⇣
"
�2�max(0, ���

↵ )
⌘

(+ log-factor when � = �)

(This is totally abstract & applies not only to our subsurface model problem!)

Proof of Assumptions M1 and M3 similar to i.i.d. case.
M2’ not specific to multilevel MCMC; first steps in [Hairer, Stuart, Vollmer, ’11].

Proof of Assumption M2 for lognormal diffusion & linear FEs (Dodwell et al ’15)

Var⇡`,⇡`�1

⇥
Q`(⇥

n

`,`
)�Q`�1(⇥

n

`,`�1
)
⇤

= O(h↵

`
) (unfortunately � = ↵ not 2↵)
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More Comments – Related Literature
Typically also increase number of parameters s` from level to level and use
standard proposal kernel for new parameters (see paper).

Subsampling essential (exact only in limit of infinite subsampling), but small bias
for sampling rates with C = 1 or 2.

New (“multiplicative”) version: Current work with Colin Fox (Otago, NZ).

Algorithm 2 is a special case of a surrogate transition method
[Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]

and of delayed acceptance Metropolis-Hastings [Christen, Fox, ’05]

But crucially exploiting variance reduction & proved rates in MLMCMC are new!

(Corollaries on adaptive error estimates using the Markov chains, current work with Colin Fox)

Other references on related mutlilevel Monte Carlo methods recently
developed for Bayesian inverse problems:

I Hoang, Schwab & Stuart, Complexity analysis of accelerated MCMC methods for

Bayesian inversion, Inverse Prob 29, 2013

I Beskos, Jasra, Law & Zhou, Multilevel sequential Monte Carlo samplers, Stoch Proc
Appl 127, 2017
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Numerical Example
Fruit fly (2D lognormal diffusion) on D = (0, 1)2 with linear FEs

Prior: Separable exponential covariance with �2 = 1, � = 0.5.

i.e. E[Z(x)Z(x0)] = �2e�
|x�x0|

� � |y�y0|
�

“Data” y: Pressure at 16 points x⇤
j 2 D and covariance ⌃ = 10�4I.

!"#$"%&'(')*+ !"#$"%&'(')*+

Synthetic Data Posterior Sample
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Numerical Example
Quantity of interest: Q =

R 1
0 krp dx2; coarsest mesh size: h0 = 1

9

5-level method with #KL modes increasing from s0 = 50 to s4 = 150

Level
0 1 2 3 4
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0 = 0.04
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C
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MLMCMC
Standard MCMC

2

4

#independent samples =
N`

⌧`
(⌧` . . . integrated autocorrelation time)

Level ` 0 1 2 3 4
i.a.c. time ⌧` 136.23 3.66 2.93 1.46 1.23
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Choice of Proposal Distribution
Multilevel DILI (recent preprint with T Cui & G Detommaso)

So far: pCN random walk proposal (uses no gradient/Hessian info)

[Cotter, Dashti, Stuart, ’12]

Problem: Dimension independent but very high IACT for s ! 1!
⌧0 ⇡ 136 above, i.e. need 136 samples to obtain one independent sample!!

However, can use any other proposal (e.g. MALA, stochastic Newton)

DILI MCMC [Cui, Law, Marzouk, ’16]:
(DILI = dimension-independent likelihood-informed)

samples from preconditioned Langevin equation using low-rank
approximation of data-misfit Hessian at some points (incl. MAP point)

New multilevel construction of DILI (with T Cui and G Detommaso) ...

Cui, Detommaso, RS, Multilevel dimension-independent likelihood-informed MCMC for
large-scale inverse problems, submitted, 2019 [arXiv:1910.12431]
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Testing on a Much Harder Example

True parameter
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Model:
�r ·

⇣
ez(x)ru(s)

⌘
= 0, x 2 [0, 1]2

Top/bottom: zero Neumann b.c.; left/right: Dirichlet b.c. zero/one, respectively.

Gaussian process prior for z = log a with covariance fct. k(x, x0) = exp(�5|x� x0|)

71 sensors; signal to noise ratio 50.

QoI: Q(flux) = average flux over the left boundary
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Numerical Comparison: IACTs & CPU Times

Refined parameters

Level ` 0 1 2 3
iact(pCN) 4300 45 48 24
iact(DILI) 34 11 3.6 2.0

Q`(✓
n

`,`)�Q`�1(✓
n

`,`�1)

Level ` 0 1 2 3
iact(pCN) 4100 4.9 2.8 1.9
iact(DILI) 9.0 4.6 2.4 1.8

2.8  10
-3

5.7  10
-3

1.27  10
-2

10
3

10
4

10
5

10
6

10
7

⇠ 1 CPU Month

⇠ 9 CPU Days

⇠ 2 CPU Days

 � 1 CPU Day

CPU time (in sec)
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Key References for Multilevel Bayesian Inference
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11. Conclusions
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Conclusions

I hope the course gave you a basic understanding of the questions &
challenges in modern uncertainty quantification.

The focus of the course was on the design of computationally tractable and
efficient multilevel Monte Carlo methods for high-dimensional and large-scale
UQ problems in science and engineering.

Of course it was only possible to give you a snapshot of the methods and we
went over some parts too quickly.

Finally, I apologise that the course was of course also strongly biased in the
direction of my research and my expertise and was probably not doing some
other methods enough justice.

But I hope I managed to interest you in the subject and persuade you of the
huge potential of multilevel sampling methods.

Thanks!
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