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1. Aims & Course Structure
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Background

Mathematical modelling, e.g. in the form of differential equations, is
essential to understand, optimise, control or predict physical, biological and
engineering processes.
Numerical methods are central in solving these often very complex
mathematical models.
In the previous numerics modules, we have learned about efficient numerical
methods, in particular for differential equations.
These methods have reached high state of maturity & sophistication.
But models have input data that are typically not known precisely
(parameters, source term, domain shape, boundary conditions, etc...)

It is of great importance to determine these parameters, their
influence on the solution & uncertainties due to their variability.

To find (and analyse) efficient numerical methods for these tasks is still a very
active field of research and will be the focus of this course.
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Aims
1. Motivate the interest in high dimensional numerical approximation via its

huge importance in Uncertainty Quantification (UQ).

2. Introduce one of the key obstacles, the so-called

Curse of Dimensionality.

3. Introduce Monte Carlo–type methods that circumvent the curse of
dimensionality for high-dimensional quadrature and analyse them,

in particular Multilevel Monte Carlo and quasi-Monte Carlo.

4. How to adapt polynomial-based quadrature and approximation methods for
high dimensional problems?

Sparse Grids.

5. Breaking the curse of dimensionality with polynomial methods.

6. A more general tool: Low-rank tensor approximation methods.
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Course Structure

As in previous semesters, we will use moodle to provide you with lecture
material and to communicate with you. The moodle site for this course (on
the new server) is

https://moodle.uni-heidelberg.de/course/view.php?id=1595
Access key (=Einschreibeschlüssel): in first lecture

Please use the moodle “Discussion Forum” for any questions you have
on the course and also answer each others questions.

These slides will also form the lecture notes.

We will pre-record individual lectures and put the videos on moodle.

We aim to also have one problem sheet per week. If you want feedback on
your solution, please submit a scan/photo on moodle.

The lecture on Tuesday at 9:15 will be used as both a question-and-answer
session and a tutorial where we will present model solutions to the problem
sheets.
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Assessment

There will be no formal admission requirements for the exam to this module
(= keine Zulassungskriterien), but we strongly recommend that you
attempt the problem sheets every week.

Provided the measures for the Corona Crisis allow it, we aim for the final
exam to be an oral exam (in person).
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Literature & Other Resources
[1] G.J. Lord, C.E. Powell, T. Shardlow, An Introduction to Computational

Stochastic PDEs, Cambridge University Press, Cambridge, UK, 2014.

[2] M.B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24, 259–328, 2015.
https://doi.org/10.1017/S096249291500001X

[3] J. Dick, F.Y. Kuo, I. H. Sloan, High-dimensional integration: The quasi-Monte
Carlo way, Acta Numer. 22, 133–288, 2013.
https://doi.org/10.1017/S0962492913000044

[4] H-J. Bungartz, M. Griebel, Sparse grids, Acta Numer. 13, 147–169, 2004.
https://doi.org/10.1017/S0962492904000182

[5] R. Ghanem, P. Spanos, Stochastic Finite Elements, Springer, New York, 1991.

[6] W. Hackbusch, Numerical tensor calculus, Acta Numer. 23, 651–742, 2014.
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Additional Material:
Probability Primer. Some basic tools and concepts from probability theory.

FE Primer. The model PDE problem and its discretisation via finite elements.
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Course Content

Uncertainty Quantification and the “Curse of Dimensionality"
Monte Carlo methods (in particular, multilevel Monte Carlo)
Quasi-Monte Carlo methods
Sparse grids — Quadrature and Approximation
Best N -term approximation and adaptive methods
Low-rank tensor approximation
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2. What is Uncertainty Quantification?
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What are the Challenges in UQ?

What is uncertainty quantification (UQ) about?

What is uncertainty?
How can uncertainty be described?
How can the effects of uncertainty be treated and quantified?
A case study – radioactive waste disposal.
Methods for solving the resulting mathematical problems.
What are the challenges?

Please note that this first part is based on the lecture notes of “Mathematische Methoden der
Unsicherheitsquantifizierung” at the TU Chemnitz by Prof. Oliver Ernst.

https://www.tu-chemnitz.de/mathematik/numa/lehre/uq-2014
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What is ‘uncertain’?

uncertain: not able to be relied on; not known or definite.

Oxford Collegiate Dictionary

uncertain: not exactly known or decided; not definite or fixed; not

known beyond doubt; not constant

Merriam Webster Online Dictionary

uncertain: not able to be accurately known or predicted; not precisely

determined, established, or decided; liable to variation; changeable

Collins Online Dictionary
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A Poetic Description

There are known knowns;

there are things we know we know.

We also know there are known unknowns;

that is to say, we know there are some things we do not know.

But there are also unknown unknowns – the ones we don’t know we

don’t know. U. S. Secretary of Defence, Donald Rumsfeld

DoD News Briefing; Feb. 12, 2002
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Uncertainty in Modern Life

Many aspects of modern life involve uncertainty:

Social systems: military, finance, insurance industry, elections
Environmental systems: weather, climate, seismic, subsurface geophysics
Engineering systems: automobiles, aircraft, bridges, structures
Biological systems: health and medicine, pharmaceuticals, gene expression,
cancer research
Physical systems: quantum physics, radioactive decay
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Uncertainty in Modern Life

Source: National Hurricane Center, USA

Predicted storm path with uncertainty cones.
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Uncertainty in Modern Life

Source: Brodman & Karoly, 2013

Global-mean temperature change for a business-as-usual emission scenario, relative to
pre-industrial. Black line: median, shaded regions 67% (dark), 90% (medium) and 95%

(light) confidence intervals.

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 2. What is UQ? SS 2020 16/76



Uncertainty in Modern Life

Source: K. A. Cliffe, 2012

Sample paths of groundwater-borne contaminant particles emanating from an
underground radioactive waste disposal site.
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Examples

Radioactive decay

Radium-226: half-life of 1602 years
Decays into Radon gas (Radon-222) by emitting alpha particles.
Over a period of 1602 years, half the radium atoms in a given sample will
decay.
But we cannot say which half!

This kind of uncertainty seems to be “built into” the physical world.
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Examples

Rolling dice

Cube, 6 faces, numbered 1–6
One or more thrown onto a table.
For “fair dice”, expect to see the numbers 1–6 appear equally often, provided
the dice are thrown sufficiently many times.

How does this differ from radioactive decay?

Is this uncertainty also “built into” the physical world, or are we just not able to
calculate what will happen when the dice are thrown?
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Examples

Screening/testing for disease

Incidence of disease among general population: 0.01 %
Test has true positive rate (sensitivity) of 99.9 %.
Same test has true negative rate (specificity) of 99.99 %.
What is the chance that someone who tests positive actually has the disease?

Answer (using relative/conditional probabilities, Bayes’ formula):

P(diseas|pos) =
P(pos|diseas) · P(diseas)

P(pos|diseas) · P(diseas) + P(pos|no diseas) · P(no diseas)

=
0.999 · 0.0001

0.999 · 0.0001 + (1� 0.9999) · (1� 0.0001)
⇡ 0.4998
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Frequentist View vs. Conditional Probabilities

Alternative answer (using natural frequencies):

Think of random sample of 10,000 people.
Of these, on average 1 will have the disease, 9,999 will not.
Person who has the disease will almost certainly test positive.
on average 1 of the 9,999 healthy people will test (falsely) pos.
Thus, (roughly) only one out of every two positive patients actually has the
disease.

In [Gigerenzer, 1996] medical practitioners were given the following information
regarding mammography screenings for breast cancer:

incidence: 1 %; sensitivity: 80 %; specificity: 90 %.

When asked to quantify probability of a patient actually having breast cancer
given a positive screening result (7.5%), 95 out of 100 physicians estimated this
probability to lie above 75%.
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Frequentist View vs. Conditional Probabilities
274

The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%

(hit rate or sensitivity).
If the patient has a benign lesion (no breast can-

cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues9 have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from &dquo;cognitive illusions.&dquo; From these

studies, many have concluded that the human mind
lacks something important: &dquo;People do not appear
to follow the calculus of chance or the statistical the-

ory of prediction&dquo; 10 p 237; &dquo;It appears that people lack
the correct programs for many important judgmen-
tal tasks&dquo; 11; or more bluntly, &dquo;Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of

probability.&dquo; 12 p 469 If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON

INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes’ rule is ob-

served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as &dquo;representativeness&dquo;). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-

signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter

FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left) p(H) = prior probability
of hypothesis. H (breast cancer), p(D ~ H) = probability of data D
(positive test) given H, and p(D ) - H) = probability of D given - H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.
The format of information is a feature of the de-

cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy’s mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages-as in the above

mammography problem-because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.313 So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I

argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.

 at Universitaetsbibliothek on April 8, 2014mdm.sagepub.comDownloaded from 

We see how crucial it is for its
transparent communication how un-
certainty is described.

Source: Gigerenzer, 1996
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More Examples

Modeling biological systems

From one view, biology is just very complicated physics and chemistry.
But even the simplest biological systems are far too complicated to be
understood from basic principles at the moment.
Models are constructed that attempt to capture the essential features of
what is happening, but often there are competing models and they may all
fail in some way or other to predict the observed phenomena.
In short, we don’t really know what the model is!

How does this situation differ from the previous two?
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More Examples

Unknown unknowns

Obviously can’t give a current example.
Good example is the state of Physics at end of 19th century.

There is nothing new to be discovered in physics now. All that remains

is more and more precise measurement.

Lord Kelvin, 1900

Quantum mechanics and relativity theory were unknown unknowns.

It is easy to underestimate uncertainty.
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Political Implications

Questions:1

1. How do we account for all the uncertainties in the complex models and
analyses that inform decision makers?

2. How can those uncertainties be communicated simply but quantitatively to
decision makers?

3. How should decision makers use those uncertainties when combining
scientific evidence with more socio-economic considerations?

4. How can decisions be communicated so that the proper acknowledgment of
uncertainty is transparent?

1posed on entry at the 2006 UK EPSRC Ideas Factory on the topic Scientific Uncertainty and

Decision Making for Regulatory and Risk Assessment Purposes.
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Communicating the Results

Climate change
The weight of evidence makes it clear that climate change is a real and present

danger. The Exeter conference was told that whatever policies are adopted from this

point on, the Earth’s temperature will rise by 0.6F within the next 30 years. Yet

those who think climate change just means Indian summers in Manchester should be

told that the chances of the Gulf stream - the Atlantic thermohaline circulation that

keeps Britain warm - shutting down are now thought to be greater than 50%.

The Guardian, 2005

Most of the observed increase in globally-averaged temperatures since the mid-20th

century is very likely due to the observed increase in anthropogenic GHG

concentrations. It is likely there has been significant anthropogenic warming over the

past 50 years averaged over each continent (except Antarctica).

IPCC Fourth Assessment

Summary for Policymakers

What do these statements mean?
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UQ and the Scientific Computing Paradigm

Physical Phenomenon

Data
Quantities of Interest

Mathematical Model

DEs
Parameters

Solution

Numerical Approximation

Discretization
Solvers

Computer Implementation

Software

Prediction
Insight
Optimization
Control
Decision

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 2. What is UQ? SS 2020 27/76

UQ and the Scientific Computing Paradigm

Physical Phenomenon

Uncertain Data
Lack of Knowledge

Variability

Mathematical Model

SDEs
Random Fields

Numerical Approximation

?

Computer Implementation

?

Prediction
Insight
Optimization
Control
Decision

Quantified

Key Tools: Efficient methods for High-dimensional Approximation !
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Validation and Verification

What confidence can be assigned to a computer prediction of complex
phenomena?

Validation: Determination of whether a mathematical model adequately
represents physical/engineering phenomenon under study.
“Are we solving the right problem?”

Is this even possible? (cf. Carl Popper)

Verification: Determination of whether an algorithm and/or computer code
correctly implements a given mathematical model.
“Are we solving the problem correctly?”

code verification (software engineering)
solution verification (a posteriori error estimation)
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Aleatoric and Epistemic Uncertainty

Aleatoric: Uncertainty due to true intrinsic variability; cannot be reduced by
additional experimentation, improvement of measuring devices, better model, etc.

Examples:
rolling a die
wind stress on a structure
production variations

Epistemic: Uncertainty due to lack of knowledge or incomplete information.

Examples:
turbulence modeling assumptions
surrogate chemical kinetics
probability distribution of a random quantity

Note: This distinction is not always meaningful or even possible.
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3. Stochastic Modelling and Parametric PDEs
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Stochastic Modelling
Many reasons for stochastic modelling (not all strictly UQ):

lack of data (e.g. data assimilation for weather prediction)
data uncertainty (e.g. uncertainty quantification in subsurface flow)
parameter identification (e.g. Bayesian inference in engineering)
unresolvable scales (e.g. atmospheric dispersion modelling)
high dimensionality (e.g. stochastic simulation in systems biology)

Input: best knowledge about system (PDE), statistics of input parameters,
measured ouput data with error statistics,. . .

Output: statistics of QoIs or of entire state space
often very sparse (or no) output data ! need a good physical model!

Data assimilation in NWP: data misfit, rainfall at some location
Radioactive waste disposal: flow at repository, ’breakthrough’ time
Oil reservoir simulation: production rate
Atmospheric dispersion: amount of ash over Heathrow
Aeronautical engineering: certification of carbon fibre composite wing
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The “Fruit Fly” of UQ

The most popular model problem in the UQ community is the steady-state
diffusion problem with uncertain coefficient function:

�r·(aru) = f on domain D ⇢ Rd
.

(an elliptic partial differential equation)

Rather than the PDE solution u (pressure, temperature, concentration, ...) we are
typically interested in a functional Q of the solution. Such a functional is known
as a quantity of interest (QoI).

Examples:

Q(u) = u(x0), Q(u) =
1

|D0|

Z

D0

u(x) dx.

In what way might uncertainty in the coefficient a be addressed?
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Worst Case Analysis

Introduce an ✏-ball around a given function a0 (in a suitable norm).

Examples:

S :=

8
><

>:

{a 2 C
0(D) : ka� a0k1  ✏},

{a 2 C
1(D) : kr(a� a0)k1  ✏},

{a constant in D : |a� a0|  ✏}.

Worst case analysis: determine uncertainty interval

I = [ inf
a2S

Q(u(a)), sup
a2S

Q(u(a))].

The uncertainty range of Q is then the length of I.

This is a generalisation of interval analysis.
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Probabilistic Model

But: In general, some coefficients a 2 S are more likely than others.

Probabilistic approach:
Introduce probability measure on S.

Q(u(·)) as a (measurable) mapping from S to the output set
{Q(u(a)) : a 2 S} induces a probability measure for the QoI.
(“uncertainty propagation”)

Big issue: choice of distribution, too much subjective information?

Some classical guidelines: Laplace’s principle of insufficient reason, maximum
entropy, etc.

Choosing distribution based on data is point of departure for Bayesian
inference (genuine “uncertainty quantification”).
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Other Models

Evidence theory (generalisation of probabilistic model)
Fuzzy sets (deterministic approach introduced by [Zadeh, 1965])
Possibility theory
Scenario analysis
. . .

For the remainder we will focus on the probabilistic approach.
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PDEs with Random Coefficients – Examples

Navier–Stokes (e.g. flow around wing, weather forecasting):

⇢(!)

✓
@v
@t

+ v ·rv

◆
= �rp+ µ(!)r2v + f(x,!) in ⌦(!)

subject to IC v(x, 0) = v0(x,!) + BCs

uncertain ICs ! data assimilation
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PDEs with Random Coefficients – Examples
Structural Mechanics (e.g. composites, tires or bone):

r ·

✓
C(x,!) :

1
2

h
ru+ruT

i◆
+ F(x,!) = 0 in ⌦(!)

subject to BCs

fibre defects

contact on rough surface
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PDEs with Random Coefficients – Examples

Neutron Transport:

Oil Reservoir Simulation:

optimal well placement

Tsunami Simulation:

[Behrens et al]

Mantel Convection:

[Gmeiner et al]
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Stochastic Differential Equations (SDEs)
Atmospheric Dispersion (e.g. volcanic ash, radionuclides, . . . )

Given large-scale atmospheric flow ~v(~x, t), model turbulent dispersion of particles
by a system of SDEs:

d~U = a(~U, ~X, t)dt+ b( ~X, t)d ~W (t)

d ~X =
�
~v( ~X, t) + ~U( ~X, t)

�
dt

~U(t) . . . turbulent correction; ~X(t) . . . particle position; ~W (t) . . . Brownian motion

Similar models appear in mathematical finance. We will come back to that later!
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Stochastic Reaction Networks and Imaging

Gene Regulatory Networks
(direct stochastic simulation)

Source: Shannon et al, 2003

Geostatistics
(and other imaging applications)

Source: Corbel, Wellmann, 2015
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4. A Case Study: Radioactive Waste Disposal
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A Case Study: Radioactive Waste Disposal

An area where UQ has played a central role in the past 25 years is the
assessment of strategies and sites for the long-term storage of radioactive
waste.

Uncertainties arise from technological complexity as well as the long time
scales to be considered.

Many leading industrial countries (USA, UK, Germany) have scrapped
previous plans for national long-term disposal sites and are re-evaluating their
strategies.

Consider a basic UQ problem which occurs in site assessment.
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Background

Radioactive waste is produced mainly by nuclear power plants
(Other sources: medical, weapons, non-nuclear industries)

Exposure to high radiation levels seriously harmful to humans and animals;
long-term exposure to low-level radiation can cause cancer and other
long-term health problems.

Classification of waste “level”:
I high (HLW): highly radioactive, produces heat, small amount
I intermediate (ILW): still very radioactive, no heat produced
I low (LLW): low radioactivity; packaging material, protective clothing, soil,

concrete that has been exposed to radioactivity

Quantities in storage (excl. LLW; source: http://newmdb.iaea.org)
I Germany: 120,000 m3 (2007)
I France: 90,000 m3 (2007)

I UK: 350,000 m3 (2007)
I USA: 540,000 m3 (2008)
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Management Options

Since this problem has received serious consideration (⇡ 1970s), several options
have been discussed

Surface storage: current universal solution, not long-term, risky.
Disposal at sea: banned by international treaty (London Convention)

Disposal in space: too dangerous, prohibitive cost (but permanent)
Transmutation: not yet proven, would mitigate but not solve problem
Deep geological disposal: favoured by nearly all countries with a radioactive
waste disposal programme

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 4. A Case Study SS 2020 44/76

Deep Geological Disposal

Storage in containers in tunnels, several hundred meters deep, in stable
geological formations.

Issue: retrievable or not?

No human intervention required after final closure of repository.

Several barriers: chemical, physical, geological.

Substantial engineering challenge
(containment must be assured for at least 10,000 years).

Main escape route for radionuclides: groundwater pathway.

Assessing safety of potential sites of utmost importance
long timescales ! modelling essential!

Key aspect: How to quantify uncertainties in the models?
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WIPP – Waste Isolation Pilot Plant

US DOE repository for radioactive waste
situated near Carlsbad, NM.
Fully operational since 1999.
Extensive site characterisation and
performance assessment since 1976, also
in course of compliance certification and
recertification by US EPA (every 5 years).
Lots of publicly available data.
http://www.wipp.energy.gov
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WIPP Geology

Repository located at 655m depth
in bedded evaporites (primarily halite,
a salt).
Most transmissive rock layer in the
region is the Culebra Dolomite.
In the event of an accidental breach,
Culebra would be the principal
pathway for transport of
radionuclides away from the
repository.
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WIPP UQ Scenario

One scenario at WIPP is a release of
radionuclides by means of a borehole drilled
into the repository.
Radionuclides are released into the Culebra
Dolomite and then transported by
groundwater.
Travel time from release point in the
repository to the boundary of the region is an
important quantity.
To a good approximation the flow is
two-dimensional.
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Darcy’s Law
The simplest mathematical model for flow through a
porous medium (e.g. groundwater through an aquifer) is
given by Darcy’s Law:

q =
�k

µ
rp,

in which q is the volumetric flux or Darcy velocity
(discharge per unit area in [m/s]), k is the permeability
tensor, a material parameter describing how easily water
flows through the medium, µ is the dynamic viscosity of
the fluid and p is the hydraulic head (pressure) of the
fluid.
The hydraulic conductivity tensor is defined as
K := k⇢g/µ, where g is the acceleration due to gravity
and ⇢ the fluid density.
The actual pore velocity with which the fluid particles
move through the pores is obtained as u = q/�, where
� 2 [0, 1] denotes the porosity of the medium.
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Groundwater Flow Model

Stationary Darcy flow q = �Krp q : Darcy flux
K : hydraulic conductivity
p : hydraulic head

mass conservation r·u = 0 u : pore velocity
q = �u � : porosity

transmissivity k = Kb b : aquifer thickness

particle transport ẋ(t) = �
k(x)

b�
rp(x) x : particle position

x(0) = x0 x0 : release location

Quantity of interest: log10 of particle travel time to reach boundary
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UQ Problem – PDE with Random Coefficient

Primal form of Darcy equations (our “fruit fly”):

�r·[k(x)rp(x)] = 0, x 2 D, p = p0 along @D.

Model k as a random field (RF) k = k(x,!), ! 2 ⌦, with respect to underlying
probability space (⌦,A,P).

Modeling Assumptions (standard in 2D hydrogeology):

T has finite mean and covariance

k(x) = E [k(x, ·)] , x 2 D,

Covk(x,y) = E
⇥�
k(x, ·)� k(x)

� �
k(y, ·)� k(y)

�⇤
, x,y 2 D.

k is lognormal, i.e., Z(x,!) := log k(x,!) is a Gaussian RF.
CovZ is stationary and isotropic, i.e., CovZ(x,y) = c(kx� yk2)
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Matérn Family of Covariance Kernels

c(x,y) = c✓(r) =
�2

2⌫�1 �(⌫)

✓
2
p
⌫ r
�

◆⌫

K⌫

✓
2
p
⌫ r
�

◆
, r = kx� yk2

K⌫ : modified Bessel function of order ⌫

Parameters ✓ = (�2,�, ⌫) �2 : variance
� : correlation length
⌫ : smoothness parameter

Special cases:

⌫ = 1
2 : c(r) = �2 exp(�

p
2r/�) exponential covariance

⌫ = 1 : c(r) = �2 � 2r
�

�
K1

�
2r
�

�
Bessel covariance

⌫ ! 1 : c(r) = �2 exp(�r2/�2) Gaussian covariance
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Matérn Covariance Functions
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�2 = 1, � = 1 �2 = 8, � = 1/64, ⌫ = 1/2

Smoothness: Realisations Z(·,!) 2 C
⌘(D) (Hölder), for any ⌘ < ⌫.
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Sampling from Z – Karhunen-Loève Expansion

Since c(x,y) is symmetric, positive semidefinite, continuous, the covariance
operator

C : L2(D) ! L
2(D), (Cu)(x) =

Z

D
u(y)c(x,y) dy

is selfadjoint, compact, nonnegative. Hence, its eigenvalues {µm}m2N form a
non-increasing sequence accumulating at most at 0.

Karhunen-Loève expansion (converges in L2
P(⌦;L1(D))):

Z(x,!) = Z(x) +
1X

m=1

p
µm �m(x)Ym(!)

where {�m}m2N are normalised eigenfunctions and Ym ⇠ N(0, 1) i.i.d.
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WIPP Data
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below median
WIPP site boundary transmissivity measurements at 38 test

wells
use head measurements to obtain
boundary data via statistical
interpolation (kriging)
constant layer thickness b = 8m
constant porosity � = 0.16

SANDIA Nat. Labs reports [Caufman
et al., 1990]
[La Venue et al., 1990]
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Probabilistic Model of Transmissivity

Calibrate statistical model to the transmissivity data:
e.g. [Ernst et al., 2014]

1. Estimate parameters �, � and ⌫ via restricted maximum likelihood estimation
(REML).

2. Condition resulting covariance structure of Z = log k on transmissivity
measurements. (Low-rank modification of covariance operator.)

3. Approximate Z by truncated Karhunen-Loève expansion, i.e use only the
leading s terms.

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 4. A Case Study SS 2020 56/76

WIPP KL Modes – conditioned on 38 transmissivity observations

unconditioned, m = 1, 2, 9, 16

conditioned, m = 1, 2, 9, 16
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5. Computational Challenges

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 5. Computational Challenges SS 2020 58/76

Computational Challenges

Simulating PDEs with Highly Heterogeneous Random Coefficients:

�r · (k(x,!)rp(x,!)) = f(x,!), x 2 D ⇢ Rd
, ! 2 ⌦ (prob. space)

Sampling from random field log k(x,!) (correlated Gaussian):
I truncated Karhunen-Loève expansion of log k (see above)
I matrix factorisation, e.g. circulant embedding (FFT)
I via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Quadrature – (the central focus of this course!):
I Monte Carlo, Quasi-Monte Carlo
I Sparse Grids & stochastic Galerkin/collocation

Solve large number of multiscale deterministic PDEs:
I Efficient discretisation & FE error analysis (mesh size h)
I Multigrid Methods, AMG, DD Methods
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Why is it computationally so challenging?

Low regularity (global): k 2 C
⌘
, ⌘ < ⌫ < 1 (Hölder) =) fine mesh h ⌧ 1

Large �
2 & exponential =) high contrast kmax/kmin > 106

Small � =) multiscale + high stochastic dimension s > 100
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1

log t

ECDF of log travel time 
 20 000 MC samples

 

 

M = 30

M = 100

M = 500

M = 1000

Source: Ernst et al, 2014 (s = M)
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Standard Monte Carlo Quadrature

Y(!) 2 Rs Model(h)
�! P(!) 2 RMh

Output
�! Qh,s(!) 2 R

random input state vector quantity of interest

Here: Y multivariate Gaussian for KL expansion; P numerical PDE solution;
Qh,s a (non)linear functional of P

Real QoI Q(!) inaccessible (exact PDE), but we can assume
E[Qh,s]

h!0, s!1
�! E[Q] and |E[Qh,s �Q]| = O(h↵) +O(s�↵0

)

Standard Monte Carlo estimator for E[Q]: More detail below!

Q̂
MC :=

1

N

NX

i=1

Q
(i)
h,s

where {Q
(i)
h,s}

N
i=1 are i.i.d. samples computed with Model(h)

Cost per sample is O(M�
h ) (optimal: � = 1)

Scheichl & Gilbert High-dim. Approximation / I. Introduction / 5. Computational Challenges SS 2020 61/76



Standard Monte Carlo Quadrature

Convergence of plain vanilla MC (mean square error):

E
⇥�
Q̂

MC
� E[Q]

�2⇤
| {z }

=: MSE

= V[Q̂MC] +
�
E[Q̂MC]� E[Q]

�2

=
V[Qh,s]

N| {z }
sampling error

+
⇣
E[Qh,s �Q]

⌘2

| {z }
model error (“bias”)

Typical: ↵ = 1 ) MSE = O(N�1) +O(h2)  TOL2,
and so h ⇠ TOL and N ⇠ TOL�2.

Using optimal PDE solver: Cost = O(Nh
�d) = O(TOL�(d+2))

(e.g. for TOL = 10�3: h ⇠ 10�3, N ⇠ 106 and Cost = O(1012) in 2D!!)

Quickly becomes prohibitively expensive !
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Numerical Experiment with standard Monte Carlo

D = (0, 1)2, unconditioned KL expansion, Q = k � k
@p
@x1

kL1(D) using mixed FEs
and the AMG solver amg1r5 [Ruge, Stüben, 1992]

Numerically observed FE-error: ⇡ O(h3/4) =) ↵ ⇡ 3/4.
Numerically observed cost/sample: ⇡ O(h�2) =) � ⇡ 1.

Total cost to get RMSE O(TOL): ⇡ O(TOL�14/3)
to get error reduction by a factor 2 ! cost grows by a factor 25!

Case 1: �2 = 1, � = 0.3, ⌫ = 0.5

TOL h�1 Nh Cost
0.01 129 1.4⇥ 104 21min

0.002 1025 3.5⇥ 105 30 days

Case 2: �2 = 3, � = 0.1, ⌫ = 0.5

TOL h�1 Nh Cost
0.01 513 8.5⇥ 103 4 h

0.002 Prohibitively large!!

(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)
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Alternatives – The Curse of Dimensionality
Polynomial quadrature: stochastic Galerkin/collocation methods

I Cost grows very fast with dimension s & polynomial order q
! #stochastic DOFs NSC = O

⇣
(s+q)!
s!q!

⌘
(faster than exponential!)

I Lower number with sparse grids (Smolyak), but still exponential growth with s!

The “Curse of Dimensionality”

I Anisotropic sparse grids or adaptive best N -term approximation can be
dimension independent with sufficient smoothness! More detail below!

Monte Carlo type methods
I Convergence of plain vanilla Monte Carlo is always dimension independent !

(No smoothness needed!) BUT (as shown) the order is too slow: O(N�1/2)!
I Quasi-Monte Carlo can also be dimension independent and (almost) O(N�1)!

But requires also (some) smoothness ! More detail below!

I Classical quasi-MC methods (e.g. latin hypercube) have cost O(N�1(logN)s)!
(“Curse of Dimensionality”)
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6. Short Recap on Polynomial Approximation &
Quadrature in one Dimension
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Interpolation & Best Approximation

Given y0, . . . , yn, the values of a function f(x) at x0 < . . . < xn 2 [a, b], as well
as a class of approximating functions P , e.g. polynomials.

Interpolation. We say the function g 2 P interpolates the unknown function f if

g(xi) = yi , for all i = 0, . . . , n.

Best Approximation. We say the function g 2 P is the best approximation of the
unknown function f in P with respect to the norm k · k if

kf � gk = min
h2P

kf � hk.

The following is based on my lecture notes from Numerik 0 – Einführung in die
Numerik from WS 2018/19.
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Polynomials: Uniqueness and Interpolation Error
Interpolation.
Let kfk1,[a,b] be the uniform (maximum) norm kfk1,[a,b] := maxx2[a,b] |f(x)|.
(This can be generalised for discontinuous functions to kfk1,[a,b] := ess supx2[a,b]|f(x)|.)

Theorem 6.1 (Numerik 0, Satz 2.8 & Korollar 2.13)
Let P = Pn. Then there exists a unique interpolant pn 2 Pn and

kf � pnk1,[a,b] 
|b� a|

n+1

(n+ 1)!
kf

(n+1)
k1,[a,b]

Best Approximation.

Theorem 6.2 (Numerik 0, Satz 2.26)
Let P = Pn and f 2 C[a, b]. Then there exists a unique best approximating

polynomial pn 2 Pn (the norm can be arbitrary here) such that

kf � pnk = min
q2Pn

kf � qk.
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Interpolatory Quadrature Rules
Based on integrating the interpolating polynomial pn 2 Pn, i.e.

Z b

a
f(x) dx ⇡ Qn(f) :=

Z b

a
pn(x) dx =

nX

i=0

wif(xi)

with wi :=
R b
a L

(n)
i (x) dx.

Newton-Cotes Rules.
Based on equidistant points xi = a+ ih, i = 0, . . . , n, with h = (b� a)/n.

Theorem 6.3 (Proposition 3.6 & Korollar 3.11)
Newton-Cotes quadrature rules are exact for polynomials of degree n and (n+ 1)
for n odd and n even, respectively, and

�����Qn(f)�

Z b

a
f(x) dx

����� 

8
<

:
C

(b�a)n+2

(n+1)! kf
(n+1)

k1,[a,b] for n odd,

C
(b�a)n+3

(n+2)! kf
(n+2)

k1,[a,b] for n even.
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Interpolatory Quadrature Rules
Composite Newton-Cotes Rules.
Apply Newton-Cotes rule Qn(f) on subintervals [yj�1, yj ] of [a, b] with
a = y0 < y1 < . . . < yN = b and now h = maxNj=1(yj � yj�1).

Theorem 6.4 (Korollar 3.14)
For the composite Newton-Cotes quadrature rule Qn,N (f), i.e. applying Qn(f)
on N subintervals, we get

�����Qn,N (f)�

Z b

a
f(x) dx

�����  Ckf
(d+1)

k1,[a,b]h
d+1

where d = n for n odd and d = n+ 1 for n even.

In the equidistant case h = b�a
N and so the rate of convergence is O(N�(d+1)).

Using an error estimator, the subintervals [yj�1, yj ] can be chosen adaptively,
which is particularly useful if the derivatives blow up near some points, but the
function is smooth otherwise.
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Interpolatory Quadrature Rules

Gauss Rules.
By choosing the quadrature points in an optimal way, rather than equidistant, the
order of the quadrature rule can be significantly increased.

Theorem 6.5 (Satz 3.24 and Satz 3.27)
If the quadrature points x0, . . . , xn are the roots of the (n+ 1)th Legendre

polynomial, then the interpolatory quadrature rule Qn(f) is exact for polynomials

of degree 2n+ 1 and

�����Qn(f)�

Z b

a
f(x) dx

�����  C

✓
b� a

2

◆2n+3 1

(2n+ 2)!
kf

(2n+2)
k1,[a,b] .

Of course it is also possible to use Gauss quadrature rules in composite form. The
rate of convergence is then O(N�(2n+2)).
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7. The Curse of Dimensionality
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Numerical integration in one dimension

y10

f(y)

Z 1

0
f(y) dy ⇡

1

n

n�1X

k=0

f
�
k
n

�

1. n function evaluations

2. if
��� df
dy

��� < 1 then error ⇠ O(h) = O(n�1)
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Numerical integration in two dimensions

1

1

y2

y1

Z 1

0

Z 1

0
f(y1, y2) dy1dy2 ⇡

1

N

n�1X

k=0

n�1X

`=0

f
�
k
n ,

`
n

�

1. N = n
2 function evaluations in total

2. if
��� @f
@y1

��� ,
��� @f
@y2

��� < 1 then error ⇠ O(h) = O(N�1/2)
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... d dimensions — The curse of dimensionality!

y1

y2

y3???

yd

Z

[0,1]d
f(y) dy ⇡

1

nd

n�1X

k1=0

n�1X

k2=0

· · ·

n�1X

kd=0

f
�
k1
n ,

k2
n , . . . ,

kd
n

�

1. N = n
d function evaluations in total

2. error ⇠ O(h) = O(N�1/d)

In 100 dimensions a rule using two points in each dimension needs
2100 ⇡ 1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000 function evaluations!
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How to break the curse of dimensionality?
Z

[0,1]d
f(y) dy ⇡

1

N

N�1X

k=0

f(tk) =: QN,d(f) (only rules with weights 1/N)

Product rules

tk on a product grid
error ⇠ O(N�1/d)

krfk < 1

Possible to improve with higher
regularity and “sparse grids”
(but still exponential in 1/d).

Monte Carlo

tk ⇠ U([0, 1]d) (random)
error ⇠ O(N�1/2)

only kfkL2 < 1

independent of dimension!

Quasi–Monte Carlo

tk chosen deterministically
error ⇠ O(N�1+�)

f 2 H
1
mixed See below!

independent of dimension!
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Summary of Chapter I

Monte Carlo methods do not suffer from the curse of dimensionality. They
are “non-intrusive” , require no regularity and nonlinear parameter dependence is
no problem.

But the plain vanilla version is too slow!

Polynomial quadrature rules (tensorised) in their basic form suffer from the
curse of dimensionality. They may require a major software rewrite, typically
require a lot of regularity and nonlinear parameter dependence may lead to
further cost increase.

But they can potentially converge much faster than MC!

Alternatives?
Accelerate Monte Carlo methods
Sparsify polynomial rules
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1. History – The Buffon Needle Problem
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Monte Carlo
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The Buffon Needle Problem

In 1777, George Louis Leclerc, Comte de Buffon
(1707–1788), French naturalist and mathematician,
posed the following problem:

Let a needle of length ` be thrown at
random onto a horizontal plane ruled with
parallel straight lines spaced by a distance
d > ` from each other. What is the
probability p that the needle will intersect
one of these lines?

Answer: p = 2`
⇡d

(simple geometric arguments)

Laplace later used similar randomised experiment to approximate ⇡.

The term “Monte Carlo method” was coined by Ulam, von Neumann,
Metropolis in the Manhattan project (Los Alamos, 1946).
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The Buffon Needle Problem

Proceedings of the Royal Society of London, 2000
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Monte Carlo Simulation for the Buffon Needle Problem

Let {Hk}k2N denote a sequence of i.i.d. binomial random variables s.t.

Hk(!) =

(
1 if k-th needle intersects a line,
0 otherwise.

Their common distribution is that of a Bernoulli trial with success probability
p = 2`/⇡d. In particular: E [Hk] = p 8k.

SN = H1 + · · ·+HN is the total number of hits after N throws.

Strong Law of Large Numbers:

SN

N
! p almost surely (a.s.)

Compute realizations of Hk by sampling Xk ⇠ U[0, d/2] (distance of needle
center to closest line) and ⇥k ⇠ U[0,⇡/2] (acute angle of needle with lines)
using a random number generator.
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Monte Carlo Samples for the Buffon Needle Problem
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Results of the Monte Carlo Simulation

Setting d = 2, ` = 1 gives p = 1
⇡
. We should get N/SN

N!1
�! ⇡.

A Matlab experiment yields
N SN N/SN rel. Error
10 3 3.333 6.10e-2

100 32 3.125 5.28e-3
1000 330 3.030 3.54e-2

10000 3188 3.137 1.54e-3

Mario Lazzarini (1901) built machine that carries out repetitions of this
random experiment. His needle was 2.5cm long and the lines 3.0cm apart.
He claims to have observed 1808 intersections for 3408 throws, i.e

⇡ ⇡ 2 ·
2.5

3
·
3408

1808
= 3.141592920353983 . . .

A relative error of 8.5 · 10�8 ! Is this too good to be true?
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2. Convergence Results for Basic Monte Carlo Simulation
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Basic Monte Carlo Simulation – Convergence Results
Given a sequence {Xk} of i.i.d. copies of a given random variable X, basic
MC simulation uses the estimator

E [X] ⇡
SN

N
, SN = X1 + · · ·+XN .

By the Strong Law of Large Numbers,
SN

N
! E [X] a.s.

Also, for any measurable function f ,
1

N

NX

k=1

f(Xk) ! E [f(X)] a.s.

If E [X] = µ and Var[X] = �
2, then (via the Central Limit Theorem)

E [SN ] = Nµ, Var[SN ] = N�
2 and S

⇤
N

=
SN �Nµ
p
N�

! N(0, 1),

i.e. the estimate is unbiased, the standard error is �N�1/2 and the
distribution of the normalised RV S

⇤
N

becomes Gaussian as N ! 1.

(if Var[X] < 1 then the normalised RV X⇤ := X�E[X]p
Var[X]

has E [X⇤] = 0, Var[X⇤] = 1)
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Various Convergence Statements

1. Since

E
"✓

SN

N
� µ

◆2
#
= Var

SN

N
=

�2

N
! 0,

we have mean square convergence of SN/N to µ.

2. Chebyshev’s Inequality implies, for any ✏ > 0,

P
⇢����

SN

N
� µ

���� > N�1/2+✏

�
 �2

N2✏
,

i.e. the probability of the error being > N�1/2+✏
converges to zero as N ! 1.

3. If ⇢ := E
⇥
|X � µ|3

⇤
< 1, then the Berry-Esseen Inequality gives

|P{S⇤
N  x}� �(x)|  ⇢

2�3
p
N

,

where � denotes cumulative density function (CDF) of N(0, 1).
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Confidence Intervals
Exercise 2.1

(a) Using the Berry-Esseen bound derive a confidence interval for the estimate SN
N

and (upper and lower) bounds on the probability that µ falls into the interval.
(b) In the Buffon needle problem, we have

E [Hk] = p, Var[Hk] = p(1� p), E
⇥
|Hk � p|

3
⇤
= p(1� p)(1� 2p+ 2p2).

Calculate the confidence interval for this problem in the case N = 3408,
` = 2.5, d = 3, and thus check how likely it is that Lazzarini’s machine would
produce 1808 intersections and a relative accuracy of ⇡ of 8.5 · 10�8.

Please pause the video and attempt this exercise yourself before resuming!

Proposition 2.2 (Asymptotic 95% confidence interval for MC estimate)

0.95�
⇢

�3
p
N

 P
⇢
µ 2


SN

N
�

1.96�
p
N

,
SN

N
+

1.96�
p
N

��
 0.95 +

⇢

�3
p
N
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3. Improving the Monte Carlo Method
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Quasi-Monte Carlo Methods
In quasi-Monte Carlo methods, the samples are not chosen randomly, but special
(deterministic) number sequences, known as low-discrepancy sequences, are used
instead. Discrepancy is a measure of equidistribution of a number sequence.

Example.

The van der Corput sequence is such a low-discrepancy sequence for the unit
interval. For base 3, it is given by xn = k

3j , where j increases monotonically and,
for each j, k runs through all nonnegative integers such that k/3j is an irreducible
fraction < 1. The ordering in k is obtained by representing k in base 3 and
reversing the digits. The first 11 numbers are

{xn}
11
n=1 = {0,

1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9
,
8

9
,
1

27
,
10

27
}.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1
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Quasi-Monte Carlo Methods

Replacing i.i.d. random numbers sampled from U[0, 1] in a standard Monte
Carlo approximation of E [f(X)] for some f 2 C

1(0, 1) and X ⇠ U[0, 1], by
the van der Corput sequence of length N , yields a quasi-Monte Carlo method.

The convergence rate is improved from O(N�1/2) to O(N�2).

Although this improvement in one dimension is impressive, the method does
not generalise easily and the rate of convergence depends on the problem.

In particular, the rate of convergence for a quasi-Monte Carlo method
generally does depend on the dimension.

Section 3: More details on QMC methods and their analysis
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Variance Reduction

The constant in the MC convergence rates is the variance �2 of the RV from
which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.

To approximate E [X] by standard MC, we draw independent samples
{Xk}

N

k=1 of X and compute the sample average SN/N .
Now assume a second set of samples {X̃k}

N

k=1 of X is given with sample
average S̃N/N .
Since both sample averages converge to E [X], so does 1

2 (SN/N + S̃N/N).

When Xk and X̃k are negatively correlated they are called antithetic samples,
and the approximation 1

2N (SN + S̃N ) is a more reliable approximation of
E [X] than 1

2N S2N .
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Variance Reduction

Theorem 3.1

Let the two sequences of RVs {Xk} and {X̃k} be identically distributed with

Cov(Xj , Xk) = Cov(X̃j , X̃k) = 0 for j 6= k.

Then the sample averages SN/N and S̃N/N satisfy

Var

"
SN + S̃N

2N

#
= Var


S2N

2N

�
+

1

2
Cov

 
SN

N
,
S̃N

N

!
 Var


SN

N

�
.

Worst case: Variance of average of N samples and N antithetic samples no
better than variance of N independent samples.
Best case: negatively correlated SN/N and S̃N/N ; then the variance of N
samples and N antithetic samples is less than the variance of 2N
indepependent samples.
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4. A Simple ODE Example
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Predator-prey dynamical system
Now let us apply the Monte Carlo method in a UQ application. Consider the
popular Lotka-Volterra (or predator-prey) model of the dynamics of two
interacting populations

u̇ =


u̇1

u̇2

�
=


✓1u1 � ✓12u1u2

✓21u1u2 � ✓2u2

�
= f(u), u(0) = u0,

where u1 is the number of prey, u2 is the number of predator and
✓1, ✓2, ✓12, ✓21 � 0 are parameters describing the interaction of the two species.

For simplicity, assume that

✓1 = ✓2 = ✓12 = ✓21 = 1

and only the vector of initial conditions u0 is uncertain.

It is modeled as a (uniform) random vector u0 ⇠ U(�), where � denotes the
square

� = u0 + [��, �]2.

Goal: estimate E [u1(T )] at time T > 0 using the Monte Carlo method.
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Predator-Prey Dynamical System – Sample Trajectories

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

u
1

u
2

Population dynamics problem (with ✓1 = ✓2 = ✓12 = ✓21 = 1) integrated over [0, T ]
with u0 = [0.5, 2]T, � = 0.2 and T = 6. Unperturbed trajectory (black) alongside
15 perturbed trajectories. For the unperturbed trajectory u1(T ) = 1.3942.
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Modelling Epidemics like COVID-19
Obviously there are arbitrarily many variations to this simple UQ problem
(the distribution of u0 may be more complicated, the interaction parameters may

also be uncertain, there may be more species, or the quantity of interest may be

something more complicated) . . . in particular . . .

A special case of the Lotka-Volterra model is the simplest and most widely
used model for the spread of diseases (also at the moment with COVID-19),
the SIR model:

Ṡ = �
�

N
SI

İ = �

N
SI � �I

Ṙ = �I

where a population of N individuals is divided into the categories susceptible
(S), infecteous (I) and recovered (R).

The total number N = S + I +R of individuals is assumed to be constant,
i.e. birth and death processes are assumed to be negligible.

For constant N , this problem can be reduced to solving the first two ODEs,
which is the Lotka-Volterra system with ✓1 = 0, ✓12 = ✓21 = �/N , ✓2 = �.
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Modelling Epidemics like COVID-19

To model the current situation, including the lock-down measures, a more
accurate model is the SEIR model, which includes a category exposed (E):

Ṡ = µ(N � S)� �

N
SI

Ė = �

N
SI � (µ+ ↵)E

İ = ↵E � (� + µ)I

Ṙ = �I � µR

One of my postdocs, Tobias Siems, is currently collaborating with the Heidelberg
Institute of Global Health, modelling the Rhein-Neckar-Kreis with SEIR to
predict case numbers and the resulting need for hospital beds.
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Explicit Euler Discretisation
Denote by uM = uM (!) the explicit Euler approximation after M = Mh

time steps of length h = T

M
, starting with initial data u0 = u0(!), i.e.

uj = uj�1 + hf(uj�1), j = 1, . . . ,Mh.

Explicit Euler has consistency order 1 and thus there exists a constant K > 0
sucht that the discretisation error can be bounded by

ku(T )� uMhk  K h .

e.g. [Numerik 1 (Numerical Analysis of ODEs), Example 2.2.4 & Theorem 2.2.8].

Define the quantity of interest (QoI) Q = �(u(T )) = u1(T ) for u = [u1, u2]T

and estimate E [Qh] using the MC method just described with Qh = �(uMh).

The QoI � is Lipschitz-continuous with constant L = 1, such that also

|E [Q]� E [Qh] | = |E [Q�Qh] |  K h. (4.1)

Denote the Monte Carlo estimator for E [Qh] by

bQh := bQh,N =
1

N

NP
k=1

Q
(k)
h

N samples Q
(1)
h

, . . . , Q
(N)
h

of Qh.

Expect better approximations for N large and h small.
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Bias-Variance Decomposition – Balancing Error Contributions

Lemma 4.1 (Bias-Variance Decomposition)

The mean square error (MSE) can be expanded

E
h�
E [Q]� bQh

�2i
=
�
E [Q�Qh]

�2
+

Var[Qh]

N

Please pause the video again to attempt to prove this lemma yourself!

Proof. Demonstrated on tablet.
Hint: Note that E [Q] is constant and only bQh is actually random.

Thus, using the bias error bound above and the fact that, for h sufficiently small,
Var[Qh]  �

2
bnd

 1.1Var[Q] (independently of h), we get the following bound:

MSE := E
h�
E [Q]� bQh

�2i
 K

2
h
2 + �

2
bnd

N
�1 (4.2)
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Balancing Discretisation and Sampling Error (in probability)

Using the above convergence results, the error can also be bounded and balanced
in probability:

Error with N samples and M = T/h time steps:

eh,N := |E [Q]� bQh|  |E [Q]� E [Qh] || {z }
discretisation error

+ |E [Qh]� bQh|| {z }
Monte Carlo error

For the MC error, from Exercise 2.1 with Var[Qh] = �
2
h
 �

2
bnd

we get

P
⇢���E [Qh]� bQh

��� 
1.96�h
p
N

�
> 0.95 +O(N�1/2)

Combined with discretisation error in (4.1) (using triangle inequality):

P
n
eh,N  K h+ 1.96�hN

�1/2
o
> 0.95 +O(N�1/2). (4.3)
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Monte Carlo Complexity for Predator-Prey Problem
Finally noting that the cost in each time step is 8 FLOPs, the total cost for the
MC estimator is

Cost( bQh) = 8MhN = 8T h
�1

N (FLOPs) (4.4)

and we have the following complexity result:

Proposition 4.2 (Monte Carlo Complexity)

The total cost to compute a standard Monte Carlo estimator for E [u1(T )] for
the predator-prey model with explicit Euler time discretisation, such that
MSE < "

2 or P{eh,N < "} > ✓ for any ✓ 2 (0, 1), satisfies

Cost( bQh) = O("�3).

Proof. (only the proof for in probability) A sufficient condition for eh,N < " is

K h = "/2 and 1.96�hN
�1/2 = "/2 (balancing the two terms).

This leads to

h = 1
2K" and N = 3.922�2

h
"
�2

) Cost( bQh) 
256T�2

bnd

K
"
�3

.

Scheichl & Gilbert High-dim. Approximation / II. Monte Carlo / 4. ODE Example SS 2020 27/82

Sample Trajectories
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Population dynamics problem (with ✓1 = ✓2 = ✓12 = ✓21 = 1) integrated over [0, T ]
with u0 = [0.5, 2]T, � = 0.2 and T = 6. Unperturbed trajectory (black) alongside
15 perturbed trajectories. For the unperturbed trajectory u1(T ) = 1.3942.
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Antithetic Sampling for the Predator-Prey System
We may introduce antithetic sampling to this problem by noting that, if
u0 ⇠ U(�) with � = u0 + [��, �]2, then the same holds for the random vector

ũ0 := 2u0 � u0.

Thus, the trajectories generated by the random initial data ũ0 have the same
distribution as those generated by u0.

Let Qh = �(uMh) be the basic samples and Q̃h = �(ũMh) the antithetic
counterparts. Note that all pairs of samples are independent except each
sample and its antithetic counterpart.

Then use 1
2 (
bQh,N + b̃

Q
h,N

) instead of bQh,2N (same cost).

For the actual implementation, to estimate Var[Qh] and Cov(Qh, Q̃h) we
can use sample variance and covariance (resp.), i.e.

1
N � 1

NX

k=1

(Q(k)
h

� bQh,N )2 and
1

N � 1

NX

k=1

(Q(k)
h

� bQh,N )(Q̃(k)
h

� b̃Q
h,N

)
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Numerical Experiment – Comparing Standard and Antithetic

Sampling
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MC estimation of E [u1(T )] using standard MC with N samples (left) vs. MC
with antithetic sampling using N/2 samples of the initial data (right), showing the
estimate along with 95% confidence intervals.
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Programming Exercise

Exercise 4.3

(a) Find an estimate for Var
⇥
1
2 (
bQh,N + b̃

Q
h,N

)
⇤

based on the sample variances
and sample covariances of {Q(k)

h
} and {Q̃

(k)
h

} defined above.

(b) Implement the Monte Carlo method for the predator-prey system with
u0 = [0.5, 2]T, � = 0.2, T = 6, using explicit Euler discretisation, i.e.

u̇ = f(u) and u(0) = u0 �! uj = uj�1 + h f(uj�1).

Study the rates of convergence of the discretisation and MC errors and
compute confidence intervals.

(c) Implement also the antithetic estimator and compare the variance of the two
estimators. How much is the variance reduced? Does this reduction depend
on the selected tolerance ".
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5. The Multilevel Monte Carlo Method
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History
The multilevel Monte Carlo method is a powerful new variance reduction
technique (especially for UQ applications).

First ideas for high-dimensional quadrature by [Heinrich, 2000].

Independently discovered and popularised by [Giles, 2007] in the context of
stochastic DEs in mathematical finance.

First papers in the context of UQ:
I [Cliffe, Giles, RS, Teckentrup, 2011]

I [Barth, Schwab, Zollinger, 2011]

Stochastic simulation of discrete state systems (biology, chemistry) by
[Anderson, Higham, 2012]
. . .

Goal: Estimate E [Q] for an inacccessible random variable Q (e.g. derived from
solution of a DE model). However, we have access to a sequence of approximations
Qh ⇡ Q, parametrised by h (#time steps, #grid points, . . . ) s.t. limh!0 Qh = Q.

Idea: Reduce variance by a clever use of a hierarchy of approximations.
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Abstract Complexity result for Standard MC
Recall from Lemma 4.1 that the mean square error (MSE) for the standard MC
estimator bQh,N (using samples from the approximation Qh instead of Q) expands
as

E
⇣
bQh,N � E [Q]

⌘2�
=
�
E [Qh �Q]

�2
+

Var[Qh]

N
.

Thus, we can derive an abstract version of Proposition 4.2 (with identical proof):

Theorem 5.1 (Abstract Complexity Theorem for standard MC)

Assume that there exist constants ↵, � > 0, such that

|E [Qh �Q] | = O(h↵), as h ! 0, (5.1)

Cost(Q(k)
h

) = O(h��), as h ! 0, (5.2)

where Cost(Q(k)
h

) denotes the cost per sample from approximation Qh.

Then, for any " > 0 and ✓ 2 (0, 1), the total cost to compute a standard Monte
Carlo estimator for E [Q], such that MSE < "

2 or P{eh,N < "} > ✓, satisfies

Cost( bQh,N ) = O("�2��/↵).
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Multilevel Estimator

Key idea: use samples of Qh on a hierarchy of different levels, i.e., for
different values h0, . . . , hL of the discretization parameter, and decompose

E [QhL ] =E [Qh0 ] +
LX

`=1

E
⇥
Qh` �Qh`�1

⇤
=:

LX

`=0

E [Y`] ,

For simplicity, we will often choose h`�1 = mh`, ` = 1, . . . , L, for some
m 2 N \ {1} and h0 > 0) (uniform grid refinement).

Given estimators {bY`}
L

`=0 for E [Y`], we refer to

bQML

L
:=

LX

`=0

bY`

as a multilevel estimator for Q.

Different variants of this multilevel estimator now arise from different choices
of the level estimators, e.g. standard Monte Carlo, quasi-Monte Carlo, etc . . .
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Multilevel Monte Carlo (MLMC) Estimator
If each bY` is itself a standard Monte Carlo estimator, i.e.,

bY0 = bY0,N0 :=
1

N0

N0X

k=1

Q
(k)
h0

and

bY` = bY`,N` :=
1

N`

NX̀

k=1

⇣
Q

(k)
h`

�Q
(k)
h`�1

⌘
, ` = 1, . . . , L,

one obtains the multilevel Monte Carlo estimator and bQML

L
is unbiased.

If all expectations E [Y`] are sampled independently (not neccessary), then

Var bQML

L
=

LP
`=0

Var bY`.

and the associated MSE has the standard decomposition

E
⇣
bQML

L,{N`} � E [Q]
⌘2�

= E [QhL �Q]2 +
LX

`=0

Var Y`

N`

into bias and sample variance (shown as for standard MC in Lemma 4.1).
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MLMC variance reduction

Choose the discretisation parameter hL on the highest level and the numbers
of samples (N`)L`=0 again to balance the terms in the MSE.

The bias term is the same as for the standard MC estimator if hL = h, so
that under Assumption (5.1), this leads again to a choice of hL = O("1/↵).

But why do we get variance reduction or lower cost for the same variance?

Two reasons:

1. As we coarsen the problem, the cost per sample decays rapidly from level to
level under Assumption (5.2); by a factor m� if h`�1/h` = m.

2. Since Qh ! Q, then Var[Y`] = Var[Qh` �Qh`�1 ] ! 0 as `! 1, allowing
for smaller and smaller sample sizes N` on higher and higher levels.
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Optimal Sample Sizes

The cost of the MLMC estimator is

Cost( bQML

L,{N`}) =
LX

`=0

N`C`, C` := Cost(Y (k)
`

).

Treating the N` as continuous variables, the cost of the MLMC estimator can
be minimised for a fixed variance

LX

`=0

Var Y`

N`

=
"
2

2

The solution to this constrained minimisation problem is (see below):

N` '

p
Var[Y`]/C` (5.3)

with implied constant chosen such that the total variance is "
2

2 , leading to
the constant 2

"2

P
`

p
C` Var[Y`].
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Cost Comparison MLMC vs. Standard MC

Thus the total cost on level ` is proportional to
p

C` Var[Y`] and therefore

Cost( bQML

L,{N`}) 
2

"2

✓ LX

`=0

p
C` Var[Y`]

◆2

For comparison, standard MC has Cost( bQhL,N ) = 2
"2
CL Var[QML ].

If Var[Y`] decays faster than C` increases, the cost on level ` = 0 dominates.
Since Var[Qh0 ] ⇡ Var[QhL ], the cost ratio of MLMC to MC estimation is
then approximately

C0/CL h
�
m

��
�L

If C` increases faster than Var[Y`] decays, then the cost on level ` = L

dominates, and then the cost ratio is approximately

Var[YL]/Var[QhL ] h "
2

(provided E
⇥
(Q�QL)2

⇤
h (E [Q�QL])

2, which is problem dependent).
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General Multilevel Monte Carlo Complexity Theorem
Theorem 5.2

Let " < exp(�1) and assume that there are constants ↵,�, � > 0 such that
↵ �

1
2 min{�, �} and, for all ` = 0, . . . , L,

(M1) |E [Qh` ]� E [Q] | = O(h↵

`
),

(M2) Var[Y`] = O(h�

`
),

(M3) C` = O(h��

`
).

Then there are L and {N`}
L

`=0 such that E
h� bQML

L,{N`} � E [Q]
�2i

 "
2 and

Cost
� bQML

L,{N`}
�
=

8
><

>:

O
�
"
�2
�
, if � > �,

O
�
"
�2

| log "|2
�
, if � = �,

O
�
"
�2�(���)/↵

�
, if � < �.

Proof. Demonstrated on tablet.

[Giles, 2007] for special case of SDEs with ↵ = � = 1.
[Cliffe, Giles, RS, Teckentrup, 2011] for the general case.
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Application to the Predator-Prey Problem
In the case of the predator-prey model problem we have already seen in (4.1) and
(4.4) that (M1) and (M3) hold with ↵ = 1 and � = 1, respectively.

Finally, it can be proved similarly to (M1) that (M2) holds with � = 2, i.e.

Var[Y`] = Var[Qh` �Qh`�1 ]  E
h�
Qh` �Qh`�1

�2i

 2
⇣
E
h�
Q�Qh`�1

�2i
+ E

h�
Q�Qh`

�2i⌘

 2
�
K

2
h
2
`�1 +K

2
h
2
`

�

 2K2(1 +m
2)| {z }

constant

h
2
`
.

Thus, � > � and it follows from Theorem 5.2 that

Cost
� bQML

L,{N`}
�
= O

�
"
�2
�
.

Recall that for standard MC we had Cost( bQh,N ) = O
�
"
�3
�
, so we gained a whole

order of magnitude.
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Numerical Results – CPU time vs. Root Mean Square Error

Comparing the three estimators described – standard MC, anithetic MC & MLMC:

We can observe the variance reduction through antithetic sampling, but the cost
for both one level MC methods grows like O("�3), as predicted, while the cost for
MLMC grows like O("�2). The actual cost depends on the number of levels.
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Adaptive MLMC Algorithm
The following MLMC algorithm computes the optimal values of L and N`

adaptively using the sample averages bY`,N` and sample variances

s2
`
:=

1

N � 1

NX̀

k=1

⇣
Y

(k)
`

� bY`,N`

⌘2
of Y` .

Sample variances can be used directly to estimate the MC error on each level.

To bound the bias error, we assume there exists an h
?
> 0 such that the

error decay in |E [Qh �Q] | is monotonic for h  h
? and satisfies

ch
↵
 |E [Qh �Q] |  Ch

↵
.

This ensures that in the case h`�1

h`
= m (via inverse triangle inequality) DIY

|E [Qh` �Q] |  1
rm↵�1

bY` for r = c/C.

For the predator-prey problem for example r = c/C ⇡ 1 (you can safely
choose c = 0.9) and this gives a computable error estimator on level L to
determine whether hL is sufficiently small or whether L needs to be increased.
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Adaptive MLMC Algorithm

Adaptive MLMC Algorithm

1. Set h0, m, ", L = 1 and N0 = N1 = NInit.
2. For all levels ` = 0, . . . , L do

a. Compute new samples Y (k)
`

on level ` until there are N`.
b. Compute bY` and s2`, and estimate C`.

3. Update estimates for N` using the formula in (5.3) and
if bYL > rm

↵�1p
2

", increase L ! L+ 1 and set NL = NInit.

4. If bYL  rm
↵�1p
2

" and
P

L

`=0 s
2
`/N`  "2/2

Go to 5.
Else

Return to 2.

5. Set bQML
L,{N`} =

LP
`=0

bY`.
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Numerical Experiments

Exercise 5.3

(a) Implement the multilevel MC method for the predator-prey problem. Choose
h0 sufficiently small to avoid stability problems with the explicit Euler
method. Compare the cost to achieve a certain tolerance " for the mean
square error (in terms of FLOPs) against your other two implementations
(standard and antithetic MC). How big is the computational gain?

(b) Recall that ↵ = � = 1 and � = 2 in that case. Verify this with your code.
What are the numerically observed rates?
See [Giles, 2007], [Cliffe, Giles, RS, Teckentrup, 2011] for good ways to visualise your results.
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6. Random Fields
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Model Elliptic PDE & Random Fields
We return to our model elliptic boundary value problem (radwaste case study)

�r·(aru) = f, on D ⇢ Rd
, u|@D = 0, (6.1)

where a and f are random fields defined on D.

Definition 6.1

Let D ⇢ Rd, d 2 N, and let (⌦,A,P) be a probability space (see Appendix A). A
(real-valued) random field is a mapping

a : D ⇥ ⌦ ! R

such that each function a(x, ·) : ⌦ ! R, x 2 D, is a random variable.

Definition 6.2

For each fixed ! 2 ⌦ the associated function a(·,!) : D ! R is called a
realization of the random field.

Let RD denote the set of all real-valued functions f : D ! R. The mapping ! 7! a(·,!) from
(⌦,A) to (RD,A(RD)) is measurable and hence a random variable with values in RD.
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Model Elliptic PDE & Random Fields

Similar to a random vector or a stochastic process, a random field is a family
of random variables indexed by a parameter. The former concepts are often
tied to an ordered parameter set (e.g. N or R+

0 ), whereas for random fields
the parameter is a spatial coordinate, typically from subsets of R2 or R3.

Random fields first arose in the field of geostatistics to model phenomena in
Earth Sciences such as hydrology, agriculture or geology.

Since the data for PDE models often consists of one or more functions of
space, it is natural to specify the uncertain or random data for PDEs as
random fields.

Naturally, there are extensions to spatio-temporal random fields featuring an
additional (ordered) parameter used to model, e.g., turbulence or
meteorological phenomena.

Before we now apply the Monte Carlo method to (7.1), let us study some
properties of random fields.
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Second-order and Gaussian Random Fields

Definition 6.3

A random field a on D ⇢ Rd is said to be of second order if for all x 2 D there
holds a(x, ·) 2 L

2(⌦;R) (see Appendix A). We say a second-order random field a

has mean function a(x) := E [a(x, ·)] and covariance function

c(x,y) := Cov(a(x, ·), a(y, ·)), x,y 2 D.

A sufficient and necessary condition for a being second-order is that c(x,y) is
symmetric and positive semidefinite.

Definition 6.4

A random field on D ⇢ Rd is called Gaussian if, for any n 2 N and for any
x1, . . . ,xn 2 D, the random vector [a(x1, ·), . . . , a(xn, ·)] follows an n-variate
normal distribution. The field is then uniquely determined by its mean and
covariance function.
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Random Fields in L
2(D) – Karhunen-Loève Expansion

Let a be a 2nd-order random field on D ⇢ Rd with mean a. Then the centred field
a� a can be expanded in any complete orthonormal system { m}m2N of L2(D).

The Karhunen-Loève expansion of a results from choosing as a particular CONS
the eigenfunctions of the covariance operator C : L2(D) ! L

2(D) of a, given by

(Cu)(x) =

Z

D

u(y)c(x,y) dy, x 2 D. (6.2)

Theorem 6.5 (Karhunen-Loève (KL) Expansion)

Let a 2 L
2(⌦;L2(D)) (see Appendix A) with mean function a(x) and denote by

(�m, am)m2N, kamkL2(D) = 1, the sequence of eigenpairs of the covariance
operator C in descending order. Then

a(x,!) = a(x) +
1X

m=1

p
�m am(x) ⇠m(!), (6.3)

where the random variables ⇠m(!) = 1p
�m

(a(·,!)� a, am)L2(D) have mean zero,
unit variance and are pairwise uncorrelated. The series converges in L

2(⌦;L2(D)).
If the random field is, in addition, Gaussian, then ⇠m ⇠ N(0, 1) are i.i.d.
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One-Dimensional Example [Ghanem & Spanos, 1991]

Example 6.6

For d = 1 and D = [�1, 1], consider the exponential covariance function

c(x, y) = e
�|x�y|

` , ` > 0.

The eigenvalues of the associated covariance operator are given by

�m =
2`

`2!2
m
+ 1

, (m even), �m =
2`

`2!̃2
m
+ 1

, (m odd)

where !m and !̃m denote the solutions of the transcendental equations

1� !` tan(!) = 0 and !̃`+ tan(!̃) = 0, respectively.

The associated eigenfunctions are given by

fm(x) =
q

2!m
1+sin(2!m) cos(!mx), f̃m(x) =

q
2!̃m

1+sin(2!̃m) sin(!̃mx).

However, in general it is not possible to compute the KL-expansion analytically.
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Practical Application – Truncated KL Expansion
The KL expansion suggests a convenient approach for approximating a
random field to a specified accuracy by truncation:

a(x,!) ⇡ as(x,!) := a(x) +
sX

m=1

p
�m am(x) ⇠m(!). (6.4)

The truncated RF as has the same mean as a and the covariance function

cs(x,y) =
sX

m=1

�mam(x)am(y), x,y 2 D , (6.5)

converges uniformly to c as S ! 1.

For the variance of the truncated KL expansion, we have DIY

Var(a(x, ·))� Var(as(x, ·)) =
1P

m=s+1
�mam(x)2 � 0.

Hence, as always underestimates the variance of a. Moreover, this implies

ka� ask
2
L2(⌦;L2(D)) =

1P
m=s+1

�m =

Z

D

Var a(x) dx�

sP
m=1

�m ,

i.e. the truncation error in L
2(⌦;L2(D)) is explicitly computable.

Scheichl & Gilbert High-dim. Approximation / II. Monte Carlo / 6. Random Fields SS 2020 52/82



Stationary and Isotropic Random Fields

Definition 6.7

(a) A random field a is stationary or homogeneous if it is invariant under
translation, i.e. if the multivariate distributions of (a(x1, ·), . . . , a(xn, ·)) and
(a(x1 + h, ·), . . . , a(xn + h, ·)) are the same, for any x1, . . . ,xn and h.

(b) A stationary random field a is isotropic if its covariance function is invariant
under rotations, i.e.,

c(x,y) = c(r), r = kx� yk2.

Example 6.8 (Isotropic Gaussian covariance)

A simple and widely used example of an isotropic covariance function is the
Gaussian covariance c(r) = �

2
e
�r

2
/⇢

2

, where �2 and ⇢ are two constants defining
the variance and the correlation length of the field.

Scheichl & Gilbert High-dim. Approximation / II. Monte Carlo / 6. Random Fields SS 2020 53/82

The Matérn Class
A family of isotropic covariance functions that is very popular in spatial statistics,
climatology, or machine learning, is the Matérn class with covariance function
given by

c(r) =
�
2

2⌫�1 �(⌫)

✓
2
p
⌫ r

⇢

◆⌫

K⌫

✓
2
p
⌫ r

⇢

◆
, r = kx� yk2, (6.6)

where
K⌫ is the modified (second-kind) Bessel function of order ⌫,
� denotes the Gamma-function,
⌫ is known as the smoothness parameter,
�
2 is the variance parameter,
⇢ is the correlation length parameter.

It contains exponential, Gaussian, as well as Bessel covariance functions as special
cases:

⌫ = 1
2 : c(r) = �

2 exp(�
p
2r/⇢) exponential covariance

⌫ = 1 : c(r) = �
2
⇣

2r
⇢

⌘
K1

⇣
2r
⇢

⌘
Bessel covariance

⌫ ! 1 : c(r) = �
2 exp(�r

2
/⇢

2) Gaussian covariance
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The Matérn Class
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By reducing the correlation length ⇢ the Matérn covariance function can be
concentrated more strongly near r = 0.

By increasing the smoothness parameter ⌫ the Matérn covariance function
becomes smoother at r = 0. (It is analytic everywhere else.)

The flexibility of the parametrisation allows its application to many statistical
situations. (Parameters may be estimated from observed data using statistical techniques.)
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Eigenvalue Decay for the Matérn Class
A result by H. Widom from 19631 allows us to analyse the decay rate of the
eigenvalues of the covariance operator of isotropic random fields:
(His result is more general, but we only consider the the Matérn class.)

Theorem 6.9 (Widom, 1963)

Let c = c(r) be the (isotropic) Matérn covariance function with parameters ⌫,�2

and ⇢. Let D be a bounded domain in Rd and let {�m}m2N denote the
(nonincreasing) eigenvalues of the covariance operator C given by (6.2).

�m h m
�(1+2⌫/d)

, for m ! 1.

Allows to estimate truncation error and thus dimensionality of the problem.
Rate of convergence of the eigenvalues is crucial to obtain dimension-
independent QMC and sparse grid quadrature and approximation results.
The (spatial) smoothness of realizations is also linked directly to the
parameter ⌫: in particular, a random field with Matérn covariance function is
k-times mean-square differentiable if and only if ⌫ > k.

1Widom, H., Asymptotic behavior of the eigenvalues of certain integral equations. Trans.
Amer. Math. Soc. 109, 278–295 (1963).
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Asymptotic Eigenvalue Decay & Plateau (Matérn)

Before asymptotic decay sets in (determined by the smoothness of the covariance
function), there is a preasymptotic plateau whose length is determined by the
correlation length parameter ⇢.
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ν=1/2, ρ=1/50

ν=1, ρ=1

ν=1, ρ=1/10

ν=1, ρ=1/50

Eigenvalue decay, Matérn covariance kernel, D = [�1, 1].
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 1/2, � = 1, ` = 0.5
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 1/2, � = 1, ` = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 3/2, � = 1, ` = 0.05
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Realizations of Gaussian Random Fields

Matérn covariance: ⌫ = 5/2, � = 1, ` = 0.05
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Further Reading & Research in Our Group

KL expansion widely used, especially in theoretical NA literature, because of
the very clear convergence theory and parameter dependence.

But, especially for rough fields (e.g. ⌫ < 1 for Matérn), the cost can grow
very quickly – both to compute the eigenbasis and to compute realizations.

More efficient methods for isotropic random fields: circulant embedding and
other FFT-based methods:

I Dietrich & Newsam, Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix, SIAM J Sci Comput 18, 1997

I Graham, Kuo, Nuyens, RS & Sloan, Analysis of circulant embedding methods for
sampling stationary random fields, SIAM J Num Anal 56, 2018

I Bachmayr, Graham, Nguyen & RS, Unified analysis of periodization-based sampling
methods for Matérn covariances, Preprint arXiv:1905.13522, 2019

Ole Klein (Bastian’s & my AG) wrote (one of?) the fastest parallel circulant
embedding code(s): https://gitlab.dune-project.org/oklein/dune-randomfield

Ongoing research on both approaches in our group!
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Further Reading & Research in Our Group
Another very interesting approach to sample random fields is exploiting a link
between the inverse C

�1 of the covariance operator and stochastic PDEs,
e.g. Matérn fields can be sampled by solving the sPDE

(2 ��)�a(x,!) =d
W(x,!) in Rd

, (6.7)

where � is the Laplacian and W is Gaussian white noise on Rd.

The resulting RF a is Gaussian with Matérn covariance with parameters
⌫ = 2� �

d

2 , ⇢ = 2
p
⌫


and �2 = �

2(,�) (e.g. for d = 2, ⌫ = 1, �2 = (4⇡2)�1).
I Lindgren, Rue & Lindström, An explicit link between Gaussian fields and Gaussian

Markov random fields: the stochastic PDE approach, J Roy Statist Soc B 73, 2011
I Bolin, Kirchner, Kovács, Numerical solution of fractional elliptic stochastic PDEs with

spatial white noise, IMA J Num Anal 40, 2020

Numerically interesting: can apply fast parallel multigrid solvers to (6.7).
I Drzisga, Gmeiner, Rüde, RS & Wohlmuth, Scheduling massively parallel multigrid for

multilevel Monte Carlo methods, SIAM J Sci Comput 39, 2017

Statistically interesting: can extend easily to non-stationary RFs – ongoing
research in our group!
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7. Monte Carlo Finite Element Methods
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Elliptic Boundary Value Problems with Random Data
We return again to our model elliptic boundary value problem with random data

�r·(aru) = f, on D ⇢ Rd
, u|@D = 0, (7.1)

where a and f are random fields on D with respect to a probability space (⌦,A,P).

If f is random, we assume f(·,!) 2 L
2(D) for (almost) all ! 2 ⌦.

To ensure a unique solution u(·,!) 2 H
1
0 (D) (with norm k · k

H
1
0 (D) = | · |

H1(D))

for each realization, could require the coefficient a to satisfy Assumption 1 in
Appendix B uniformly. However, for many applications this is too restrictive
and it suffices to require just realization-wise bounds:

Assumption 1

For almost all ! 2 ⌦ (P-a.s.), realizations a(·,!) of the coefficient function a are
strictly positive and lie in L

1(D) and satisfy

0 < amin(!)  a(x,!)  amax(!) < 1 almost everywhere (a.e.) in D, (7.2)

where
amin(!) := ess inf

x2D

a(x,!), amax(!) := ess sup
x2D

a(x,!). (7.3)
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Realization-Wise Solvability
For any realization ! for which Assumption 1 holds and f(·,!) 2 L

2(D), we may
apply the Lax-Milgram Lemma (Lemma B.5) and obtain a unique solution of (7.1).

Theorem 7.1

Let Assumption 1 hold and f(·,!) 2 L
2(D) P-a.s. Then (7.1) has a unique

solution u(·,!) 2 H
1
0 (D) and |u(·,!)|H1(D)  Ca

�1
min(!)kf(·,!)kL2(D) P-a.s.

Recall Definition A.21, of Banach space-valued L
p-spaces over a probability space

(⌦,A,P) – so-called Bochner spaces. These spaces provide a generalisation of
standard Lebesgues spaces. A result that we will use throughout is:

Lemma 7.2 (Hölder’s Inequality)

Let p, q, r 2 [1,1] be such that 1
p
= 1

q
+ 1

r
. Then

kXY kLp(⌦,W )  kXkLq(⌦,W )kY kLr(⌦,W ) , for all X 2 L
q(⌦,W ), Y 2 L

r(⌦,W ).

Note that the case of q = 1 is explicitly included; in that case p = r.
For p = 1 & q = r = 2, Hölder’s Inequality reduces to the Cauchy-Schwarz inequality.
The inequality holds over any measure space ⌦; in particular, also in standard Lebesgues spaces.
Scheichl & Gilbert High-dim. Approximation / II. Monte Carlo / 7. Monte Carlo FE Methods SS 2020 66/82



Summability

The following theorem provides sufficient conditions for u to have finite p-th
moments, i.e., to lie in L

p(⌦;H1
0 (D)). It follows directly from Theorem 7.1 using

Hölder’s Inequality (for Part (b)).

Theorem 7.3

Let Assumption 1 hold. Assume further that the mappings a : ⌦ ! L
1(D) and

f : ⌦ ! L
2(D) are measurable and that a�1

min 2 L
q(⌦;R) for some q 2 [1,1].

(a) If f 2 L
2(D) deterministic (i.e. a degenerate constant RF), then

kukLp(⌦;H1
0 (D))  Cka

�1
minkLp(⌦;R)kfkL2(D) , for all p  q.

(b) If f 2 L
r(⌦;L2(D)) with r 2 [1,1] and 1

p
= 1

q
+ 1

r
 1, then

kukLp(⌦;H1
0 (D))  Cka

�1
minkLq(⌦;R)kfkLr(⌦;L2(D)).

(c) If, in addition, a is independent of f in (b), the bound holds for p  min(q, r).
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Finite Element Discretization

Let Vh ⇢ H
1
0 (D) denote a closed subspace, e.g., the finite element (FE)

space of piecewise polynomial functions with respect to a triangulation Th

of D with mesh width h > 0 (see Appendix B).

Suppose uh : ⌦ ! Vh satisfies P-a.s.
Z

D

a(x,!)ruh(x,!) ·rvh(x) dx =

Z

D

f(x,!)vh(x) dx 8vh 2 Vh . (7.4)

Since Vh is a closed subspace of H1
0 (D) with norm | · |H1(D) all the above

results hold in an identical form also for uh:

Theorem 7.4

The results about solvability and summability, as well as the norm bounds in
Theorems 7.1 and 7.3 hold under the same assumptions on a and f also
for (7.4) and its solution uh.
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H
2 Regularity Assumption & Error Analysis

The regularity assumption, which is necessary to bound the finite element error
(cf. Assumption 2 in Appendix B), is again made only realization-wise.

Assumption 2

For almost all ! 2 ⌦, there exists a constant C2(!) > 0 such that, for every
f(·,!) 2 L

2(D), we have u(·,!) 2 H
2(D) and

|u(·,!)|H2(D)  C2(!)kf(·,!)kL2(D).

As discussed in [Bastian, Numerik 2, Sect. 8.3], for Assumption 2 to hold, it
suffices that D is convex, a(·,!) is Lipschitz cts. and Assumption 1 holds.

A careful derivation how C2(!) depends on ka(·,!)kC0,1(D), amin(!), amax(!)
can be found in [Charrier, RS, Teckentrup, SIAM J Num Anal, 2013].

In particular, it is shown there that for lognormal a with Matérn covariance,
C2 2 L

p(⌦;R) for all p < 1.

The constant C in the interpolation result on Slide 84 of Appendix B is
independent of !.
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Finite Element Convergence Results
Let V h

⇢ H
1
0 (D) be the space of piecewise linear finite elements with respect to a

shape-regular triangulation Th (see Appendix B).

Theorem 7.5 (Deterministic, L1 or Statistically Independent RHS)

Let Assumptions 1 and 2 hold, and let f : ⌦ ! L
2(D) be either

(a) constant (i.e. deterministic), (b) in L
1(⌦;L2(D)), or (c) independent of a.

If a�1/2
min a

1/2
max 2 L

q(⌦;R) and C2 2 L
r(⌦;R) with q, r 2 [1,1] s.t. 1

p
= 1

q
+ 1

r
 1,

then

ku� uhkLp(⌦;H1
0 (D))  ch

8
<

:

kfkL2(D) Case (a),
kfkL1(⌦;L2(D)) Case (b),
kfkLp(⌦;L2(D)) Case (c).

The general case in (b) can be proved in a very similar way.
Via duality arguments (recall [Bastian, Thm. 8.18]), it is possible to show
faster convergence in the (spatial) L

2(D)-norm and for functionals G(u) on
H

1
0 (D), i.e. under Assumption 2 (and further assumptions on G, f and a):

ku� uhkLp(⌦;L2(D)) = O(h2) and kG(u)�G(uh)kLp(⌦;R) = O(h2). (7.5)
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Monte Carlo Finite Element Method
Our goal now is to use the MC method to estimate a quantity of interest that
depends on the (random) solution u. This could be the mean E [u(x, ·)], the
variance Var[u(x, ·)] or the expected value of a functional G(u).

With each of N i.i.d. realizations a
(j) = a(·,!j) and f

(j) = f(·,!j) we
associate the unique solution u

(j) = u(·,!j) 2 H
1
0 (D) as well as the FE

approximation u
(j)
h

= uh(·,!j) 2 Vh and compute the (H1
0 (D)-valued) MC

estimates

uh,N :=
1

N

NP
j=1

u
(j)
h

, s
2
h,N

:=
1

N � 1

NP
j=1

⇣
u
(j)
h

� uh,N

⌘2
,

as well as the (scalar-valued) estimate

bQh,N :=
1

N

NP
j=1

G(u(j)
h

),

for Q := G(u) with G : H1
0 (D) ! R bounded or Fréchet differentiable.

To estimate the complexity of these estimators we can use the abstract
Theorem 5.1. We simply have to verify Assumptions (5.1) and (5.2).
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Let us first consider Assumption (5.1):
For a scalar functional Q = G(u) with G : H1

0 (D) ! R suff. smooth, using
Jensen’s inequality (Thm. A.20), it follows from (7.5) that

|E [Q�Qh] |  E [|G(u)�G(uh)|] = O(h2).

Thus, Assumption (5.1) holds with ↵ = 2.

For Q = u 2 H
1
0 (D), measuring the bias error in | · |H1(D), we get again using

Jensen’s inequality (noting that norms are convex functions) and Theorem 7.5 that

|E [u� uh] |H1(D)  E
⇥
|u� uh|H1(D)

⇤
= O(h).

Thus in that case, Assumption (5.1) holds with ↵ = 1.

Next consider Assumption (5.2):
If in addition to shape-regularity we also assume that the meshes Th are
(quasi-)uniform (cf. [Bastian, Numerik 2, Defn. 7.12]) then the number of
unknowns Mh in the resulting FE system (B.8) satisfies Mh = O(h�d).

As proved in [Bastian, Numerik 2, Chap. 10], using a multigrid iterative
method it is possible to solve the FE system (B.8) in linear complexity, i.e.

Cost(Qj

h
) = O(Mh) = O(h�d).

Thus, Assumption (5.2) holds with � = d.
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Monte Carlo Finite Element Complexity Result
Corollary 7.6

Consider the Monte Carlo FE method with p.w. linear FEs applied to the
elliptic BVP (7.1) in Rd to estimate E [u] or E [G(u)], with G : H1

0 (D) ! R
suff. smooth. For any " > 0 and ✓ 2 (0, 1) there exist h > 0, N 2 N, such that

Case Q = G(u): kE [Q]� bQh,NkL2(⌦;R) < " or P{|E [Q]� bQh,N | < "} > ✓ and

Cost( bQh,N ) = O("�2�d/2).

Case Q = u: kE [u]� uh,NkL2(⌦;H1
0 (D)) < " or P{|E [u]� uh,N |H1(D) < "} > ✓

and
Cost(uh,N ) = O("�2�d).

Proof. For Q = G(u), we can simply apply Theorem 5.1 with ↵ = 2 and � = d.

For Q = u, the bias-variance decomposition also works in the | · |H1(D)-norm
(both in mean squared and in probability). To bound the sampling error, we only require
square-summability of uh : ⌦ ! H

1
0 (D), which is guaranteed by Theorem 7.4

(under suitable conditions on a and f).
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Multilevel Acceleration
Especially in 2D and 3D this is a very high complexity.
However, it is straightforward again to accelerate the Monte Carlo Finite
Element method via a multilevel approach.

Consider a hierarchy of FE meshes T0, . . . , TL, for simplicity using uniform
grid refinement of an (arbitrary) coarsest grid T0, i.e. h` = h`�1/2 (m = 2)

Note that of course these grids are also needed in the multigrid solver we
assumed above, so there is no extra overhead.
The complexity of a multilevel MC-FE estimator for (7.1) and the gains over
the standard MC-FE estimator can again easily be estimated using the
abstract complexity theorem, Theorem 5.2.
Assumptions (M1) and (M3) in Theorem 5.2 have already been verified
above. So it only remains to consider Assumption (M2).
For simplicity, we will only consider scalar (smooth) Q := G(u). Using (7.5)

Var [Y`]  E
⇥
(Q` �Q`�1)

2
⇤

 2E
⇥
(G(u)�G(uh`))

2
⇤
+ 2E

⇥
(G(u)�G(uh`�1))

2
⇤
= O(h4

`
)

Thus, Assumption (M2) in Theorem 5.2 holds with � = 4.
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Grid & Model Hierarchy for Elliptic BVP

L

0

Grids KL Truncation

Have not really discussed how to sample the field or how
to also change the truncation dimension across the levels.
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Multilevel Complexity Theorem for the Elliptic BVP
Corollary 7.7

Consider the Multilevel Monte Carlo FE method with p.w. linear FEs (uniform
refinement) applied to the elliptic BVP (7.1) in Rd to estimate E [G(u)], with
G : H1

0 (D) ! R suff. smooth. For any 0 < " < exp(�1) and ✓ 2 (0, 1) there exist
L,N` 2 N, such that kE [Q]� bQML

L
kL2(⌦;R) < " or P{|E [Q]� bQML

L
| < "} > ✓ and

Cost( bQML
L

) = O("�2).

For Q = u (see above), for less smooth functionals, or for less smooth data,
we often obtain only ↵ = 1 and � = 2, so that for d = 2, 3 the other regimes
in the MLMC complexity theorem become important.
Also, for rough coefficients often only � > d is possible (even with a MG solver).
Thus, we can make the following very important observation (for d = 2, 3):

Optimality of MLMC (for � > � = 2↵)

In that case, the MLMC cost is asymptotically the same as one deterministic

solve to accuracy ", i.e. Cost( bQML

L
) = O("�2�(���)/↵) = O("��/↵) !!
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Comparison of Complexities
We compare MLMC-FE and MC-FE for (7.1) in the two regimes discussed above:

Case ↵ = 2, � = 4, � = d:

d MC MLMC Gain One Sample Q
j

L

1 O("�5/2) O("�2) O("�1/2) O("�1/2)
2 O("�3) O("�2) O("�1) O("�1)
3 O("�7/2) O("�2) O("�3/2) O("�3/2)

Case ↵ = 1, � = 2, � = d:

d MC MLMC Gain One Sample Q
j

L

1 O("�3) O("�2) O("�1) O("�1)
2 O("�4) O("�2) O("�2) O("�2)
3 O("�5) O("�3) O("�2) O("�3)

(ignoring log-factors)

Can we achieve such huge gains in practice?
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Multilevel MC-FE Method for Radioactive Waste Disposal Problem

D = (0, 1)2; lognormal a w. exponential covariance; Q = kukL2(D); p.w. linear FE

hL = 1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,

3.2GByte RAM, with sparse direct solver, i.e. � ⇡ 2.4
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Verifying Assumptions in Complexity Theorem Numerically
Lognormal a with exponential covariance (i.e. ⌫ = 1/2), �2 = 1 and � = 0.3.

��E[G1(u)�G1(uh)]
��

where, given  (x) = x,

G1(u) := (f, )L2(D) � (aru,r )L2(D)

(average flow through D).

V [G2(uh)�G2(u2h)]

where

G2(u) :=
�

1
|D⇤|

R
D⇤ u(x) dx

�2

(i.e. 2nd moment of u over patch D⇤
)

=) ↵ = 1 and � = 2

Can be proved rigorously! [Teckentrup, RS Giles, Ullmann, Numer Math 125, 2013]
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Smoother Coefficients & Outlook to Multilevel QMC

Q = 1
|D⇤|

R
D⇤ u dx & lognormal a with Matérn covariance and

ϵ
10-4 10-3 10-2

C
os

t (
in

 s
ec

)

10-1

100

101

102

103

104

105
ν = 2.5, σ2 = 1, λ = 1

MC
MLMC
QMC
MLQMC

1

32

For QMC using a randomised lattice rule with product weights �j = 1/j2.

[Kuo, RS, Schwab, Sloan, Ullmann, Math Comput 86, 2017]
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Further Reading & Research in Our Group
Analysis simplifies considerably for uniformly bounded, affine coefficients, i.e.,

0 < amin = const < a(x,!) < amax = const < 1 P� a.s.
I Barth, Schwab & Zollinger, Multi-level Monte Carlo Finite Element method for

elliptic PDEs with stochastic coefficients, Numer Math 119, 2011

The MLMC-FE method has been applied to many other PDEs. For a
comprehensive list see Mike Giles’ MLMC Community Webpage

I http://people.maths.ox.ac.uk/~gilesm/mlmc_community.html

Of particular current interest is the use of adaptive FEs and sample-adaptive
model hierarchies in MLMC:

I Kornhuber & Youett, Adaptive Multilevel Monte Carlo Methods for Stochastic
Variational Inequalities, SIAM J Numer Anal 56, 2018

I Detommaso, Dodwell & RS, Continuous Level Monte Carlo and Sample-Adaptive
Model Hierarchies, SIAM/ASA J Uncertain Q 7, 2019

In the latter, we have also extended the concept of MLMC to allow for a
continuous level parameter `.

Ongoing research on all those topics in our group!
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Further Reading & Research in Our Group
Of particular interest is the extension to multilevel Markov chain Monte Carlo

I Hoang, Schwab & Stuart, Complexity Analysis of Accelerated MCMC Methods for
Bayesian Inversion, Inverse Prob 29, 2013

I Dodwell, Ketelsen, RS & Teckentrup, A Hierarchical Multilevel Markov Chain Monte
Carlo Algorithm with Applications. . . , SIAM/ASA J Uncertain Q 3, 2015

MCMC methods, in particular the Metropolis-Hastings algorithm, allow to
sample from unnormalised distributions and from distributions that are known
only implicitly (especially in physics the more common situation!)

In UQ, MCMC can be used for inference on model parameters, where
distributions are typically not known a priori – so-called Bayesian Inference.

This is the most active research topic in our group! In particular, not
only looking at UQ applications, but also applications in theoretical physics.

Linus Seelinger (PhD in Bastian’s & my AG) is currently implementing an
efficient parallel MLMCMC code in MUQ (http://muq.mit.edu)

He is also extending MLMCMC to exploit variance reduction w.r.t. more than
one discretization parameter, following the concept (for i.i.d. samples) in

I Haji-Ali, Nobile & Tempone, Multi-index Monte Carlo: when sparsity meets sampling,
Numer Math 132, 2016
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1. Quasi-Monte Carlo Methods
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Notation

N := {1, 2, . . .}
N0 := {0} [ N
Z := {. . . ,�2,�1, 0, 1, 2, . . .}
ZN := {0, 1, 2, . . . , N � 1}
UN := {z 2 ZN : gcd(z,N) = 1}
u, v, w ✓ N0

yu := (yj : j 2 u)

for u ✓ {1 : s}
y
�u := (yj : j 2 {1 : s} \ u)

(yu,a) :=

⇢
yj if j 2 u,
a otherwise.

@
|u|

@yu

:=

Y

j2u

@

@yj

Ey — expectation (w.r.t. y)
Vy — variance (w.r.t. y)

s — dimension of problem
{1 : s} := {1, 2, . . . , s}
[0, 1]

s
= [0, 1]⇥ [0, 1]⇥ · · ·⇥ [0, 1]| {z }

s times

y 2 R, y = (y1, y2, . . . , ys) 2 Rs

tk := (tk,1, tk,2, . . . , tk,s) 2 Rs

{y} := y mod 1,
{y} := ({y1}, . . . , {ys})
pointset: PN := {t0, t1, . . . , tN�1}
sequence: P := {t0, t1, t2, . . .}
⇠ — distributed as
Uni — uniform distribution
N(µ,�

2
) — Normal/Gaussian

�s : Rs ! R+ — s-dimensional
Lebesgue measure

A — indicator function for a set A
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What are quasi-Monte Carlo methods?
Let f : [0, 1]

s ! R and suppose we wish to compute
Z

[0,1]s

f(y) dy =

Z
1

0

Z
1

0

· · ·
Z

1

0

f(y1, y2, . . . , ys) dy1dy2 · · · dys. (1.1)

Definition 1.1
A quasi-Monte Carlo (QMC) rule is quadrature approximation of (1.1) with equal
weights (wk = 1/N) and deterministic points {t0, . . . , tN�1} ⇢ [0, 1]

s:

Qs,Nf :=
1

N

N�1X

k=0

f(tk). (1.2)

The whole point set is denoted PN := {t0, t1, . . . , tN�1} (not necessarily
extensible in N). A sequence is denoted by P := {t0, t1, t2 . . .}.

Goal: Design point sets/sequences such that:
1. the error of (1.2) converges faster than Monte Carlo (i.e., << 1/

p
N), and

2. the error is independent of the dimension s.
Scheichl & Gilbert High-dim. Approximation / III. QMC / 1. QMC SS 2020 5/106

Comparing different quadrature points

Product rules Monte Carlo QMC

Figure: Examples of different quadrature points in 2D (N = 64 points).

QMC points are more uniformly distributed than Monte Carlo.
1D projections of QMC points result in N unique points, compared to N

1/s

unique points for product rules.
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Types of QMC points I: Lattice rules

Definition 1.2
A rank 1 lattice rule has points given by

tk =

⇢
kz

N

�
, (1.3)

where
N is the number of points,
z 2 Zs

N
is the generating vector, and

{·} denotes that we take the
fractional part of each component. Figure: 2D lattice rule with N = 55,

z = (1, 34).

Properties:
quality of lattice rule relies on choosing a “good” z,
simple implementation & low storage cost, and
simple structure allows for rigorous error analysis (see Section 4).
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Types of QMC points II: Digital nets

Definition 1.3
A (t,m, s)-net in base b is a set of N = b

m points in [0, 1)
s such that every

elementary interval of the form

sY

j=1


aj

bkj
,
aj + 1

bkj

◆
, kj , aj 2 ZN s.t. k1 + k2 + · · · ks = m� t, 0  aj < b

kj ,

with volume b
�(m�t) contains exactly b

t points.
A (t, s)-sequence in base b is a sequence P = {t0, t1, . . .}, such that for all m > t

any block of bm points {tkbm , . . . , t(k+1)bm} forms a (t,m, s)-net.

t is called the quality parameter — smaller t implies a better point set.
Two important examples are polynomial lattice rules and Sobol’ sequences.
See also the van der Corput, Kronecker, Faure, Niederreiter and
Niederreiter–Xing sequences.
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Digital net examples

Figure: 2D Sobol’ points for m = 2, 4, 8 (N = 4, 16, 64).

Figure: Sobol’ points in elementary intervals for m = 4 (16 points).
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Digital net construction

Algorithm 1 Digital net construction

Given m 2 N, b prime and G1, G2, . . . , Gs 2 Zm⇥m

b
.

For k = 0, 1, . . . , N � 1 and j = 1, 2, . . . , s construct tk,j as follows:
1: Expand k in base b:

k = (km · · · k2k1)b = k1 + k2b+ · · ·+ kmb
m�1

.

2: Compute (z1, z2, . . . , zm)
>
= Gj(k1, k2, . . . , km)

>.
3: Set

tk,j = (0.z1z2 · · · zm)b =
z1

b
+

z2

b2
+ · · ·+ zm

bm
.

Quality of a digital net depends on the generator matrices Gj .
t is not specified in Algorithm 1, and will depend on Gj . Every set of bm
points is an (m,m, s)-net, so clearly t  m.
Popular choices: the van der Corput sequence uses the m⇥m identity, and
polynomial lattice rules where entries of Gj are given by the roots of an
irreducible polynomial (see [Dick & Pillichshammer 2010]).
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Randomised QMC
In practice it is good to use randomised point sets:

PN 7! PN (!).

The benefits of using randomised QMC point sets are:
Randomised approximations give an unbiased estimate of the integral (1.1).
Sample variance of multiple realisations of a randomised QMC approximation
gives a practical estimate of the mean-square error.
Randomisation can often aid the theoretical analysis.

Three main methods of randomisation are:
Shifting — A single random vector from [0, 1)

s is added to all points. E.g.,
randomly shifted lattice rules.
Scrambling — The points within elementary intervals are randomly and
recursively permuted, so that digital net structure is preserved.
Digital shifting — Similar to shifting except instead the bits in the base b

representation of the points are shifted by the bits of a single random shift. It
is a type of scrambling.
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Randomly-shifted QMC
Let PN be a point set. For a random shift � ⇠ Uni[0, 1)

s, the randomly-shifted
pointset PN +� consists of points given by

btk = {tk +�},
and the randomly shifted QMC approximation is

Qs,N (�)f =
1

N

N�1X

k=0

f(btk).

For R 2 N i.i.d. random shifts �1,�2, . . . ,�R ⇠ Uni[0, 1)
s, the shift-averaged

QMC approximation is

bQs,N,Rf =
1

R

RX

r=1

Qs,N (�r)f.

The mean-square error can be estimated by the sample variance

E�

����
Z

[0,1]s

f(y) dy �Qs,N (�)f

����
2�
⇡ 1

R(R� 1)

RX

r=1

|Qs,N (�r)f � bQs,N,Rf |2

| {z }
bV[ bQs,N,R]

.
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Randomised QMC examples

Figure: 2D lattice rules with N = 55, z = (1, 34): original (L) and randomly shifted (R).

Figure: 64 Sobol’ points in 2D: original (L) and randomly scrambled (R).
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Summary

QMC approximation:

Z

[0,1]s

f(y) dy ⇡ Qs,Nf =
1

N

N�1X

k=0

f(tk).

PN = {t0, . . . , tN�1} chosen deterministically to be well distributed in [0, 1]
s.

Two main goals:
I better than O(1/

p
N) convergence, and

I error independent of dimension.

Two key families: lattice rules and digital nets.
In practice, it is beneficial to use a randomised QMC approximation.
Typically one uses random shifting for lattice rules and random
scrambling/digital shifting for digital nets.
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2. Classical discrepancy theory
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A brief history of quasi-Monte Carlo
1950’s: [Koksma, Halton, Hlawka, Sobol0, Weyl ...] Number theory was used
to construct “low-discrepancy” point sets, and to study their geometric
properties.
Analysis was very theoretical, using geometric and number theoretic tools.
The application of using such point sets for quadrature not the main focus.
Dimension was considered fixed, and so the effect of the dimension was
largely ignored.
Result was the error bounds depended poorly on dimension.
1990’s: QMC applied to problems in finance with great success.
[Paskov, Traub 1995] used QMC to efficiently approximate a 360-dimensional
integral from options pricing. Why did QMC work so well?
Late 90’s – 2000’s: Modern QMC theory

I Weighted Sobolev spaces explain why QMC could work well in

high-dimensions [Sloan & Woźniakowski 1998].

I Constructive proof that lattice rules achieve dimension-independent errors that

converge as O(N�1+�) for � > 0 [Kuo 2003].

I Invention of higher-order QMC rules that achieve a dimension-independent

errors that converge as O(N�↵) for ↵ � 1 [Dick 2008].

2010’s: Application of QMC to UQ problems [Graham, Kuo, Nuyens, RS,
Sloan 2011; Kuo, Schwab, Sloan 2013 & many more]
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Discrepancy
Definition 2.1
The discrepancy function of a point set (sequence)
P at b 2 [0, 1)

s is defined by

�s,N (P, b) :=
1

N

N�1X

k=0

[0,b)(tk)� �s([0, b)).

where [0, b) = [0, b1)⇥ [0, b2)⇥ · · ·⇥ [0, bs) and
�s is the Lebesgue measure on [0, 1]

s.

b1

b2

Definition 2.2

The star discrepancy of a point set (sequence) P is defined by

D
⇤

s,N
(P) := sup

b2[0,1)s

|�s,N (PN , b)| = sup

b2[0,1)s

�����
1

N

N�1X

k=0

[0,b)(tk)�
sY

j=1

bj

�����.

Note: Different notions of discrepancy can be defined by taking a different norm
instead of the sup above, e.g., Lp-discrepancy.
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Hardy–Krause variation
For u ✓ {1 : s} := {1, 2, . . . , s} and a 2 R, define

@
|u|

@yu

:=

Y

j2u

@

@yj
and (yu,a) :=

(
yj if j 2 u,

a otherwise.

Definition 2.3
Let f 2 C([0, 1]

s
) be such that @|u|

f/@yu 2 C([0, 1]
s
) for all u ✓ {1 : s}, then

the variation in the sense of Hardy and Krause is given by

VarHK(f) =

X

;6=u✓{1:s}

Z

[0,1]|u|

����
@
|u|

@yu

f(yu,1)

���� dyu.

We also define kfkHK := |f(1)|+ VarHK(f), and denote by HK([0, 1]
s
) the

(Banach) space of all such f as above that also satisfy kfkHK <1.

Note: The general definition of the HK variation is different from above and still
holds when the mixed partial derivatives are not continuous (the two definitions
coincide when they are continuous).
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Zaremba’s identity

Proposition 2.4 (Zaremba’s Identity)
Suppose f : [0, 1]

s ! R has bounded HK variation, then the error of the QMC
approximation (1.2) using a point set P is

Qs,Nf�
Z

[0,1]s

f(y) dy =

X

u✓{1:s}

(�1)|u|
Z

[0,1]|u|

@
|u|

@yu

f(yu,1)�s,N (P, (yu,1)) dyu.
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Koksma–Hlawka inequality

Theorem 2.5 (Koksma–Hlawka Inequality)

Suppose f : [0, 1]
s ! R has bounded Hardy–Krause variation, then the QMC

estimate (1.2) using the point set (sequence) P satisfies
����
Z

[0,1]s

f(y) dy �Qs,Nf

����  kfkHK ⇥D
⇤

s,N
(P).

Proof. Apply the Hölder inequality to Zaremba’s identity.

An important property of this inequality is that the error bound splits into one
factor that depends only on f , and another that depends only on P.

Note: Applying Hölder’s inequality with different exponents will lead to versions
of the Koksma–Hlawka inequality with a different norm on f and a different type
of discrepancy.
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Star discrepancy bounds

Theorem 2.6 (Low-discrepancy points)
There exist families of point sets {PN}N2N such that for all N 2 N their star
discrepancy satisfies

D
⇤

s,N
(PN )  Cs

(logN)
s

N
, (2.1)

where Cs may depend on the dimension but is independent of N .

Several well-known point sets are known to achieve the bound (2.1), e.g.,
Hammersley point sets, (t,m, s)-nets and lattice rules.

Theorem 2.7 (Roth’s lower bound)

For any point set (sequence) P ⇢ [0, 1]
s, the star discrepancy is bounded from

below by

D
⇤

s,N
(P) � cs

(logN)
(s�1)/2

N
,

where cs =
1

22s+4(log 2)(s�1)/2
p

(s�1)!
.
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Classical QMC error bound

Corollary 2.8
Let f 2 HK([0, 1]

s
) and let P be a point set (sequence) satisfying (2.1), then the

error of the QMC approximation (1.2) using P is bounded by
����
Z

[0,1]s

f(y) dy �Qs,Nf

����  Cs

(logN)
s

N
kfkHK,

where the constant Cs depends on the dimension.

GOOD
Asymptotically better than MC.
Mild smoothness assumptions.
Bound is generic, and there are several
low-discrepancy point sets to choose
from.
Splits into f and P dependence.

BAD
Bound still depends on the dimension.
Bound is asymptotic. In particular,
log(N)

s
/N is increasing in N until

N = e
s.

Roth’s lower bound implies that this
cannot be improved.
QMC rule cannot be tailored to a
specific problem.
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Summary

The classical study of QMC rules has roots in number theory and is based on
the geometric notion of discrepancy.
Koksma–Hlawka inequality gives a bound on the integration error in terms of
the discrepancy.
There exist several points sets which are known to have low-discrepancy, and
lead to quadrature convergence of the order O((logN)

s
/N).

Error bounds always depend on the dimension (due to discrepancy lower
bound).
Focus was on the construction of well-distributed point sets, rather than the
integration problem.
To break the curse of dimensionality we must also consider the problem
setting, i.e., the properties of f .
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3. Functional analysis and Sobolev spaces
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Banach & Hilbert spaces

Definition 3.1 (Banach space)
A normed space (X , k · kX ) that is complete is called a Banach space.

Examples
R equipped with the the absolute value, Rs equipped with the Euclidean distance,
C[0, 1] equipped with the max norm, and the Lebesgue spaces L

p
(R).

Definition 3.2 (Hilbert space)
An inner product space (H, h·, ·iH) that is complete is called a Hilbert space.

Examples
R equipped with multiplication, Rs equipped with the Euclidean dot product, and
the Lebesgue space L

2
(R) equipped with

hf, gi0,R =

Z

R
f(y)g(y) dy.

Scheichl & Gilbert High-dim. Approximation / III. QMC / 3. Sobolev spaces SS 2020 25/106

Riesz representation theorem
Definition 3.3 (Dual space)
Let X be a Banach space. The dual space of X is the space of all continuous
linear functionals ` : X ! R, it is denoted by

X ⇤
= {` : X ! R : ` is linear and continuous}.

The dual space is equipped with the dual norm

k`kX⇤ = sup

g2X ,kgkX1

|`(g)|.

Theorem 3.4 (Riesz Representation Theorem)

Let H be a Hilbert space equipped with an inner product h·, ·iH. Then for every
` 2 H⇤ there exists a unique f 2 H such that

hf, giH = `(g), for all g 2 H,

and
kfkH = k`kH⇤ .
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Classical derivative spaces
Let ⌦ ⇢ Rs be convex (in this course typically, ⌦ 2 {[0, 1]s,Rs}). Let
C(⌦) := {f : ⌦! R : f is continuous} denote the space of continuous functions.
For higher order mixed derivatives1 we use multiindex notation. Let ↵ 2 Ns

0
be

given by ↵ = (↵1,↵2, . . . ,↵s). For ↵,� 2 Ns

0
, we define the following notation:

@
|↵|

@y↵

:=

sY

j=1

@
↵j

@y
↵j

j

(when the variable is clear we will simply write @
↵)

|↵| =
sX

j=1

↵j

↵+ � = (↵1 + �1,↵2 + �2, . . . ,↵s + �s)

↵  � () ↵j  �j for all j = 1, 2, . . . , s

For k 2 N let Ck
(⌦) = {f 2 C(⌦) : @

↵
f 2 C(⌦) for all |↵|  k} denote the

space of k-times continuously differentiable functions, let C1
(⌦) := \1

k=1
C

k
(⌦)

denote the smooth functions and let C1

0
(⌦) denote the smooth functions with

compact support.

1For first order mixed derivatives we will continue to use the set notation, because it is more
convenient and consistent with the QMC literature.
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Weak derivatives

Definition 3.5 (Weak derivative)
For f 2 L

2
(⌦), the weak partial derivative with respect to yi is the function

g 2 L
2
(⌦) such that
Z

⌦

g(y)�(y) dy = �
Z

⌦

f(y)
@

@yi
�(y) dy, for all � 2 C

1

0
(⌦).

When such a weak derivative exists we will denote it by
@f

@yi
= g.

Properties of the weak derivative:
The definition of the weak derivative easily generalises to higher order and
mixed weak derivatives, in which case we use the same notation as the
classical derivative.
Weak derivatives commute.
If the classical derivative exists, then the weak derivative coincides with it.
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Weak Derivatives
Example 1
Let ⌦ = (�1, 1) and consider f(x) = |x|. The weak derivative of f is given by the
Heaviside function

H(y) =

(
�1 if x  0,

1 if x > 0.

x

y

f(x)

x

y
@f

@x
(x)

Example 2
The weak derivative of the Heaviside function H does not exist.
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Sobolev spaces

Definition 3.6 (Sobolev space)
Let k 2 N and 1  p  1, we define the Sobolev space W

k,p
(⌦) by

W
k,p

(⌦) := {f 2 L
p
(⌦) : @

↵
f 2 L

p
(⌦) for all |↵|  k}.

For 1  p <1 we equip W
k,p

(⌦) with the norm

kfkWk,p(⌦) =

 
X

|↵|k

k@↵
fkp

Lp(⌦)

!1/p

=

 
X

|↵|k

Z

⌦

|@↵
f(y)|p dy

!1/p

,

and for p =1
kfkWk,1(⌦) = max

|↵|k

k@↵
fkL1(⌦).
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Properties of Sobolev spaces

Proposition 3.7 (Alternate construction of Sobolev spaces)
The space W

k,p
(⌦) is the completion of Ck

(⌦) with respect to the norm
k · kWk,p(⌦).

Corollary 3.8
For all k 2 N and 1  p  1 the Sobolev space W

k,p
(⌦) is a Banach space. For

the case p = 2, W k,2
(⌦) is a Hilbert space corresponding to the inner product

hf, gik,⌦ =

X

|↵|k

Z

⌦

@
↵
f(y)@↵

g(y) dy.

We use the notation H
k
(⌦) := W

k,2
(⌦).

Scheichl & Gilbert High-dim. Approximation / III. QMC / 3. Sobolev spaces SS 2020 31/106

Discussion of isotropic Sobolev spaces

The spaces W
k,p are sometimes referred to as “isotropic” Sobolev spaces, because

they contain weakly differentiable functions of total order k and so the
smoothness is the same in all directions.
Consider the case where we are only interested in the functions that have mixed
first order weak derivatives, i.e.,

@
|↵|

f

@y↵

2 L
2
(⌦) for all ↵ 2 {0, 1}s,

so that we only differentiate once in each direction (cf. the conditions for the
Koksma–Hlawka inequality, Theorem 2.5). The smallest isotropic space that
guarantees this condition is satisfied is H

s
(⌦), which also requires weak

derivatives of order s in every dimension!
For high dimensions we need spaces that allow more flexible characterisations of
smoothness.
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Sobolev spaces of dominating mixed smoothness

Definition 3.9
Let r 2 N and 1  p  1, then the Sobolev space of dominating mixed
smoothness or order r is defined by

W
r,p
mix

:= {f 2 L
p
(⌦) : @

↵
f 2 L

p
(⌦) for all ↵ 2 Ns

0
,↵j  r}.

We equip W
r,p
mix

(⌦) with the norm

kfkWr,p
mix(⌦) =

 
X

↵2Ns
0,↵jr

k@↵
fkp

Lp(⌦)

!1/p

, for 1  p <1,

kfkWr,1
mix

= max
↵2Ns

0,↵jr

k@↵
fkL1(⌦), for p =1.

For the case p = 2 we write H
r
mix

(⌦) = W
r,2
mix

(⌦), and equip H
r
mix

(⌦) with the
inner product

hf, gir,⌦ =

X

↵2Ns
0,↵jr

Z

⌦

@
↵
f(y)@↵

g(y) dy.

Scheichl & Gilbert High-dim. Approximation / III. QMC / 3. Sobolev spaces SS 2020 33/106

Tensor product Hilbert spaces
Let ⌦ ⇢ R and let H1 be a Hilbert space of functions f : ⌦! R with inner
product h·, ·iH1 . We can construct the s-fold tensor product Hilbert space based
on H1 as follows.
For f1, f2, . . . , fs 2 H1 let f =

Q
s

j=1
fj : ⌦

s ! R be the function given by

f(y) =

sY

j=1

fj(yj), for all y 2 ⌦
s
.

For f =
Q

s

j=1
fj , g =

Q
s

j=1
gj with fj , gj 2 H1, define the inner product

hf, giHs =

sY

j=1

hfj , gjiH1 ,

which by linearity can be extended to linear combinations of products also.
We define the s-fold tensor product Hilbert space

Hs :=

sO

j=1

H1

to be the completion of span{f =
Q

s

j=1
fj : fj 2 H1} with respect to the inner

product h·, ·iHs .
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Tensor product Hilbert spaces
Example
Let H1 = H

1
[0, 1] and consider the tensor product space Hs =

N
s

j=1
H

1
[0, 1].

For f =
Q

s

j=1
fj , g =

Q
s

j=1
gj with fj , gj 2 H

1
[0, 1], the inner product for Hs is

given by

hf, giHs =

sY

j=1

✓Z
1

0

fj(yj)gj(yj) dyj +

Z
1

0

f
0

j
(yj)g

0

j
(yj) dyj

◆

=

Z

[0,1]s

sY

j=1

�
fj(yj)gj(yj) + f

0

j
(yj)g

0

j
(yj)

�
dy

=

Z

[0,1]s

X

u✓{1:s}

Y

j2u

f
0

j
(yj)g

0

j
(yj)

Y

j 62u

fj(yj)gj(yj) dy

=

X

u✓{1:s}

Z

[0,1]s

@
|u|

@yu

f(y)
@
|u|

@yu

g(y) dy = hf, giH1
mix([0,1]

s).

And so H
1
mix

([0, 1]
s
) =

N
s

j=1
H

1
[0, 1].

We can similarly construct Hr
mix

([0, 1]
s
) =

N
s

j=1
H

r
[0, 1].
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Reproducing kernel Hilbert spaces
Definition 3.10
Let H be a Hilbert space of functions f : ⌦! R equipped with an inner product
h·, ·iH. H is a reproducing kernel Hilbert space (RKHS) if there exists a kernel
function K : ⌦⇥ ⌦! R that satisfies:
K1. K(·,y) 2 H for each y 2 ⌦,
K2. Reproducing property:

f(y) = hf,K(·,y)iH for all f 2 H,y 2 ⌦.

Proposition 3.11 (Properties of the kernel)
Let H be a RKHS, then the kernel K : ⌦⇥ ⌦! R must also satisfy
K3. Symmetry: K(x,y) = K(y,x) for all x,y 2 ⌦,
K4. Uniqueness: K is unique,
K5. Positive semi-definiteness: for all v 2 RM and y

0
,y

1
, . . . ,y

M�1
2 ⌦

M�1X

m,n=0

vmK(y
m
,y

n
)vn � 0. (3.1)
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Properties of reproducing kernel Hilbert spaces

Proposition 3.12

A Hilbert space (H, h·, ·iH) is a RKHS if and only if point evaluation is a bounded
linear functional, i.e., letting

`y(f) = f(y) for f 2 H,

then `y 2 H⇤ for all y 2 ⌦.

Proof. See accompanying notes.

Theorem 3.13 (Moore–Aronszajn Theorem [Aronszajn 1950])
Let K : ⌦⇥ ⌦! R be a symmetric and positive semi-definite kernel, then there
exists a unique RKHS H and inner product for which K is the kernel.
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Reproducing kernel Hilbert spaces

Example
Let ⌦ = [0, 1], then define the “anchored” inner product

hf, gianc,1 = f(1)g(1) +

Z
1

0

f
0
(y)g

0
(y) dy,

and the induced norm kfkanc,1 =
p
hf, fianc,1.

The space

Hanc

1
= {f 2 C[0, 1] : f is absolutely continuous and kfkanc,1 <1} (3.2)

equipped with h·, ·ianc,1 is a RKHS with kernel

K
anc

1
(x, y) = 1 +min(1� x, 1� y). (3.3)

Hanc

1
is called the first order anchored space with anchor 1.
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Tensor product reproducing kernel Hilbert spaces

Theorem 3.14
Let ⌦ ⇢ R, and let H1,H2, . . . ,Hs be a collection of reproducing kernel Hilbert
spaces on ⌦ with inner products h·, ·iHj , and kernel functions Kj : ⌦⇥ ⌦! R.
The tensor product Hilbert space

H :=

sO

j=1

Hj ,

is also a reproducing kernel Hilbert space on ⌦
s, with kernel K : ⌦

s ⇥ ⌦
s ! R

given by

K(x,y) =

sY

j=1

Kj(xj , yj), for x,y 2 ⌦
s
.

Proof. The case of two RKHS’ is given in Theorem 8.I [Aronszajn 1950], and the
s-dimensional case easily generalises.
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An application of RKHS

Proposition 3.15 (Zaremba’s identity in one dimension)
Let f 2 Hanc

1
as defined in (3.2), then the error of the QMC approximation (1.2)

using a point set P is
Z

1

0

f(y) dy �Q1,Nf =

Z
1

0

f
0
(y)�1,N (P, y) dy.

Proof. See accompanying notes.
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Summary

Weak derivatives generalise the concept of differentiation to functions which
are integrable but not necessarily continuous.
Sobolev spaces are spaces of functions whose weak derivatives belong to
some Lebesgue space.
They are very useful in characterising weak differentiability.
A reproducing kernel Hilbert space (H, h·, ·iH) is a Hilbert space of functions
on ⌦, for which there exists a kernel K : ⌦⇥ ⌦! R that satisfies the
reproducing property

f(y) = hf,K(·,y)iH, for all f 2 H,y 2 ⌦.
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4. Modern QMC theory for weighted spaces
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Goal: Analyse the error of a QMC approximation for all functions in some class X ,
and for specific point sets obtain an error bound

����
Z

[0,1]s

f(y) dy �Qs,Nf

����  E , for all f 2 X .

Wishlist:
Break the curse of dimensionality — E independent of dimension.
Faster than MC convergence — E = O(1/N).
Practical — a QMC rule achieving the error bound can be constructed in
practice.
Analysis is constructive — the error analysis also informs us how to construct
good QMC points.

For lattice rules we can achieve all of the items on our wishlist.
But first what function space X do we choose?
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Worst-case error

Definition 4.1
Let X be a Banach space of functions on [0, 1]

s. The worst-case error (WCE) for
a QMC rule (1.2) using the point set PN is defined to be

e(X ,PN ) := sup

f2X ,kfkX1

����
Z

[0,1]s

f(y) dy �Qs,Nf

����. (4.1)

Note: By linearity we have the following bound on the error
����
Z

[0,1]s

f(y) dy �Qs,Nf

����  e(X ,PN )kfkX .

Similar to the Koksma–Hlawka inequality (Theorem 2.5), the WCE bound splits
into one factor that depends on PN and one factor that depends on f .
However, both factors depend on the function class X , which we are free to
choose. How to choose the function class?
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Worst-case error in a RKHS

Proposition 4.2 (Formula for the worst-case error)

Let H be a RKHS of functions on [0, 1]
s, with inner product h·, ·iH and kernel K.

Then the square worst-case error of a QMC approximation using a point set
PN = {t0, t1, . . . , tN�1} is given by

e
2
(K,PN ) =

Z

[0,1]2s

K(x,y)dxdy � 2

N

N�1X

k=0

Z

[0,1]s

K(tk,y)dy

+
1

N2

N�1X

k=0

N�1X

`=0

K(tk, t`). (4.2)

Proof. See accompanying notes.
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Error for randomised QMC
For a randomised QMC approximation Qs,N (�), it is more appropriate to study
the root-mean-square (RMS) error

s

E�

����
Z

[0,1]s

f(y) dy �Qs,N (�)f

����
2�
.

Hence, for randomly shifted QMC approximations, the error analysis should be
performed in the shift-averaged setting.

Definition 4.3 (Shift-averaged worst-case error)
Let X be a Banach space of functions on [0, 1]

s. The shift-averaged worst case
error of a randomly shifted QMC rule using the shifted point set PN +� is
defined to be

be(X ,PN ) =

p
|E�[e2(X ,PN +�)]. (4.3)

Again, linearity yields an upper bound on the RMS error
s

E�

����
Z

[0,1]s

f(y) dy �Qs,N (�)f

����
2�
 be(X ,PN )kfkX . (4.4)
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Shift-invariant kernels

Definition 4.4 (Shift invariance)
A kernel K : [0, 1]

s ⇥ [0, 1]
s ! R is called shift-invariant is

K({x+�}, {y +�}) = K(x,y) for all x,y,� 2 [0, 1]
s
.

For any kernel K we can define the associated shift-invariant kernel

bK(x,y) :=

Z

[0,1]s

K({x+�}, {y +�}) d�. (4.5)
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Worst-case error for a shift-invariant kernel

Proposition 4.5

Let H be a RKHS of functions on [0, 1]
s, corresponding to a shift-invariant kernel

K. Then the square worst-case error of a QMC approximation using a point set
PN = {t0, t1, . . . , tN�1} is given by

e
2
(K,PN ) = �

Z

[0,1]s

K(x,0) dx+
1

N2

N�1X

k=0

N�1X

`=0

K({tk � t`},0). (4.6)

Proof. Let � = 1� y, then by shift-invariance K(x,y) = K({x� y},0).
The change of variables u = {x� y} 2 [0, 1]

s gives
Z

[0,1]2s

K(x,y) dxdy =

Z

[0,1]2s

K({x� y},0) dxdy =

Z

[0,1]s

K(u,0) du.

Similarly, the change of variables u = {tk � y} 2 [0, 1]
s gives

Z

[0,1]s

K(tk,y) dy =

Z

[0,1]s

K(u,0) du.

Substituting the above three formulas into (4.2) gives the result.
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Formula for the shift-averaged worst-case error
Theorem 4.6 (Shift-averaged worst-case error in a RKHS)

Let H be a RKHS of functions on [0, 1]
s with kernel K. Then the shift-averaged

worst case error is given by

be(K,PN ) = e( bK,PN ), (4.7)

where bK is the associated shift-invariant kernel as in (4.5).

Proof. See accompanying notes.

Corollary 4.7

For a RKHS with kernel K, the shift-averaged worst-case error for PN is given by

be(K,PN ) = �
Z

[0,1]s

bK(x,0) dx+
1

N2

N�1X

k=0

N�1X

`=0

bK({tk � t`},0), (4.8)

where bK is the associated shift-invariant kernel.

Proof. Combine Proposition 4.5 and Theorem 4.6.
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Weighted Sobolev spaces
Definition 4.8 ((Anchored) weighted Sobolev space of order 1)
Let a 2 [0, 1] and let

� :=
�
�u 2 R+

: u ✓ {1 : s}
 

(4.9)

be a collection of weight parameters. Define Wanc

s,� to be the weighted Sobolev
space of order 1 anchored at a to be the space of continuous functions on [0, 1]

s

with square-integrable mixed first derivatives, equipped with the inner product

hf, gianc,s,� =

X

u✓{1:s}

1

�u

Z

[0,1]|u|

✓
@
|u|

@yu

f(yu,a)

◆✓
@
|u|

@yu

g(yu,a)

◆
dyu. (4.10)

The (squared) norm in Wanc

s,� is given by

kfk2
anc,s,� = hf, fianc,s,� =

X

u✓{1:s}

1

�u

Z

[0,1]|u|

����
@
|u|

@yu

f(yu,a)

����
2

dyu. (4.11)

Notes:
Spaces of this form were first introduced by [Sloan & Woźniakowski, 1998].
Each weight �u represents the relative importance of the variables yu.
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Weighted Sobolev spaces

Definition 4.9 ((Unanchored) weighted Sobolev space of order 1)
Let � := {�u 2 R+

: u ✓ {1 : s}} be a collection of weights. Define Ws,� to be
the (unanchored) weighted Sobolev space of order 1 to be the space of continuous
functions on [0, 1]

s with square-integrable mixed first derivatives, equipped with
the inner product

hf, gis,� =

X

u✓{1:s}

1

�u

Z

[0,1]|u|

✓Z

[0,1]s�|u|

@
|u|

@yu

f(y) dy
�u

◆

✓Z

[0,1]s�|u|

@
|u|

@yu

g(y) dy
�u

◆
dyu. (4.12)

The (squared) norm in Wanc

s,� is given by

kfk2
s,�

=

X

u✓{1:s}

1

�u

Z

[0,1]|u|

����
Z

[0,1]s�|u|

@
|u|

@yu

f(y) dy
�u

����
2

dyu. (4.13)
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Weighted RKHS
The weighted anchored and unanchored spaces are reproducing kernel Hilbert
spaces, with kernel given by

Ks,�(x,y) =

X

u✓{1:s}

�u

Y

j2u

⌘j(xj , yj), (4.14)

where ⌘j : [0, 1]⇥ [0, 1]! R is given by:
anchored case:

⌘j(x, y) =

8
><

>:

a�min(x, y), if x, y < a,

max(x, y)� a, if x, y > a,

0, otherwise.

unanchored case:

⌘j(x, y) =
1

2
B2(|x� y|) +

�
x� 1

2

��
y � 1

2

�
, (4.15)

where B2(⇠) = ⇠
2 � ⇠ + 1/6 is the 2nd Bernoulli polynomial.

Key point: Ks,� depends on weights, so by (4.2) the worst-case error
es,� = e(Ks,�) must also depend on the weights.
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Common types of weights
Product weights: Let �1, �2, . . . , �s 2 R+ and let

�u =

Y

j2u

�j . (4.16)

e.g., �j = j
�↵

, 2
�j

, . . .

each variable is weighted independently,
s weights in total and easy to compute with,
ignores interactions of variables within sets.

Order-dependent: Let �0,�1, . . . ,�s 2 R+ and let

�u = �|u|. (4.17)

e.g., �k = k
�↵

, k!,↵
k
, . . .,

only depends on the number of variables,
s+ 1 parameters in total and easy to compute with,
ignores individual variables and interactions of variables.
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Common types of weights

Product and order-dependent (POD): Let {�j} ⇢ R+ and {�k} ⇢ R+

�u = �|u|

Y

j2u

�j . (4.18)

each variable is weighted independently,
2s+ 1 parameters in total and easy to compute with,
“optimal” form of weights for certain applications.
Motivated by UQ PDE problem [Kuo, Schwab & Sloan 2013].

General weights: �u 2 R+.
allows complete flexibility,
2
s weights in total,

in practice impossible to deal with.
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Shift-invariant kernel

Lemma 4.10

The shift-invariant kernel corresponding to the kernel K defined in (4.14) is given
by

bK(x,y) =

X

u✓{1:s}

�u

Y

j2u

b⌘j(xj , yj), (4.19)

where

b⌘j(x, y) =

(
B2(|x� y|) +B2(a) +

1

6
, anchored at a,

B2(|x� y|) unanchored case.
(4.20)
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Existence of QMC rules with dimension-independent errors
Theorem 4.11 (Dimension-independent QMC (product weights))

Let � = {�1, �2, . . .} be a sequence of product weights such that

1X

j=1

�j < 1.

Then for all s 2 N and N 2 N, there exists a point set PN such that the
worst-case error in Ws,� satisfies

es,�(PN ) = e(Ks,� ,PN )  Cp
N

,

for C <1 indepedent of s.

Notes:
Dimension-independent convergence!
But the same rate as Monte Carlo, so we must study specific QMC rules.
Result also holds for general weights and in the anchored space.
Proved by averaging over all possible QMC points sets.
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Summary

The worst-case error provides a measure of the quality of a QMC rules in a
given function space, and can be used to give simple Koksma–Hlawka-type
error bound.
In a RKHS the worst-case error has a known formula in terms of the kernel.
Weighted RKHS spaces provide the correct setting to analyse QMC rules in.
Key properties:

I Mixed first derivatives corresponds to smoothness expected for O(1/N) error.

I Weights allow characterisation of importance of different variables.

I RKHS with known kernels.

Worst-case error depends on the weights, which also allows to measure
quality of point sets differently according to the weights.
If the weights are summable, then we can bound the error independently of
dimension.
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5. Theory and construction of lattice rules
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Rank-1 lattice rules
A rank 1 lattice rule has points given by

tk =

⇢
kz

N

�
, (5.1)

where
N is the number of points,
z 2 Zs

N
is the generating vector,

{·} denotes the fractional part.

A randomly shifted lattice rule has points

btk =

⇢
kz

N
+�

�
, (5.2)

where � ⇠ Uni[0, 1)
s.

Figure: 2D lattice rule with N = 55,
z = (1, 34) & randomly shifted lattice.

Scheichl & Gilbert High-dim. Approximation / III. QMC / 5. Lattice rules SS 2020 59/106

How to construct good generating vectors?
The worst-case error in Ws,� of a lattice rule with generating vector z is given by

e
2

s,�,N (z) = �1 + 1

N2

N�1X

k,`=0

X

u✓{1:s}

�u

Y

j2u

⌘j

✓⇢
kzj

N

�
,

⇢
`zj

N

�◆
, (5.3)

with ⌘j given by (4.15) or (4.20) for the shift-averaged case.
Goal: Construct a good z with small worst-case error, i.e., O(1/N).
Due to the structure of lattice rules,

tk,j =

⇢
kzj

N

�
=

kzj mod N

N
,

it suffices to consider only zj in the multiplicative group of integers modulo N

UN := {⇠ 2 N0 : ⇠ < N and gcd(⇠, N) = 1}.

We can compute es,�,N (z), so why not search Us

N
for the best generating vector?

However, |UN | = '(N) = O(N) (the Euler Totient function) and so the total
number of possible generating vectors is '(N)

s
= O(N

s
). Hence, a brute force

search is infeasible.
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Component-by-component construction

Algorithm 2 Component-by-component (CBC) construction
Given s 2 N, N 2 N and weights �.
1: Set z1  1.
2: for j = 2, 3, . . . , s do
3: Choose zj 2 UN to minimise the wce in dimension j while keeping all

previous components fixed: zj  argmin
⇠2UN

ej,�,N (z1, . . . , zj�1, ⇠).

4: end for

Notes:
CBC construction is extensible in s, but not in N .
For general weights the cost of computing the worst-case error at each step
O(2

s
N). Hence, the total cost is O(s2

s
N

2
), which is prohibitive in practice.

The CBC algorithm can be used for any RKHS with kernel K, by simply
using the formula (4.2).
Greedy structure means that the CBC works best when the variables are
ordered in decreasing importance.
For randomly-shifted lattice rules, one simply replaces es,�,N with the
corresponding shift-averaged worst-case error bes,�,N .
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Shift-averaged worst-case error for product weights
Let � be a collection of product weights (4.16). Then, using Corollary 4.7 and
Lemma 4.10, the squared shift-averaged worst-case error in Ws,� simplifies to

be2
s,�,N (z) = �1 + 1

N

N�1X

k=0

sY

j=1

✓
1 + �jB2

✓⇢
kzj

N

�◆
(5.4)

= be2
s�1,�,N (z) +

�s

N

N�1X

k=0

B2

✓⇢
kzs

N

�◆ s�1Y

j=1

✓
1 + �jB2

✓⇢
kzj

N

�◆

| {z }
✓s(zs)

. (5.5)

Let ✓s := [✓s(⇠)]⇠2UN and define

GN :=


B2

✓⇢
k⇠

N

�◆�

⇠2UN
k2ZN

, p
s�1

:=

"
s�1Y

j=1

✓
1 + �jB2

✓⇢
kzj

N

�◆◆#

k2ZN

,

then we can write ✓s =
�s

N
GNp

s�1
.

Notes:
Storing p

s�1
2 RN , the cost of computing ✓j is O(N

2
).

Similar formulas hold for other kernels and POD weights (4.18).
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CBC for randomly shifted lattice rules with product weights

Algorithm 3 CBC for product weights (matrix version)

Given s 2 N, N 2 N and product weights �.
1: Compute GN .
2: Set z1  1, p

1
 1, and be2

1,�,N  
�1

N
GNp

0
.

3: for j = 2, 3, . . . , s do
4: Compute ✓j  

�s

N
GNp

j�1
.

5: Set zj  argmin
⇠2UN

✓j(⇠).

6: Update p
j
 

�
1+ �jGN (zj , :)

�
. ⇤ p

j�1
.

7: Update be2
j,�,N (z) be2

j�1,�,N (z) + ✓j(zj).
8: end for

Notes:
We have used the MATLAB notation : for all entries, and .⇤ for
component-wise multiplication.
The total cost is now O(sN

2
), which is feasible in practice.

Can be extended to POD weights and/or other kernels.
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Randomly-shifted lattice rules achieve optimal error
Theorem 5.1 (Optimal CBC error for the unanchored space)

Let z 2 Us

N
be a generating vector given by the CBC algorithm that minimises

the shift-averaged worst case error in Ws,� . Then

be2
s,�,N (z)  1

'(N)1/�

 
X

;6=u✓{1:s}

�
�

u

✓
2⇣(2�)

(2⇡2)�

◆|u|
!1/�

for � 2 (
1

2
, 1]. (5.6)

Notes:
⇣(x) =

P
1

k=1
k
�x is the Riemann zeta function, and ⇣(x)!1 as x! 1

+.
Hence, the constant diverges as �! 1/2.
The first proof was in [Kuo, 2003], but see also [Theorem 5.8; Dick, Kuo &
Sloan 2013].
Proof that randomly-shifted lattice rules achieve optimal error of O(1/N).
Can be extended to the anchored case.
A similar result for the worst-case error (i.e, for unshifted lattice rules) is not
yet known.
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Optimal CBC error (simplified version)

Corollary 5.2
Let N be prime, and let � by a collection of product weights such that

1X

j=1

�
1/2

j
< 1.

Then, for all s 2 N, the shift-averaged worst-case error for z 2 Us

N
given by the

CBC algorithm satisfies

bes,�,N (z)  C�N
�1+�

, for all � > 0, (5.7)

where C� is independent of s, but C� !1 as � ! 0.

Note: Randomly shifted lattice rules achieve dimension-independent and (almost)
optimal error.
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Proof. Without loss of generality assume �j  1. For product weights, for any
c 2 R, we have

X

u✓{1:s}

�
�

u c
|u|

=

X

u✓{1:s}

Y

j2u

c�
�

j
=

sY

j=1

(1 + c�
�

j
) =

sY

j=1

exp
�
log(1 + c�

�

j
)
�
.

Using log(1 + x)  x gives

X

u✓{1:s}

�
�

u c
|u|  exp

 
sX

j=1

c�
�

j

!
 exp

 
c

1X

j=1

�
�

j

!
 exp

 
c

1X

j=1

�
1/2

j

!
< 1.

since �
�

j
 �

1/2

j
for all � 2 (1/2, 1].

Next, for N prime

'(N) = N � 1 � N

2
() 1

'(N)1/�
 2

1/�

N1/�
.

Hence, the result follows by taking � = 1/(2(1� �)) > 1/2.
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Fast CBC
The bulk of the work at step j of the CBC is GNp

j�1
(cf. Step 4 Algorithm 3),

which costs O(N
2
).

However, GN 2 R'(N)⇥N has a very special structure:

[GN ]i,j 2
⇢
B2(0), B2

✓
1

N

◆
, . . . , B2

✓
N � 1

N

◆�
,

i.e., GN only has N unique entries. So GN can be permuted into a circulant
matrix

G
circ

N
=

0

BBB@

c0 c1 · · · cN�1

c1 c2 · · · c0

...
...

. . .
...

cN�1 c0 . . . cN�2

1

CCCA
, (ck = B2(k/N)).

For circulant matrices matrix-vector multiplication can be performed by the FFT
in O(N logN) cost.
The Fast CBC [Nuyens, Cools 2006] uses this trick, and results in a total cost of
O(sN logN).
MATLAB code for the Fast CBC can be found on the website of Prof. Dirk
Nuyens (KU Leuven, Belgium):
https://people.cs.kuleuven.be/~dirk.nuyens/
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Embedded lattice rules [Cools, Kuo, Nuyens, 2006]
Let N = b

m with b prime and m 2 N within the range mmin  m  mmax. A
modified version of the worst-case error that takes into account all N -point rules
within this range, can be used in the CBC to obtain an embedded lattice rule
generating vector. This embedded lattice rule can will work well for all
N = b

mmin , b
mmin + 1, . . . , b

mmax .
The point sets for embedded lattice rules are nested:

Pb
mmin ⇢ Pb

mmin+1 ⇢ · · · ⇢ Pbmmax .

When generating the new points we only need to add those that correspond to
indices k that are not a multiple of b.
E.g., for 2m 7! 2

m+1
= N (b = 2) the previous points are

⇢
kz

N/2

�
=

⇢
(2k)z

N

�
, for k = 0, 1, 2, . . . , N/2� 1,

and the new points will be given by odd indices
⇢
2(k + 1)z

N

�
for k = 0, 1, 2, . . . ,

N � 3

2
.

The theory for embedded lattice rules is unproven, but empirically it has been
shown that the worst-case error increases by no more than 1.6.
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Embedded lattice rule example

Figure: 2D embedded lattice rule in base 2 for N = 1, 2, 4, 8, 16, 32, 64, 128.
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Summary

1. The CBC algorithm can be used to construct a randomly shifted lattice rule
for which the worst-case error converges at the (almost) optimal rate of
O(N

�1+�
).

2. If the square root of the weights are summable then this error is achieved
independently of the dimension.

3. Fast CBC reduces the cost of constructing a generating vector to
O(sN logN).

4. Embedded lattice rules work well in practice for a range of N .

Off-the-shelf lattice rules
A collection of good precomputed generating vectors can be found on the website
of Prof. Frances Kuo (UNSW Sydney, Australia):
https://web.maths.unsw.edu.au/~fkuo/lattice/index.html
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6. Quasi-Monte Carlo finite element methods
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Darcy flow problem with a (uniform) random coefficient
Let D ⇢ Rd, for d = 1, 2, 3, be a bounded convex domain, and consider the
elliptic PDE

�r · (a(x,y)ru(x,y)) = f(x), x 2 D, (6.1)
u(x,y) = 0, x 2 @D,

where x 2 D is the physical variable and y ⇠ Uni([� 1

2
,
1

2
]
s
) is a random

parameter (i.e., ⌦ = [� 1

2
,
1

2
]). Assume that the coefficient is of the form

a(x,y) = �0(x) +
sX

j=1

yj�j(x). (6.2)

Goal: Compute the expected value of some quantity of interest (given as a linear
functional G of the solution):

E[G(u)] =
Z

[�
1
2 ,

1
2 ]

s

G(u(y)) dy. (6.3)
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Parametric weak solutions
Assumption 1

1. There exist 0 < amin < amax <1 such that

amin  a(x,y)  amax, for all x,2 D,y 2 [� 1

2
,
1

2
]
s
. (6.4)

2. �j 2W
1,1

(D) for all j 2 N0, and there exists a p 2 (0, 1] such that

1X

j=1

k�jkpL1(D)
< 1. (6.5)

3. f 2 L
2
(D) is deterministic.

4. D is convex.

The parametric weak form is: Find u(y) 2 V := H
1

0
such that

Z

D

a(x,y)ru(x,y) ·rv(x) dx =

Z

D

f(x)v(x) dx, for all v 2 V, (6.6)

which from Theorem II.7.1 admits a unique solution u(y) 2 V . Further, since
amin, amax are constant (i.e., in L

1
(⌦)), one can show that u 2 L

1
(⌦;H

2
(D)).
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Approximation strategy
Finite element discretisation. Let Vh ⇢ H

1

0
(D) be a closed finite-dimensional

subspace, e.g., FE space of piecewise polynomial (e.g., linear) functions
corresponding to a triangulation Th of D with mesh width h > 0 (Appendix B).
The FE problem is: For y 2 [� 1

2
,
1

2
]
s, find uh(y) 2 Vh such that

Z

D

a(x,y)ruh(x,y) ·rvh(x) dx =

Z

D

f(x)vh(x) dx, for all vh 2 Vh, (6.7)

which also admits a unique solution.
Quasi-Monte Carlo quadrature. Let PN = {tk} be a QMC point set in [0, 1]

s,
then apply the QMC rule to G(u), for G 2 V

⇤,

Qs,NG(u) =
1

N

N�1X

k=0

G(u(tk � 1
2
)). (6.8)

We will use a randomly shifted lattice rule (Qs,N (�)), but in principle other QMC
rules can be used.
Combined approximation:

E[G(u)] ⇡ Qs,NG(uh) =
1

N

N�1X

k=0

G
�
uh(tk � 1

2
)
�
. (6.9)
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Error analysis
The mean-square error can be split using the triangle inequality into

E�

⇥
|E[G(u)]�Qs,N (�)G(uh)|2

⇤

. E�

⇥
|E[G(u)�Qs,N (�)G(u)|2

⇤
| {z }

QMC error

+E�

⇥
|Qs,N (�)G(u� uh)|2

⇤
| {z }

FE error

FE error. Again, since 1/amin, amax <1 (6.4), by Theorem II.7.5, also eq.
(II.7.5), for G 2 L

2
(D), for piecewise linear finite elements we have

ku� uhkL1(⌦;H
1
0 (D))  C1h and kG(u)� G(uh)kL1(⌦;R)  C2h

2
, (6.10)

and under assumption (6.5) C1, C2 are independent of s.
Hence, by the triangle inequality and the uniform bound (6.10)

E�

⇥
|Qs,N (�)G(u� uh)|2

⇤
 E�

⇥
(Qs,N (�)|G(u� uh)|)2

⇤

 kG(u)� G(uh)k2L1(⌦;R)  C
2

2
h
4
.

QMC error. To use the CBC error bound (5.6), we must show that G(u) 2Ws,� .
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Bounds on the stochastic derivatives
Theorem 6.1

Let Assumption 1 hold. Then, for all u ✓ {1 : s}, the stochastic derivatives satisfy

sup

y2[�
1
2 ,

1
2 ]

s

����
@
|u|

@yu

u(y)

����
V


kfkL2(D)

amin

|u|!
Y

j2u

�j , (6.11)

where
�j :=

k�jkL1(D)

amin

. (6.12)

Furthermore, for G 2 V
⇤ we have G(u) 2Ws,� .

Proof. See accompanying notes, or [Cohen, DeVore & Schwab 2010].

Notes:
Constant in derivative bounds are independent of dimension.
Since Vh ⇢ V the same result holds for uh.
Decay of importance of coefficient functions (6.4) implies the decaying
importance of derivatives.
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QMC error
Theorem 6.2 (Kuo, Schwab & Sloan 2012)
Let G 2 V

⇤, let Assumption 1 hold, and if p = 1, assume further thatP
1

j=1
�j <

p
6. Define � to be a collection of POD weights given by

�u =

 
|u|!

Y

j2u

p
6�j

!2�p

, with �j =
k�jkL1(D)

amin

. (6.13)

Then the RMS error of a CBC-generated randomly shifted lattice rule
approximation satisfies

q
E�

⇥
|E[G(u)]�Qs,N (�)G(u)|2

⇤
 C⌘N

�⌘
, (6.14)

where C⌘ is independent of s and

⌘ =

(
1� � for 0 < � < p/2, if p 2 (0, 2/3],

1/p� 1/2 if p 2 (2/3, 1].
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Sketch proof.
1. Start with the error bound bes,�,N (z)kG(u)ks,� .
2. Substitute the CBC error bound (5.6) and the derivative bounds (6.11) to

bound the norm.
3. The choice of weights (6.13) minimise this bound for a given �.
4. Choose � according to p such that assumption (6.5) ensures that the

constant is independent of s.

Notes:
The total QMC FE error is then O(h

2
+N

�⌘
), and the complexity is

Cost = O("
�1���d/2

) (best case, � > 0).
Key ingredients are the derivative bounds and the choice of the weights.
POD weights are essential — theoretical and practical results with product
weights or incorrect decay of weights are sub-optimal.
The summability assumption (6.5) may seem restrictive, but is satisfied by
random fields used in practice (cf. Section II.6), and also is common for other
methods.
A similar result also holds for the Gaussian random fields/log-normal
coefficients as discussed in Section II.7.
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QMCFEM example

�r · (a(x,y)ru(x,y)) = f(x), x 2 D = (0, 1)
2
,

u(x,y) = 0, x 2 @D,

where for q > 4/3

a(x,y) = 1 +

sX

j=1

yj�j(x), �j(x1, x2) =
1

1 + (j⇡)q
sin(j⇡x1) sin((j + 1)⇡x2).

We have
k�jkL1(D) =

1

1 + (j⇡)q
< (j⇡)

�q
,

so Assumption 1 holds with p > 1/q.
Our goal is to compute

E[G(u)], where G(v) =

Z

[
1
8 ,

3
8 ]

2

v(x)dx

using a P1 FEM and a CBC generated randomly shifted lattice rule.
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QMCFEM example

103 104 105

R*N

10-8

10-7

10-6

10-5

st
d
. 
e
rr

.

MC (q = 2)

N-1/2

QMC (q = 4/3)

N-5/6

QMC (q = 2)

N-1

Figure: QMC and Monte Carlo convergence for PDE problem for q = 4/3, 2 (s = 32,
h = 1/64, R = 8, N = 101, 199, 499, 997, 1999, 4001, 8009).
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Summary

QMC and FE methods can be combined to tackle stochastic PDE problems
in UQ.
Under a standard summability assumption on the stochastic coefficient the
error behaves like O(h

2
+N

�1+�
).

QMC FE methods have also been successfully applied to more general UQ
problems: log-normal random fields [Graham, Kuo, Nuyens, RS, Sloan 2011];
eigenvalue problems [AG, Graham, Kuo, RS, Sloan 2019]; wave equations
[Ganesh, Kuo, Sloan 2020] ...
Stochastic PDE problems often admit higher regularity, which allows QMC to
be applied, and perform better than MC.
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7. QMC on Rs
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Integration on Rs

Suppose we wish to compute
Z

Rs

g(y)⇡(y) dy, (7.1)

where ⇡ : Rs ! R+ is a probability density, e.g., a multivariate normal pdf.
How do we apply QMC to approximate (7.1)?
Map back to the unit cube by � : Rs ! [0, 1]

s:

Rs �7! [0, 1]
s
, or equivalently tk 7! �

�1
(tk),

e.g., take � to be the Rosenblatt transform. Then by change of variables
Z

Rs

g(y)⇡(y) dy =

Z

[0,1]s

g(��1
(u))| det(D��1

(u))|⇡(��1
(u))| {z }

f(u)

du,

and we can apply QMC to the transformed integrand f .
Difficulties:

For a general density ⇡, computing ��1 is extremely difficult.
Typically, f does not belong to the weighted Sobolev spaces from Section 4.
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Inverse cdf sampling
Consider (7.1) for the case of a product density ⇡ =

Q
s

j=1
⇢j , where each

⇢j : R! R+ is probability density with cdf given by �j : R! [0, 1]

�j(x) =

Z
x

�1

⇢j(t)dt.

E.g., ⇢j(y) = exp(�y2/2)/
p
2⇡ (a standard normal pdf).

Let ��1 be the inverse Rosenblatt (a.k.a. inverse cdf) transform

��1
(u) := (�

�1

1
(u1),�

�1

2
(u2), . . . ,�

�1

s
(us)),

then the change of variables simplifies to

Z

Rs

g(y)

 
sY

j=1

⇢j(yj)

!
dy =

Z

[0,1]s

g(��1
(u)) du. (7.2)

Mild conditions on g ensure that g ���1 2Ws,� , such that we can apply our
results for lattice from Section 5 (cf. [Nichols & Kuo, 2014]).
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QMC sampling for multivariate normals

Let ⇡ be the pdf of a s-dimensional multivariate normal distribution, with mean
µ 2 Rs and s.p.d. covariance matrix ⌃:

⇡(y) =
1p

(2⇡)s det(⌃)
exp

�
� 1

2
(y � µ)>⌃�1

(y � µ)
�

⇡ is not of product form, but we can factor the covariance matrix ⌃ = AA
> and

then make the change of variables x = A
�1

(y � µ). This gives
Z

Rs

g(y)
exp

�
� 1

2
(y � µ)>⌃�1

(y � µ)
�

p
(2⇡)s det(⌃)

dy =

Z

Rs

g(Ax+ µ)
exp(� 1

2
x>x)

p
(2⇡)s

dx,

which again fits into the product setting of (7.2).
Note that the factorisation is not unique, e.g., one could use a Cholesky, principal
components or Brownian bridge factorisation.
The choice of A will of course affect the performance of a QMC rule.
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Example II: Options pricing
The Black–Scholes model assumes that the price of an asset Xt at time t is given
by the geometric Brownian motion

dXt = rXtdt+ �XtdWt, t > 0, X0 2 R, (7.3)

where r is the risk-free interest rate, � is the volatility and Wt is a standard
Brownian motion (Wt �Ws

i.i.d.⇠ N(0, t� s) for all s < t). The solution at t � 0 is

Xt = X0 exp
�
(r � 1

2
�
2
)t+ �Wt

�
. (7.4)

Suppose we wish to estimate a fair price of some financial product involving the
asset {Xt}t�0, e.g., a call option. This requires computing the “expected payoff”,

expected payoff = E[g({Xt})],

where g is some “payoff” function of the asset path {Xt}.
Note: In more general settings when the Black–Scholes assumptions are not
satisfied, the SDE modelling the asset price cannot be solved explicitly as in (7.4).
In this case the SDE must be solved numerically as well.
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Asian option
An Asian (average value) option compares the average value of the asset on [0, T ]

to the strike price K. The payoff for a call (buy) option is

g({Xt}) = C({Xt}, T ) = max

✓
1

T

Z
T

0

Xt dt�K, 0

◆
, (7.5)

and the payoff for a put (sell) option is

g({Xt}) = P ({Xt}, T ) = max

✓
K � 1

T

Z
T

0

Xt dt, 0

◆
. (7.6)

The value of the option is the expected payoff, and the price of the option is taken
as the discounted value of the option:

E[value] = E[g], and price = e
�rTE[g].

Hence, to price an option we must compute the expected payoff, which will be a
high-dimensional integral.
Note: The payoff’s above do not have square-integrable mixed derivatives!
Hence, such problems are not covered by the current theory (cf. Section 4).
Nevertheless, we will see that QMC methods still work well.
This is typical of finance applications, because the value of an option cannot be
negative
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Generating paths and high-dimensional integrals
Paths {Xt}t�0 can be generated by discretising in time. For a stopping time
T > 0 and s 2 N time steps let

tj =
jT

s
, for j = 0, 1, 2, . . . , s,

and let (Wtj )
s

j=1
⇠ N(0,⌃), where the covariance matrix ⌃ 2 Rs⇥s is

⌃ij = min(ti, tj) =
T

s
min(i, j).

The expected payoff is then an s-dimensional integral:

E[g] =
Z

Rs

g(w)
exp(� 1

2
w>

⌃
�1w)

p
(2⇡)s det(⌃)

dw. (7.7)

Example. Asian option
For an Asian call option with payoff (7.5), using the formula (7.4) for the value of
the asset, the time-discretised payoff function is

gs(w) = max

 
1

s

sX

j=1

X0 exp

✓
(r � 1

2
�
2
)
jT

s
+ �wj

◆
�K, 0

!
(7.8)

Hence, to price an Asian option we must approximate (7.7) with g as in (7.8).
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Pricing an Asian call option numerical results
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Figure: Convergence of MC and QMC (a randomly shifted lattice rule) for different

factorisations of the covariance matrix (BB = Brownian bridge, PC = principal

components). Asian call option with X0 = $100, T = 256 days and K = $100.
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Research in our group

Integrals over Rs also arise in UQ appplications, e.g., in PDE’s with a
Gaussian random field as the coefficient. See: [Graham, Kuo, Nuyens, RS &
Sloan 2011; Graham, Kuo, Nichols, RS, Schwab & Sloan 2015].
As mentioned in II. Monte Carlo methods, our group is also interested in how
to efficiently sample general densities ⇡, e.g., by MCMC methods see or by
constructing a surrogate approximation of the density. See: [Dodwell,
Ketelsen, RS & Teckentrup 2015; Dolgov, Anaya-Izquierdo & Fox, RS 2019;
Detommaso, Cui, Spantini, Marzouk & RS 2019].
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Summary

1. QMC can be applied to integrals on Rs by mapping points from [0, 1]
s.

2. The choice of mapping greatly affects the performance of the rule, and for
general densities is a very difficult problem.

3. For product densities we can apply the inverse cdf componentwise, and
conditions of the integrand allow us to apply our existing lattice rule results.

4. Multivariate normals (N(µ,⌃)) can be also be handled by a factorisation
⌃ = AA

> and a change of variables.
5. The most common examples arise in computational finance, where QMC first

found great success — despite such problems not being covered by the
current theory.
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8. Multilevel QMC
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Multilevel QMC methods
As before: Let F be some quantity of interest that we cannot evaluate exactly,
(e.g., the output of a PDE model), and let Fh` be a sequence of approximations
based on a hierarchy of discretisations such that Fh` ! F as `!1 (e.g., FE
discretisations with meshwidth h` > 0).
Letting

Y0 = Fh0 , Y` = Fh` � Fh`�1 for ` = 1, 2, . . .

we again have the telescoping sum

E[FhL ] = E[Fh0 ] +

LX

`=1

E[Fh` � Fh`�1 ] =

LX

`=0

E[Y`],

but now use a QMC rule with points P(`)

N
= {t`,k} to estimate the expectation of

each level

bY` := Qs,N`,`Y` =
1

N`

N`�1X

k=0

Y`(t`,k), bQML

L,{N`}
F =

LX

`=0

bY`.

Key idea: If {Y`} are sufficiently smooth, then using QMC points should reduce
the variance (RMSE) faster than Monte Carlo, and even less points are required
on each level.
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General multilevel QMC complexity theorem

Theorem 8.1
Let " < exp(�1), let Fh` 2Ws,� for ` = 0, 1, . . ., and assume that there are
constants ↵,�, ⌘ > 0 such that ↵ � 1

2
min{�, ⌘} and, for all ` = 0, 1, . . .,

(M1) |E[Fh` ]� E[F ]| = O(h
↵

`
),

(M2’) kY`k2s,� = O(h
�

`
),

(M3) C` = Cost(Y`) = O(h
�⌘

`
).

Then there are L and {N` = 2
n`}L

`=0
, such that the MLQMC estimator using

CBC-constructed randomly shifted lattice rules satisfies
E
⇥�� bQML

L,{N`}
F � E[F ]

��2⇤  "
2, and

Cost( bQML

L,{N`}
) =

8
><

>:

O("
�1��

) if � > ⌘,

O("
�1��| log "|2), if � = ⌘,

O("
�1���(⌘��)/↵

), if � < ⌘,

for � > 0. (8.1)

Proof. Follow the minimisation argument from the proof of Theorem 5.2 in II.
Monte Carlo Methods.
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Comments on MLQMC complexity
For the PDE problem from Section 6 � = 2↵ = 4 and ⌘ ⇡ d. Hence, the
complexity is of the order

d MC MLMC QMC MLQMC
1 "

�5/2
"
�2

"
�3/2��

"
�1��

2 "
�3

"
�2

"
�2��

"
�1��

3 "
�7/2

"
�2

"
�5/2��

"
�1��

See [Kuo, Schwab, Sloan 2015; Kuo, RS, Schwab, Sloan, Ullmann 2017].
MLQMC improves upon MLMC by a power of " across the board. However,
the assumption (M2’) is much stronger than (M2) from Theorem II.5.2.
It requires the spatial error measured in the QMC norm. This often requires
to study the mixed spatial and stochastic regularity simultaneously, e.g., for
MLQMC based on P1 FEs we require bounds on

sup

y2[0,1]s

�����
@
|u|
u

@yu

����
L2(D)

,

which can be difficult to obtain in practice.
Note that this is stronger than the bounds required for QMC FE methods, cf.
Lemma 6.1, but the complexity is better than the single level QMC of
O("

�1���⌘/↵
).
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MLQMC for randomly shifted lattice rules
Strategy: Apply a randomly shifted lattice rule to Y`. Averaging over R random
shifts and using an embedded lattice rule in base 2 (N` = 2

m` for m` 2 N) gives

bY` :=
1

R

RX

r=1

Qs,N`(�`,r)Y`, Qs,N`(�`,r)Y` =
1

N`

N`�1X

k=0

Y`

✓⇢
kz

N`

+�`,r

�◆
.

Benefits:
the same lattice rule (i.e., generating vector) can be used on each level `,
extra samples can be easily computed since the QMC points are nested,
i.i.d. random shifts {�`,r} means that the approximations across levels are
independent, and
the variance can be estimated by the sample variances:

bV =

LX

`=0

bV`,
bV` :=

1

R(R� 1)

RX

r=1

��bY` �Qs,N`(�`,r)Y`

��2. (8.2)

The bias can also be estimated by

max
�

1

2

��bYL�1

��,
��bYL

�� . (8.3)
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Adaptive MLQMC for randomly shifted lattice rules

Algorithm 4 Adaptive MLQMC [Giles & Waterhouse 2007]
Given ", an embedded lattice rule in base 2 and R 2 N.
1: L 0 and N0  1

2: Compute initial estimates bY0 and bV0

3: while L < 2 or bias (8.3) > "/
p
2 do

4: while bV > "
2
/2 do

5: double N` for ` with largest bV`/(2
`
N`)

6: compute bY` and bV` . compute new samples & Var estimate
7: end while
8: L L+ 1 . increase level to decrease bias
9: end while

10: bQML

L
F =

LX

`=0

bY` . final estimate

Note: for base 2 embedded lattice rules it is natural to double the number of
samples on each level. However, this may lead to too much work being performed
and so one could use a smaller factor, e.g., 1.2/1.5.
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MLQMC: log-normal PDE example

�r · (a(x,!)ru(x,!)) = f(x), x 2 D = (0, 1)
2
,

u(x,!) = 0, x 2 @D,

where a(x,!) is a Gaussian random field (cf. Section II.6).

Goal: approximate

E[F ], F (!) =
1

|D⇤|

Z

D⇤
u(x,!) dx.

where D
⇤ ⇢ (0, 1)

2, using a MLQMC estimator based on piecewise linear finite
elements and a randomly shifted embedded lattice rule in base 2.
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MLQMC numerical results for log-normal PDE problem
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Figure: MC, MLMC, QMC and MLQMC complexity for approximating quantity of

interest F for ⌫ = 2.5, �2 = 1 and � = 1 [Kuo, RS, Schwab, Sloan & Ullmann 2017].
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Summary

1. The multilevel framework allows for replacing MC samples with QMC points.
2. MLQMC gives an improved complexity when compared to (single level) QMC

and also MLMC.
Benefits of MLQMC are complementary: we gain from both the ML variance
reduction and the faster QMC convergence.

3. Adaptive MLQMC algorithm is very useful in practice. The key ingredients
are embedded lattice rules and random shifting.

4. Numerical results for the log-normal PDE problem from UQ illustrate the
gains and match the theoretical complexity estimates.
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9. Extensions and open problems
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Extensions
Higher-order QMC [Dick 2008]
There exists polynomial lattice rules PN ⇢ [0, 1]

s that achieve
����
Z

[0,1]s

f(y) dy �Qs,Nf

���� . N
�r

, for some r > 1.

The analysis also relies on weighted Sobolev spaces, but of higher-order, e.g., @↵
f

is square-integrable for ↵ 2 Ns

0
with ↵j  r.

QMC sampling for non-uniform measures and different domains
Z

Rs

f(y) dµ(y) or
Z

⌦

f(y) dy, ⌦ ⇢ Rs
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Open problems

1. QMC sampling for non-uniform measures and different domains
Only certain measures and domains can be handled, e.g., product measures
(as in Section 7), and simplex domains or spheres.

2. Higher-order QMC on Rs

Even for simple densities on Rs (e.g., product of standard Gaussian’s) the
inverse mapping back to [0, 1]

s destroys the smoothness required for higher
order QMC.
The current technique “truncates” Rs to a box [�T, T ]s, but results in a
log(N)

s factor in the error.
3. QMC for simple discontinuities

Developing methods to obtain optimal rate of N�1, for functions that involve
simple discontinuities or kinks, e.g.,

f(y) = max(g(y), 0) or f(y) = (g(y)),

where g smooth. Such problems are common in computational finance.
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Summary

QMC rules can achieve convergence rates of O(N
�1

) independent of
dimension.
Randomly shifted lattice rules that achieve this optimal rate can be efficiently
constructed by the component-by-component algorithm, and they are simple
to implement.
The analysis relies on exploiting low-dimensional structure of the integrand,
which is characterised by the weights � that define the weighted Sobolev
spaces Ws,� .
QMC rules work well for integration problems coming from PDEs with
random coefficients from UQ.
QMC can be applied to integrals on Rs by mapping back to the unit cube. In
particular, we can sample a multivariate normal with QMC points.
Multilevel framework also works with QMC points, and here the gains are
complementary.
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1. Sparse grid quadrature
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Recap on quadrature in one dimension

Consider a sequence of 1D quadrature rules {Q1,`} given by
Z 1

0
f(y) dy ⇡ Q1,`f =

nX̀

k=1

w`,kf(t`,k)

where on level/precision ` 2 {1, 2, . . .}(=: N)
n` 2 N is the number quadrature points (function evaluations). Typically
n`+1 > n`, e.g., n` = O(2`).
w`,k 2 R for k = 1, 2, . . . , n` are the quadrature weights, which satisfy

nX̀

k=1

w`,k = 1, and

t`,k 2 [0, 1] for k = 1, 2, . . . , n` are the quadrature points.
As before define the point set or grid P` := {t`,k : k = 1, 2, . . . , n`}.

Examples
1. Monte Carlo and quasi-Monte Carlo: w`,k = 1/n` and points are randomly or

deterministically chosen.
2. Polynomial-based rules: rectangle rule, trapezoidal rule, Simpson’s rule,

Clenshaw–Curtis, Gauß–Legendre, etc.
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Polynomial-based quadrature in one dimension
General idea: first approximate f by a piecewise polynomial interpolant p, and
then integrate p exactly.
The level ` determines the number of points and/or also the polynomial degree,
and hence, the accuracy or precision of the rule.

Rectangle rule (left)

n` = 2`�1
, t`,k =

k � 1

n`

, w`,k =
1

n`

for ` 2 N.

If f 2 C
1[0, 1] then error = O(n�1

`
).

10
Trapezoidal rule
n1 = 1, t1,1 = 1/2, w1,1 = 1, then for ` > 1

n` = 2`�1 + 1, t`,k =
k � 1

n` � 1
and

w`,k =

(
1

2(n`�1) for k = 1, n`,

1
n`�1 for k = 2, 3, . . . , n` � 1.

If f 2 C
2[0, 1] then error = O(n�2

`
).

10

Gauß–Legendre, Gauß–Patterson, Clenshaw–Curtis, Leja. . .
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Tensor-product quadrature rules

An s-dimensional integral can be approximated by applying a 1D rule in each
dimension: Z

[0,1]s
f(y) dy ⇡ Q

⌦

s,` f :=

 
sO

j=1

Q1,`j

!
f.

We call Q⌦

s,` the tensor product of the s 1D quadrature rules

Q1,`j g =

n`jX

kj=1

w`j ,kjg(t`j ,kj ) j = 1, 2, . . . , s, (1.1)

corresponding to the vector of levels ` = (`1, `2, . . . , `s) 2 Ns.
The tensor product quadrature rule is given explicitly by
 

sO

j=1

Q1,`j

!
f :=

n`1X

k1=1

n`2X

k2=1

· · ·
n`sX

ks=1

w`1,k1w`2,k2 · · ·w`s,ksf(t`1,k1 , t`2,k2 , . . . , t`s,ks).

(1.2)
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Tensor product quadrature rules

Letting n = (n`1 , n`2 , . . . , n`s) and k = (k1, k2, . . . , ks) 2 Ns we can write

Q
⌦

s,`f =
X

kn

w⌦

`,kf(t`,k), w⌦

`,k :=
sY

j=1

w`j ,kj , t`,k := (t`j ,kj )
s

j=1. (1.3)

Notes:

N =
sY

j=1

n`j points in total.

Full tensor product is given by `j = ` for j = 1, 2, . . . , s. Then the total
number of points is N = n

s

`
.

Total error is given by the error of the 1D quadrature rules, and so tensor
product rules suffer from the curse of dimensionality!
As an example, for the full tensor product and f 2 C

2([0, 1]s) the error is
O(n�2

`
) = O(N�2/s), e.g., using the trapezoidal rule.

Key problem: Error in higher dimensions is given by the the error in 1D, but
taking the product increases N exponentially!

Key idea of sparse grids: is it possible to maintain the order 1D convergence
without using the “full” tensor product?
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Full tensor product grid vs. sparse grid

Figure: Trapezoidal rule: full tensor product grid (L) and sparse grid (R) for level ` = 6
(Nfull = 33⇥ 33 = 1089 vs NSG = 145).
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Sparse grid quadrature

Definition 1.1 (Smolyak Operator)

Let {Q1,`}`2N be a sequence of 1D quadrature rules, and for ` = 1, 2, . . . define
the difference quadrature rules

�` := Q1,` �Q1,`�1, with Q1,0 ⌘ 0.

Define the Smolyak (quadrature) operator applied to f 2 C([0, 1]s) by

Qs,`f =
X

|k|`+s�1

 
sO

j=1

�kj

!
f, (1.4)

where k 2 Ns, |k| =
P

s

j=1 kj and the tensor product quadrature rule is as defined
in (1.2).

Two key ideas:
1. Construct an approximation that is the sum of tensor products of differences

of 1D quadrature rules, and
2. do not use the full order ` tensor product grid, but restrict the grid so that

the total order of each tensor product is at most `.
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Properties of Smolyak/sparse grid quadrature

(1.4) is called both Smolyak quadrature and sparse grid quadrature.
Such a quadrature approximation was first proposed in [Smolyak 1963], and
the modern development uses sparse grids e.g., [Bungartz & Griebel 2004;
Gerstner & Griebel 1998].
The grid, or quadrature point set, Ps,` corresponding to (1.4) is called a
sparse grid.
A 1D rule is called nested if P` ⇢ P`+1 for all ` 2 N. It is called nonnested

otherwise. Similarly, a sparse grid/Smolyak approximation is called nested
(nonnested) if it is based on nested (nonnested) 1D rules.
If each order `j 1D rule uses n`j points, then the total number of points is

N` =

8
>><

>>:

X

|k|`+s�1

(nk1 � nk1�1)(nk2 � nk2�1) · · · (nks � nks�1), nested,

X

|k|`+s�1

nk1 · nk2 · · ·nks nonnested,

e.g., for a nested rule if n` = O(2`), then N = O(2` · `s�1), which is a
drastic reduction compared to O(2`s) for the full tensor product.
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Properties of Smolyak/sparse grid quadrature

The first non-trivial (nonzero) sparse grid approximation (` = 1) is

Qs,1f =

 
X

|k|s

sO

j=1

�`j

!
f =

 
sO

j=1

Q1,1

!
f

and uses N1 = n
s

1 points.
In practice it is important to use 1D rules with n1 = 1, otherwise any sparse
grid approximation will use an exponential number of points (since N` � N1).
A naive sparse grid implementation, i.e., computing the sum as it is
formulated in (1.4), will evaluate the function at the same points multiple
times, but with different weights (due to the differences, but especially if the
quadrature rules are nested).
In practice (see Section 2), one collects the weights into a single weight, and
the evaluates the function at each unique point once only:

Qs,`f =
NX̀

k=1

ew`,kf(et`,k).

Power of sparse grids: For f sufficiently smooth a sparse grid approximation
has a similar order error as the full tensor product (cf. Section 3).
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Examples of sparse grids

Figure: 2D sparse grids corresponding to trapezoidal, Clenshaw–Curtis and

Gauß–Legendre rules for ` = 6.
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Numerical example — integral equation

A simplified transport problem in 1D, which models the behaviour of a particle
through the one-dimensional rod [0, 1], is given by the integral equation

x(t) = t+

Z 1

t

↵x(y) dy, t 2 [0, 1].

The solution is known exactly, but can alternatively be approximated by the
integral of a truncated series expansion

x(t) ⇡ xs(t) =

Z

[0,1]s

s�1X

k=0

Fk(t,y) dy,

where

Fk(t,y) = ↵
k(1� t)k

 
k�1Y

j=1

y
k�j

j

! 
1� (1� t)

kY

j=1

yj

!
.
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Sparse grid numerical results

100 101 102 103 104 105

N

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

e
rr

o
r

trapezoidal

N-1.3

Figure: Convergence of sparse grids for the approximate solution xs(0) of integral

equation with s = 8. Maximum level ` = 6, and using trapezoidal, Clenshaw–Curtis and

Gauß–Legendre 1D rules. [Source: Gerstner & Griebel 1998].
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Summary

Polynomial based quadrature rules provide great results in 1D, but when
generalising to higher dimensions tensor product rules suffer the curse of
dimensionality.
Sparse grids drastically reduce the number of functions evaluations, and if the
integrand is sufficiently smooth they can achieve similar convergence as the
full tensor product grid.
Two key ideas of sparse grids:

1. Instead of taking the tensor product of order ` in each dimension, sparse grids

restrict the quadrature grids such that the total order of the tensor product is

at most `.
2. Instead of taking the tensor product of 1D rules, the Smolyak (sparse grid)

rule takes the sum of tensor products of the differences.
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2. Implementation of sparse grid quadrature
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Comparison to full tensor product

Recall that a sparse grid approximation is given by

Qs,`f =
X

|k|`+s�1

 
sO

j=1

�kj

!
f.

The full tensor product can be also be written in terms of the difference rules:
 

sO

j=1

Q1,`

!
f =

X

|k|1`

 
sO

j=1

�kj

!
f. (2.1)

where |k|1 := maxs
j=1 kj .

The key difference is how k is restricted:

sparse grid: |k| =
sX

j=1

kj  `+ s� 1

i.e., order of all 1D rules combined is less than `+ s� 1.
E.g., if ki = ` then kj = 1 for all j 6= i.
full tensor product: |k|1 = maxj2{1:s} kj  `.
i.e., order of the 1D rule in each dimension is less than `.
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A naive sparse grid implementation

A naive sparse grid implementation evaluates the sparse grid approximation
exactly as it is formulated in (1.4), i.e.,

Algorithm 1 A naive sparse grid implementation
Given s 2 N, ` 2 N, {Q1,k}k2N and f :
1: Initialise: Qs,`f  0
2: for k 2 Ns such that |k|  `+ s� 1 do

3: Qs,`f  Qs,`f +

 
sO

j=1

�kj

!
f

4: end for

Problem: Due to the differences overlapping on different levels and because the
1D rules are nested, almost all quadrature points will be evaluated multiple times,
but with different weights.
E.g., for the trapezoidal rule (with 1D points {1/2, 0, 1, 1/4, 3/4, . . .}) in s

dimensions the first point is t`,1 = (1/2, 1/2, . . . , 1/2) for all ` 2 N. Hence, for
every k one evaluates f(1/2, 1/2, . . . , 1/2) but with different weights.
Goal: Formulate the sparse grid approximation (1.4) such that the integrand is
evaluated each unique quadrature point once only.
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Difference grids

Define the difference grids ⇥` ⇢ [0, 1] to be the “new” points corresponding to the
1D difference �` = Q1,` �Q1,`�1:

⇥` = P` \ P`�1, with P0 = ;.

Note that if the rules are nonnested then P` \ P`�1 = ; so ⇥` = P` \ P`�1 = P`.
Let the number of points in the difference grid be

m` =

(
n` � n`�1, (n0 = 0) nested,
n` nonnested.

and let the points and weights for each difference grid be

⇥` = {⌧`,1, ⌧`,2, . . . , ⌧`,m`} and !`,1,!`,2, . . . ,!`,m` .

With this notation we can reformulate (1.4) equivalently as

Qs,`f =
X

|k|`+s�1

mk1X

i1=1

mk2X

i2=1

· · ·
mksX

is=1

!k,if(⌧k,i) (2.2)

where ⌧k,i = (⌧k1,i1 , ⌧k2,i2 , . . . , ⌧ks,is) and !k,i is to be specified.
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Computing the weights

The weight !k,i can be computed by summing all of the weights corresponding to
the unique point ⌧k,i that will occur in the formulation (1.4).
Nested case

!k,i =
X

|k+h|`+2s�1

v(k1+h1),i1 · v(k2+h2),i2 · · · v(ks+hs),is

where h 2 Ns, and

v(k+h),i =

8
><

>:

!k,i for h = 1,

!(k+h�1),q � !(k+h�2),r for h > 1, and q, r 2 N s.t.
⌧k,i = ⌧(k+h�1),q = ⌧(k+h�2),r.

Nonnested case

!k,i =
X

h2{0,1}s

|k+h|`+s�1

sY

j=1

(�1)hj!kj ,ij
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Efficient sparse grid implementation remarks

By dealing with the difference grids ⇥`, the reformulation (2.2) only
evaluates f at each unique quadrature point once only.
In practice, the points and weights can be precomputed.
The weights !k,i may be negative in practice.
The formulation (2.2) is not extensible in `, because increasing ` changes all

of the weights, i.e, to perform the approximation for `+ 1 one must go back
and evaluate f at previous points with the new weights.
Any sparse grid approximation suffers from this problem.
Numerical experiments [Gerstner & Griebel 1998] suggest that it is more
numerically stable to compute a sparse grid approximation dimension-wise
instead of summing up to `, i.e, instead of computing

`+s�1X

=s

X

|k|=

mk1X

i1=1

mk2X

i2=1

· · ·
mksX

is=1

!k,if(⌧k,i),

one should compute
`X

k1=1

`�k1X

k2=1

· · ·
`�k1�...�ks�1X

ks=1

mk1X

i1=1

mk2X

i2=1

· · ·
mksX

is=1

!k,if(⌧k,i).
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Combination technique

The sparse grid approximation (1.4) can equivalently be written as the sum over
the tensor product of (full) 1D rules Q1,kj , instead of the differences �kj . The
combination technique is the formulation of a sparse grid approximation given by

Qs,`f =
X

`|k|`+s�1

(�1)`+s�|k|�1

✓
s� 1

|k|� `

◆ sO

j=1

Q1,kj

!
f, (2.3)

Notes:
Dealing only with the 1D rules Q1,kj instead of the differences �kj is simpler
in practice.
But still requires evaluating f at the same quadrature points multiple times
with different weights. In particular, by necessity it requires more function
evaluations than the equivalent formulation (2.2).
Not extensible in `, because again the “combination” weights change.
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Efficiently generating indices

Sparse grid, and tensor product, rules require to generate indices (vectors) in
k, i 2 Ns such that |k|  `+ s� 1 or ij  `j .
One could of course write such sums as s nested loops, but in practice we want
the flexibility to handle different dimensions.
Some basic combinatorics helps us to do this.
Tensor products
Goal: to generate all

i 2 Ns such that ij  nj .

The indices i 2 Ns for the tensor product correspond to

i 2
sO

j=1

{1, 2, . . . , nj},

which can be generated by taking all s-dimensional combinations of the vectors
(1, 2, . . . , nj) for j = 1, 2, . . . , s. E.g., see the MATLAB function combvec.
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Efficiently generating indices for sparse grids

Goal: to generate all

k 2 Ns such that |k| =
sX

j=1

kj  `+ s� 1.

Naive method
Generate all the vectors corresponding to the full tensor product
k 2 {1, 2, . . . , `}s, and then check |k|  `+ s� 1.
This will be very inefficient in higher dimensions.

Efficient alternative
k 2 Ns with |k| = `+ s� 1 is equivalent to  2 Ns

0 with || = `� 1, which can
in turn be represented as a collection of `� 1 stars, ?, and s� 1 bars, |.
E.g., for s = 4, ` = 6 we have

(2, 1, 4, 2) () (1, 0, 3, 1) () ?|| ? ? ? |?

Hence, one can generate all k 2 Ns such that |k| = `+ s� 1 by generating all
(s� 1)-combinations of the integers up to `+ s� 2 (see [Algorithm T, p. 5,
Knuth 2005].
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Summary

The sparse grid method and a full tensor product essentially differ in how the
sum over the indices k 2 Ns is restricted:

I tensor products allow 1D rules up to ` in every dimension simultaneously,

whereas

I sparse grids restrict k such that the total order of the 1D rules in all

dimensions is less than or equal to `+ s� 1.

The sparse grid approximation can be reformulated such that the function is
evaluated at each unique quadrature point once only.
The combination technique gives a reformulation of the sparse grid
approximation that is given in terms of tensor products of 1D quadrature
rules only, instead of the differences.
Combinatorics tricks are often useful for generating the index vectors for
sparse grids and tensor products in practice.
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3. Analysis of sparse grid quadrature
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Setting for sparse grid error analysis

Goal: derive bounds on the sparse grid error:

es,`(X , Qs,`) := sup
f2X ,kfkX1

����
Z

[0,1]s
f(y) dy �Qs,`f

����

for all f in a suitable function space X , and ideally es,` = O(e1,`).

Function spaces
Since a sparse grid approximation is constructed by tensor products, the natural
spaces in which to analyse sparse grids are tensor product spaces.
In particular, we consider the Sobolev spaces of dominating mixed smoothness of
order r 2 N on [0, 1]s H

r
mix([0, 1]

s) (cf. Section III.3), which recall are the tensor
product of 1D Sobolev spaces:

H
r
mix([0, 1]

s) =
sO

j=1

H
r[0, 1].
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Alternate formulations for the Smolyak operator

Lemma 3.1

Let s 2 N and ` 2 N, then the Smolyak approximation operator (1.4) is also given

by the combination technique

Qs,`f =
X

`|k|`+s�1

(�1)`+s�|k|�1

✓
s� 1

|k|� `

◆ sO

j=1

Q1,kj

!
f,

and the following dimension recursive formulas

Qs,`f =
`X

k=1

�
�k ⌦Qs�1,`�k+1

�
f, (3.1)

Qs+1,`f =
X

|k|`+s�1

�
�k1 ⌦�k2 ⌦ · · ·⌦�ks ⌦Q1,`+s�|k|

�
f. (3.2)

Proof. See accompanying notes.
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Abstract error bounds for Smolyak approximation

Lemma 3.2 (Wasilkowski & Woźniakowski 1995)

Let H1 be a Hilbert space of functions f : [0, 1]! R, and let {Q1,`}`2N be a

sequence of quadrature rules such that for ↵ 2 (0, 1) and all ` 2 N

(S1) e1,0(H1, Q1,0) := sup
f2H1,kfkH11

����
Z 1

0
f(y) dy

����  C1,

(S2) e1,`(H1, Q1,`)  C2↵
`
,

(S3) k�`k = sup
f2H1,kfkH11

|�`f |  C3↵
`
.

Then, for s 2 N, the worst-case error of the Smolyak approximation (1.4) in the

tensor product Hilbert space Hs = ⌦s

j=1H1 is bounded by

es,`(Hs, Qs,`)  C2 max
�
C1, C3↵

 s�1
✓
`+ s� 1

s� 1

◆
↵
`
. (3.3)

Proof. See [Lemma 2, Wasilkowski & Woźniakowski 1995] or accompanying
notes.
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Explicit error bounds

Theorem 3.3

Let s 2 N, and let {Q1,`}`2N be a sequence of 1D quadrature rules such that

n` = O(2`), and their worst-case errors in H
r[0, 1], r 2 N, satisfy

e1,`(H
r[0, 1], Q1,`) = O(n�r

`
) = O(2�`r).

Then, for f 2 H
r
mix([0, 1]

s) the error of the sparse grid approximation (1.4) of

order ` is bounded by

����
Z

[0,1]s
f(y) dy �Qs,`f

����  C2�`r
`
s�1kfkHr

mix
(3.4)

= O
�
N

�r

`
log(N`)

(r+1)(s�1)
�
,

where C <1 may depend on s.

Proof. The proof follows from Lemma 3.2 with ↵ = 2�r, and then that the total
number of points is N` = O(2``s�1).
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Comments on sparse grid error

As an example, for f 2 H
2[0, 1] the error of the trapezoidal rule is O(n�2

`
).

Hence, for f 2 H
2
mix([0, 1]

s) the error of a sparse grid approximation based
on trapezoidal rules is O(N�2

`
log(N`)3(s�1)).

Error bounds are asymptotically better than MC and QMC, but they still
depend on the dimension.
The sparse grid approximation (1.4) is isotropic, i.e., each dimension is
treated the same (similarly for Hr

mix). Since we are not exploiting any
dimensionwise structure of f , the dependence on the dimension is to be
expected.
We have only considered integration on [0, 1]s, however, Smolyak’s
construction can be used for many more problems, e.g., integration on Rs by
using Gauß–Hermite quadrature in 1D, or function
approximation/interpolation by taking the tensor product of 1D polynomial
interpolants (cf. Section 4).
In particular, Lemma 3.2 holds in much more general settings.
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Summary

Since a sparse grid approximation is based on tensor products, the correct
setting to study their errors are tensor product spaces.
For f 2 H

r
mix([0, 1]

s) the error of a sparse grid approximation is
O(N�r

`
log(N`)(r+1)(s�1)).

A key abstract result give that the error of a sparse grid approximation is of
the same order as the 1D errors.
Since the sparse grids we have studied so far are isotropic, the errors still
depend on the dimension.
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4. Sparse grid interpolation
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Function interpolation in one dimension

Now we wish to approximate f : [0, 1]! R in some finite-dimensional subspace
V1,` with dimension n`, e.g., piecewise polynomials corresponding to a given grid.
Define the interpolation operator A1,` : C[0, 1]! V1,` by

f(y) ⇡ A1,`f(y) :=
nX̀

k=1

f(t`,k)�`,k(y), (4.1)

where {�`,k}n`
k=1 are a basis for V1,` and P` = {t`,k}n`

k=1 is the grid.

Piecewise constant Piecewise linear Other examples
Higher order Lagrange interpolation,
Legendre polynomials, Hermite
polynomials on R, . . .

Approximation vs interpolation
A1,`f interpolates f on the grid P` = {t`,k}n`

k=1:

A1,`f(t`,k) = f(t`,k) for k = 1, 2, . . . , n`.

But one could also consider more general approximation operators that give the
best approximation in V1,`, e.g., least-squares, best n-term . . .
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Piecewise linear interpolation

Let P` be an equidistant grid on [0, 1] with

n` = 2` + 1, h` = 2�` (meshwidth or gridsize) and t`,k = (k � 1)h`.

Then let V1,` be the space of piecewise linear functions

V1,` =
�
v 2 C[0, 1] : v|(t`,k,t`,k+1) 2 P

1
1 (t`,k, t`,k+1) for k = 1, 2, . . . n` � 1

 
.

Error in one dimension
For f 2 H

2[0, 1], it is well-known that the interpolation errors satisfy

kf �A1,`fkH1[0,1]  C1h`|f |H2[0,1],

kf �A1,`fkL2[0,1]  C2h
2
`
|f |H2[0,1],

where |f |H2[0,1] = kf 00kL2[0,1] is the H
2 semi-norm.
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Tensor product interpolation

Let {V1,`}`2N be a sequence finite-dimensional subspaces of C[0, 1], let
n` = dim(V1,`) and let the corresponding 1D interpolation operators
A1,` : C[0, 1]! V1,` be given by

A1,`f =
nX̀

k=1

f(t`,k)�`,k.

Let ` 2 Ns be a multiindex of levels. The tensor product approximation space is

V
⌦

s,` =
sO

j=1

V1,`j = span

(
sY

j=1

�`j ,kj : kj = 1, 2, . . . , n`j , j = 1, 2, . . . , s

)
,

and the tensor product approximation operator is given by

A
⌦

s,`f =

 
sO

j=1

A1,`j

!
f =

n`1X

k1=1

n`2X

k2=1

· · ·
n`sX

ks=1

f(t`,k)
sY

j=1

�`j ,kj , (4.2)

where t`,k = (t`1,k1 , t`2,k2 , . . . , t`s,ks).
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Properties of tensor product interpolation

The dimension of the tensor product approximation space is

N
⌦

` = dim
�
V

⌦

s,`

�
=

sY

j=1

dim
�
V1,`j

�
=

sY

j=1

n`j ,

which also corresponds to the total number of points in the tensor product
grid.
The full tensor product is given by `j = ` for j = 1, 2, . . . , s, and then
dim(⌦s

j=1V1, `) = n
s

`
.

As with quadrature, the error of the tensor product interpolation is given by
the error of interpolation in one dimension.
E.g, for f 2 H

2([0, 1]s) the L
2-error of the full tensor product piecewise

linear interpolant is

kf �A
⌦

s,`
fkL2([0,1]s) = O(h2

`
) = O

�
n
�2
`

�
= O

�
(N⌦

`
)�2/s

�
.

And so tensor product interpolation also suffers from the curse of
dimensionality!
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Sparse grid interpolation

Definition 4.1 (Smolyak Operator)

Let {A1,`}`2N be a sequence of 1D interpolations defined on the
finite-dimensional subspaces V1,` ⇢ C[0, 1], and for ` = 1, 2, . . . define now the
difference interpolation operators

�` := A1,` �A1,`�1, with A1,0 ⌘ 0.

Define the Smolyak (interpolation) operator applied to f 2 C([0, 1]s) by

As,`f =
X

|k|`+s�1

 
sO

j=1

�kj

!
f, (4.3)

where k 2 Ns, |k| =
P

s

j=1 kj and the tensor product approximation is as defined
in (4.2). The corresponding approximation subspace is

Vs,` =
M

|k|`+s�1

sO

j=1

V1,kj = span

(
sY

j=1

vkj : vkj 2 V1,kj for |k|  `+ s� 1

)
.
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Properties of sparse grid interpolation

Define the 1D difference subspaces

W1,` := V1,` \ V1,`�1,

and let m` = dim
�
W1,`

�
. The 1D interpolation rules are nested if V1,` ⇢ V1,`+1

and nonnested otherwise.
Then we can write the Smolyak approximation space as

Vs,` =
M

|k|`+s�1

sO

j=1

W1,kj .

The total number of degrees of freedom (also the number of points in the grid) is

N` = dim
�
Vs,`

�
=

X

|k|`+s�1

sY

j=1

mkj .
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Alternate formulas for interpolation

The following formulas also hold for the Smolyak interpolation operator (4.3):
Combination technique:

As,`f =
X

`|k|`+s�1

(�1)`+s�|k|�1

✓
s� 1

|k|� `

◆ sO

j=1

A1,kj

!
f. (4.4)

Dimension recursive formulas:

As,`f =
`X

k=1

�
�k ⌦As�1,`�k+1

�
f, (4.5)

As+1,`f =
X

|k|`+s�1

�
�k1 ⌦�k2 ⌦ · · ·⌦�ks ⌦A1,`+s�|k|

�
f, (4.6)

where k 2 N and k 2 Ns.
Full tensor product in terms of the differences:

 
sO

j=1

A1,`

!
f =

X

|k|1`

 
sO

j=1

�kj

!
f, (4.7)

where |k|1 = maxs
j=1

�
kj

 
.
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Analysis of sparse grid interpolation

Goal: derive bounds on the sparse grid interpolation error:

kf �As,`fk

in some appropriate norm, e.g., L1 or L2.

As before, we can define the worst-case error for approximation by

es,`(X ,Y, As,`) := sup
f2X ,kfkX1

kf �As,`fkY ,

where f 2 X , and we measure the error in the Y norm.
Again we want es,` = O(e1,`).

Function spaces
Again, we consider f 2 H

r
mix([0, 1]

s), the Sobolev space of dominating mixed
smoothness and we will look at the L

2-error:

kf �As,`fkL2([0,1]s).
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Abstract error bounds for Smolyak interpolation error

Lemma 4.2 (Wasilkowski & Woźniakowski 1995)

Let H1 be a Hilbert space of functions f : [0, 1]! R and let Y1 be a Banach

space such that H1 ⇢ Y1. Let {A1,`}`2N be a sequence of interpolation rules such

that for ↵ 2 (0, 1) and all ` 2 N
(S1) e1,0(H1,Y1, A1,0) := sup

f2H1,kfkH11
kfkY1  C1,

(S2) e1,`(H1,Y1, A1,`)  C2↵
`
,

(S3) k�`k = sup
f2H1,kfkH11

k�`fkY1  C3↵
`
.

Then, for s 2 N, the worst-case error of the Smolyak interpolation (4.3) in the

tensor product Hilbert space Hs = ⌦s

j=1H1, measured in Ys = ⌦s

j=1Y1, is

bounded by

es,`(Hs,Ys, As,`)  C2 max
�
C1, C3↵

 s�1
✓
`+ s� 1

s� 1

◆
↵
`
. (4.8)

Proof. The proof is the same as for Lemma 3.2. In fact, the original statement
[Lemma 2, Wasilkowski & Woźniakowski 1995] is more general.
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Explicit error bound for sparse grid interpolation

Theorem 4.3

Let s 2 N, and let {A1,`}`2N be a sequence of 1D interpolation rules such that

n` = O(2`), and their worst-case L
2
-errors in H

r[0, 1], r 2 N, satisfy

e1,`(H
r[0, 1], L2[0, 1], A1,`) = O(n�r

`
) = O(2�`r).

Then, for f 2 H
r
mix([0, 1]

s) the L
2
-error of the sparse grid interpolation (4.3) of

order ` is bounded by

kf �As,`fkL2([0,1]s)  C2�`r
`
s�1kfkHr

mix
(4.9)

= O
�
N

�r

`
log(N`)

(r+1)(s�1)
�
,

where C <1 may depend on s.

Proof. The proof follows from Lemma 4.2 with ↵ = 2�r, and then that the total
number of points/degrees of freedom is N` = O(2``s�1).
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Comments on sparse grid interpolation

As an example, for f 2 H
2[0, 1] the L

2 error of piecewise linear interpolation
is O(h2

`
) =

�
n
�2
`

). Hence, for f 2 H
2
mix([0, 1]

s the error of a piecewise linear
sparse grid interpolant is O(N�2

`
log(N`)3(s�1)).

In general, the L
2 error in H

r[0, 1] of 1D piecewise Lagrangian interpolation
of order r � 1 is O(hr

`
) = O(n�r

`
), and so a sparse grid based on Lagrangian

interpolation achieves the error bound (4.9).
We can also take more general approximation methods for our 1D rules, e.g.,
interpolation on R using Hermite polynomials, least-squares approximation,
best n term approximation, wavelets . . .

How do we compute the difference approximations �` = A1,` �A1,`�1?
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Basis systems for linear interpolation
Consider again piecewise linear interpolation on an equidistant grid
P` = {t`,k}n`

k=1 ⇢ [0, 1], with n` = 2`�1 + 1, h` = 2�(`�1) and t`,k = (k � 1)h`.
The grids are nested P` ⇢ P`+1, and so V1,` ⇢ V1,`+1 as well, but the basis
functions are not necessarily nested.

Hat functions

�`,k(y) =

8
><

>:

y�t`,k�1

h`
y 2 (t`,k�1, t`,k]

t`,k+1�y

h`
y 2 (t`,k, t`,k+1)

0 otherwise.

Hierarchical basis
k odd:

�`,k = �`�1,(k+1)/2

k even:

�`,k(y) =

8
><

>:

y�t`,k�1

h`
y 2 (t`,k�1, t`,k]

t`,k+1�y

h`
y 2 (t`,k, t`,k+1)

0 otherwise.

Figure: Basis functions for piecewise linear

interpolation: hat functions (L) and

hierarchical basis (R).
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Hierarchical interpolation

Figure: Hierarchical piecewise linear interpolation of a parabola.
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Hierarchical interpolation in one-dimension

The difference spaces {W1,`}`2N can be represented by the hierarchical basis as

W1,` = V1,` \ V1,`�1 = span
�
�`,2i : i = 1, 2, . . . , (n` � 1)/2 = m`

 
.

Then the interpolation rule A1,` : C[0, 1]! V1,` can be constructed hierarchically

A1,`f =
`X

k=1

mkX

i=1

↵k,i�k,2i,

where ↵k,i 2 R is the coefficient of the basis function �k,2i 2W1,k.
The coefficients are given by ↵k,1 = f(0), ↵k,mk = f(1) and

↵k,i = f(tk,2i)�
1

2

�
f(tk,2i � hk) + f(tk,2i + hk)

�

= f(tk,2i)�
1

2

�
f(tk,2i�1) + f(tk,2i+1)

�

= f(tk,2i)�
1

2

�
f(tk�1,i) + f(tk�1,i+1)

�
,

for i = 2, 3, . . . ,mk � 1.
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Tensor product of hierarchical 1D interpolation

Let s > 1 and ` 2 Ns, then the hierarchical tensor product is given by
 

sO

j=1

A1,`j

!
f =

`1X

k1=1

mk1X

i1=1

`2X

k2=1

mk2X

i2=1

· · ·
`sX

ks=1

mksX

is=1

↵k,i

sY

j=1

�kj ,2ij ,

where the coefficient ↵k,i 2 R is constructed as follows.
Define the one-dimensional interpolation coefficient operator (stencil)

⌅k,i : C[0, 1]! R, which maps f1 7! ↵k,i, and is given by

⌅k,if = �1

2
f(tk,2i�1) + f(tk,2i)�

1

2
f(tk,2i+1) =

⇥
� 1

2 1 � 1
2

⇤
k,2i

f.

The coefficient is then given by the product of the 1D interpolation coefficient
operators/stencils

↵k,i =

 
sY

j=1

⌅kj ,ij

!
f =

 
sY

j=1

⇥
� 1

2 1 � 1
2

⇤
kj ,2ij

!
f.
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General hierarchical tensor product interpolation

Let {V1,`}`2N be a hierarchy of finite-dimensional interpolation spaces

V1,` = span
�
�`,i : i = 1, 2, . . . , n`

 
=

`M

k=1

W1,k.

Let the index set for the “new” basis functions for the difference space W1,k be
Mk ⇢ {1, 2, . . . , n`}, so that mk = dim

�
W1,k

�
= |Mk| and

W1,k = V1,k \ V1,k�1 = span
�
�k,i : i 2Mk

 
.

Let the 1D interpolation operator As,` : C[0, 1]! V1,` be given by

A1,`f =
`X

k=1

X

i2Mk

�
⌅k,if

�
�k,i,

where ⌅k,i is the interpolation coefficient operator for the basis function �k,i.
For ` 2 Ns, the hierarchical representation of the tensor product interpolant is

 
sO

j=1

A1,`j

!
f =

X

k`

X

i2Mk

↵k,i

sY

j=1

�kj ,ij .

where k, i 2 Ns, Mk = ⌦s

j=1Mkj ⇢ Ns and ↵k,i =
�Q

s

j=1 ⌅kj ,ij

�
f .
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Hierarchical representation of sparse grid interpolation

The sparse grid interpolant (4.3) can also be written in hierarchical form

As,`f =
X

|k|`+s�1

X

i2Mk

↵k,i

sY

j=1

�kj ,ij (4.10)

where ↵k,i =
�Q

s

j=1 ⌅kj ,ij

�
f (and we assume the same setting as before).

Example
The sparse grid interpolant based on piecewise linear interpolation is given
explicitly by

As,`f =
X

|k|`+s�1

mk1X

i1=1

mk2X

i2=1

· · ·
mksX

is=1

↵k,i

sY

j=1

�kj ,2ij

where

↵k,i =

 
sY

j=1

⇥
� 1

2 1 � 1
2

⇤
kj ,2ij

!
f.
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Comments on hierarchical representations

In practice, one can evaluate and store the function evaluations at all of the
grid points, then applies the product stencils to obtain the coefficients ↵k,i.
Approximations based on higher order interpolants or different polynomial
basis systems can be hierarchically constructed in the same way as for the
piecewise linear case. One just needs to identify the indices of the new basis
functions and construct the stencils to obtain the coefficients in 1D.
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Summary

The sparse grid formulation can also be used for interpolation in high
dimensions.
The error of sparse grid interpolation in higher dimensions is of the same
order as the error in one dimension and the full tensor product, but the sparse
grid formulation uses drastically less degrees of freedom than the full tensor
product.
In practice, to compute sparse grid interpolants efficiently it is useful to work
with hierarchical basis systems for the 1D interpolation spaces.
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5. Sparse grid stochastic collocation
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Stochastic PDE problem again

Let D ⇢ Rd, for d = 1, 2, 3, be a bounded convex domain, and consider the again
the stochastic PDE

�r · (a(x,y)ru(x,y)) = f(x), x 2 D, (5.1)
u(x,y) = 0, x 2 @D,

where x 2 D is the physical variable and y ⇠ Uni([� 1
2 ,

1
2 ]

s) is a random

parameter (i.e., ⌦ = [� 1
2 ,

1
2 ]). Assume f 2 L

2(D) and that the coefficient,

a(x,y) = a0(x) +
sX

j=1

yjaj(x), (5.2)

satisfies Assumption III.1, so that u 2 L
1
�
⌦s;H1

0 (D)
�
.

Goal: Approximate
1. G(u(y)) on ⌦s for a linear functional G 2 H

�1(D), or
2. the full solution u on D ⇥ ⌦s.
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Approximation strategy

Finite element discretisation. Let V D

h
⇢ H

1
0 (D) be a FE subspace corresponding

to a triangulation Th of D with mesh width h > 0 (Appendix B).
For each y the FE approximation is u(y) ⇡ uh(y) 2 V

D

h
.

Interpolation on the stochastic domain ⌦s. Let {V ⌦
s,`
⇢ L

2(⌦s}`2N be a sequence
of interpolation spaces on ⌦s = [� 1

2 ,
1
2 ]

s and let As,` : C(⌦s)! V
⌦
s,`

be the
interpolation rules, e.g., a tensor product interpolant (4.2) or a sparse grid
interpolant (4.3).
We can then interpolate u(y) 2 H

1
0 (D) on ⌦s by applying As,`:

G(u(y)) ⇡ As,`G(u(y)) and u(y) ⇡ As,`u(y).

Combined approximations

G(u(y)) ⇡ As,`G(uh(y)) and u(x,y) ⇡ uh,`(x,y) := As,`uh(x,y).

Key points:
1. G(u) 2 C(⌦s) is a function of y only, and so we can directly apply the

interpolation methods and results from Section 4. Now, “function
evaluations” are PDE solves.

2. u 2 L
1(⌦s;H1

0 (D)) and so we are applying an interpolation rule to u(y)
which takes values in H

1
0 (D) (or V D

h
). This is stochastic collocation.
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Direct application of sparse grids to G(u(y))
For G 2 H

�1(D), the quantity of interest G(u) 2 C(⌦s) is a function of y only.
So we can immediately approximate G(u(y)) using the methods from Section 4:

G(u) ⇡ As,`G(u).

E.g., a sparse piecewise linear interpolant is given explicitly by

As,`G(u) =
X

|k|`+s�1

mk1X

i1=1

mk2X

i2=1

· · ·
mksX

is=1

 
sY

j=1

⇥
� 1

2 1 � 1
2

⇤
kj ,2ij

!
G(u)

 
sY

j=1

'kj ,2ij

!
,

where 'k,i(y) = �k,i(y+
1
2 ) and the 1D gridpoints are ⌧k,i = (i� 1)2�(k�1) � 1

2 .
Similarly, we can approximate the expectation by a sparse grid quadrature rule

E[G(u)] =
Z

[� 1
2 ,

1
2 ]

s

G(u(y)) dy ⇡ Qs,`G(u).

Total error bound

kG(u)�As,`G(uh)kL2(⌦s)  kG(u)� G(uh)kL2(⌦s)| {z }
FE error

+ kG(uh)�As,`G(uh)kL2(⌦s)| {z }
SG error

(5.3)
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Analytic regularity in the stochastic domain

Theorem 5.1

For ⌫ 2 Ns
, the order ⌫ derivative with respect to y is bounded by

����
@
|⌫|

@y⌫
u(y)

����
L1(⌦s;H1(D))


kfkL2(D)

amin
|⌫|!

sY

j=1

✓kajkL1(D)

amin

◆⌫j

.

and hence, G(u) 2 H
r
mix(⌦

s) for all r 2 N.

Furthermore, for all y
�j

:= (yi : i 2 {1 : s} \ {j}) 2 ⌦s�1
the one-parameter

function u(·;y
�j

) 2 C(⌦;H1
0 (D)) admits a unique analytic extension u(⇠,y

�j
)

for all ⇠ 2 ⌃(⌦; ⇢j) ⇢ C, and the domain of analyticity is

⌃(⌦; ⇢j) :=
�
⇠ 2 C : dist(⇠,⌦)  ⇢j

 
where ⇢j =

amin

4kajkL1(D)
.

Since V
D

h
⇢ H

1
0 (D), the same results also hold for uh(y) 2 V

D

h
.

Proof. The derivative bounds are proved as in Lemma III.6.1, and the analytic
extension then follows by the derivative bounds (see [Lemma 3.2 Babuška, Nobile
& Tempone 2007]).
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Total error for sparse grid interpolation linear functional

Theorem 5.2

Let V
D

h
⇢ H

1
0 (D) be the piecewise linear FE space for a triangulation of D with

meshwidth h > 0, and let {V ⌦
1,`}`2N be a sequence of 1D interpolation spaces on

⌦ with n` = dim
�
V

⌦
1,`

�
= O(2`). Also, let the worst-case L

2
error in H

r(⌦) of

the corresponding 1D interpolation rules A1,` : C(⌦)! V
⌦
1,` satisfy

e1,`(H
r(⌦), L2(⌦), A1,`) = O(n�r

`
) = O(2�`r).

Then, for G 2 L
2(D) the total error the combined FE sparse grid interpolation

rule applied to G(u) is bounded by

kG(u)�As,`G(uh)kL2(⌦s)  C
�
h
2 +N

�r

`
log(N`)

(r+1)(s�1)
�

where C <1 may depend on s, but is independent of h, ` and N`.

Proof. By the triangle inequality

kG(u)�As,`G(uh)kL2(⌦s)  kG(u)�G(uh)kL2(⌦s)+kG(uh)�As,`G(uh)kL2(⌦s).

The 1st term (FE) can be bounded by (II.7.5). By Theorem IV.5.1
G(uh) 2 H

r
mix(⌦

s) so the 2nd term (SG) can be bounded by Theorem IV.4.3.
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Stochastic collocation: Approximating the full solution

Collocation is a method of solving differential or integral equations by solving the
equation at a collection of collocation points in the domain and then
reconstructing the full solution.

Stochastic collocation is a method for approximating the full parametric solution
of a stochastic PDE (e.g., (5.1)) by collocation in the parameter domain, i.e.,
applying interpolation on function space.
As an example, for an interpolation space V

⌦
s,`

= span
�
�k

 
and grid {tk} on ⌦s

u(x,y) ⇡
X

k

u(x, tk)�k(y),

e.g., tensor product or sparse grid polynomial interpolation.
Basic idea: Apply a sparse grid interpolation rule to efficiently handle the
high-dimensional parameter domain.
The collocation points are the sparse grid points, and the coefficients in the
interpolation are now functions in H

1
0 (D) (or V D

h
).

Note: In practice, we must also approximate the u in the spatial domain by a FE
solution uh. But as we saw for G(u), we can handle the FE error by the triangle
inequality, and V

D

h
⇢ H

1
0 (D) so the stochastic regularity results also hold for uh.
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Stochastic collocation for one parameter

Let s = 1, so that for y 2 ⌦ the stochastic PDE is

�r ·
�
(a0(x) + ya1(x))ru(x, y)

�
= f(x), for x 2 D.

The stochastic collocation based on the interpolation rule A1,` : C(⌦)! V
⌦
1,` is

u`(x, y) = A1,`u(x, y) =
nX̀

k=1

u(x, t`,k)�`,k(y),

where {t`,k}n`
k=1 are the collocation points and {�`,k 2 V

⌦
1,`}

n`
k=1 is the basis.

E.g., the FE and stochastic collocation (using hierarchical piecewise linear
interpolation) approximation is

uh,`(x,y) =
`X

k=1

mkX

i=1

⇥
� 1

2uh(x, tk,2i�1) + uh(x, tk,2i)� 1
2uh(x, tk,2i+1)

⇤
�k,2i(y),

where the collocation points are {tk,i = (i� 1)2�(k�1) � 1
2} and {�k,i} are the

corresponding hierarchical basis functions.
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Sparse grid stochastic collocation

Let As,` : C(⌦s)! V
⌦
s,`

be a sparse grid interpolation rule as in (4.10).
The sparse grid stochastic collocation approximation u` 2 H

1
0 (D)⌦ V

⌦
s,`

is then

u`(x,y) = As,`u(x,y) =
X

|k|`+s�1

X

i2Mk

↵k,i(x)
sY

j=1

�kj ,ij (yj), (5.4)

where now ↵k,i 2 H
1
0 (D) is given by

↵k,i(x) =

 
sY

j=1

⌅kj ,ij

!
u(x, ·).

E.g., for piecewise linear interpolation the FE and sparse grid stochastic
collocation approximation is given explicitly by

uh,`(x,y) =
X

|k|`+s�1

mk1X

i1=1

· · ·
mksX

is=1

 
sY

j=1

⇥
� 1

2 1 � 1
2

⇤
kj ,2ij

!
uh(x, ·)

sY

j=1

�kj ,2ij (yj).
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Sparse grid stochastic collocation error

Theorem 5.3 (Nobile, Tempone & Webster 2007)

Let {A1,`}`2N be a sequence of 1D interpolation rules based on Gaussian

abscissas with n1 = 1 and n` = 2`�1 + 1. Then the error of the sparse grid

stochastic collocation (5.4) in the Bochner space L
2(⌦s

, H
1
0 (D)) satisfies

ku�As,`ukL2(⌦s,H1
0 (D))  C1N

�⌘1

`

where, for ⇢min = mins
j=1 ⇢j = mins

j=1 amin/(4kajkL1(D)),

⌘1 =
e log(2)

1 + (1 + log2(3/2)) log(2) + log(s)
⇢min.

Furthermore, if ` > s/ log(2) then the error satisfies the subexponential bound

ku�As,`ukL2(⌦s,H1
0 (D))  C2 exp

✓
� s⇢min

21/s
N

⌘2

`

◆
,

where

⌘2 =
log(2)

s[1 + (1 + log2(3/2)) log(2) + log(s)]
< 1.

Here C1, C2 <1 may depend on s but are independent of N`.
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Summary

Sparse grid quadrature and interpolation can be used to tackle difficult high
dimensional stochastic PDE problems.
For a quantity of interest G(u), we can directly apply sparse grid
interpolation/quadrature, and the error analysis follows from our previous
results in Sections 3 and 4.
Stochastic collocation approximates the full parametric solution by
interpolation in function space on the stochastic domain, and can easily be
combined with FE methods for the spatial domain.
Essentially, the only difference is that the interpolation coefficients are now
functions.
The solution u is analytic in the stochastic parameter, and the “smoothness”
can be measured by the size of the analytic extension into the complex plane.
The error analysis of sparse grid stochastic collocation relies on this analytic
regularity. The asymptotic convergence rate is subexponential, and the
preasymptotic rate is algebraic. Both convergence rates depend on the radius
of the analytic extension.
log-normal problem can also be handled by using interpolation on R, e.g.,
using Hermite polynomials.
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6. Adaptive sparse grids
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General sparse grids

Z

[0,1]s
f(y) dy ⇡ Qs,`f =

X

|k|`+s�1

 
sO

j=1

�kj

!
f

The sparse grid quadrature rule is isotropic, i.e., each dimension j is treated
equally, and as such the sparse grid errors still depend on the dimension s.
The key to the performance of sparse grids in high dimensions is the structure of
the index set

{k 2 Ns : |k|  `+ s� 1},
but is this suitable for all problems?
Let I ⇢ Ns, then a general or anisotropic sparse grid quadrature rule is

Qs,I f =
X

k2I

 
sO

j=1

�kj

!
f. (6.1)

Examples
1. isotropic sparse grid: I = {k 2 Ns : |k|  `+ s� 1},
2. full tensor product: I = {k 2 Ns : |k|1  `},
3. weighted sparse grid: I = {k 2 Ns : � · k  `+ s� 1} where � 2 Rs

+,
4. hyperbolic cross: I = {k 2 Ns :

Q
s

j=1 max{kj , 1}  `}.
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Admissible index sets

Definition 6.1

An index set I ⇢ Ns is called downward closed or admissible if for all k 2 I

k � ej 2 I , for j = 1, 2, . . . , s such that kj > 1,

where ej 2 {0, 1}s is the jth unit vector.

Key idea: Index sets that are downward closed preserve the telescoping property of
the differences in the Smolyak operator.

Examples
For s 2 N, ` 2 N and � 2 Ns:

1. {k 2 Ns : |k|  `+ s� 1} is admissible,
2. {k 2 Ns : |k|1  `} is admissible,
3. {k 2 Ns : � · k  `+ s� 1} is admissible,
4. {k 2 Ns : |k| = `+ s� 1} is not admissible.
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Properties of general sparse grids

Anisotropic sparse grids allow to handle each dimension differently, i.e., for
the more important dimensions we can use a higher precision rule with more
points and less points for the less important dimensions.
General sparse grids are difficult to analyse, and so the convergence results
are limited.
Constructing suitable index sets for given problems can be difficult— we need
to know a priori the important dimensions, and then how this information
translates into the choice of index set.
After computing a given general sparse grid approximation, how do we extend
the index set to best increase the accuracy?

To overcome the last three difficulties we will choose the index set automatically.
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Adaptive sparse grids

Key idea: Given f , choose the index set adaptively while computing the sparse
grid approximation.

Goal: Compute an index set by sequentially adding index vectors such that
the new index set is still admissible,
the error is significantly reduced without a drastic increase in cost, and
only information given by the previous computations and the cost of
differential quadrature approximations are used.

Basic structure of the adaptive algorithm:
1. Start with I = {(1, 1, . . . , 1)}.
2. Compute the set of new admissible indices to be considered {k + ej ,k 2 I

and j = 1, 2, . . . , s}.
3. Select the new admissible index that gives the “best” error reduction, and add

it to I .
4. Update the quadrature approximation.
5. Repeat steps 2–4 until the total error estimate is below a given tolerance, or

the maximum work is exceeded.
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Main ingredients for adaptive algorithm

Error tolerance " > 0,

differential quadrature rule �k :=
sO

j=1

�kj for k 2 Ns,

forward neighbourhood of k: {k + ej : j = 1, 2, . . . , s},
backward neighbourhood of k: {k � ej : j = 1, 2, . . . , s and kj > 1},
A the active index set, which holds the index vectors whose forward
neighbourhoods are currently being considered for inclusion,
O the old index set, which the holds the index vectors k that have already
been considered,
an index i is called admissible if the backward neighbourhood of i is included
in the old index set, i.e., i� ej 2 O for all j = 1, 2, . . . , s with ij > 1,
a local error estimator ⌘k, which uses the computation �kf and information
about the work,
the global error estimate ⌘ =

X

k2A

⌘k.
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Dimension-adaptive sparse grid quadrature

Algorithm 2 [Gerstner & Griebel 2003]

Given f 2 C([0, 1]s) and an error tolerance " > 0:
1: Initialise: k = (1, 1, . . . , 1), O = ;, A  {k}, Q �kf , and ⌘  ⌘k.
2: while ⌘ > " do
3: select k 2 A with largest ⌘k
4: A  A \ {k} . Remove k from active indices
5: O  O [ {k} . then add k to old indices
6: ⌘  ⌘ � ⌘k . and update total error estimate.
7: for j = 1, 2, . . . , s do . Add new admissible indices
8: i k + ej . from forward neighbourhood of k.
9: if i is admissible then

10: A  A [ {i} . Add index to active indices then update
11: Compute �if and ⌘i

12: Q Q+�if

13: ⌘  ⌘ + ⌘i

14: end if
15: end for
16: end while

Scheichl & Gilbert High-dim. Approximation / IV. Sparse Grids / 6. Adaptive sparse grids SS 2020 70/79



Comments on dimension-adaptive algorithm

The final index set is I = O [A , since whenever we add an index i to A

we compute �if in order to calculate the error estimate ⌘i. Once we have
computed the differential quadrature it should immediately be included in the
total approximation.
For each index k 2 I , we must compute the full differential quadrature ruleN

s

j=1 �kj instead of just working on the difference grid as in (2.2). This
must be done to ensure the weights are correct throughout the algorithm.
The basic structure of the algorithm can be used for more general problems,
e.g., quadrature on Rs, interpolation or stochastic collocation.
Obviously the total and local errors cannot be computed exactly since the
integral is unknown. Hence, we must use the computations that have
previously been performed to estimate the error.
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Illustration of the evolution of the adaptive algorithm

Figure: Three steps of the adaptive sparse grid algorithm in two dimensions. Above

depicts the index sets. Each small square corresponds to an index k: grey denotes the

old index set, black and blue denote the active index set, blue denotes the current index

(i.e., k 2 A with the greatest ⌘k), white is not in the index set, and red arrows denote

the forward neighbourhood of k. Below are the corresponding sparse grids based on the

trapezoidal rule. Source [Gerstner & Griebel 2003].
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Error estimation

Goal: to efficiently estimate the error reduction for a given index k, and take into
account the increase in the cost of the approximation.
Error estimate.
Assuming that f is smooth enough such the differential quadrature
approximations are roughly decreasing as the order of the index increases, then as
an estimate of the local error reduction we can take the differential quadrature
approximation |�kf | directly.
The intuition here is that �kf can be thought of as the difference between and
more accurate approximation with a less accurate approximation, and if f is
smooth enough this gives a good estimate of the error reduction.
Cost estimate
As an estimate of the cost we simply take the total number of function
evaluations corresponding to the differential quadrature rule.
Let the total number of points in the differential quadrature rule �k be

Nk :=

8
>>>><

>>>>:

sY

j=1

nkj , if nested,

sY

j=1

�
nkj + nkj�1

�
if nonnested.
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Error estimation

For ⇠ 2 [0, 1], define the local error estimator for an index k 2 Ns by

⌘k := max

⇢
⇠
|�kf |
|�1f |

, (1� ⇠)
N1

Nk

�
(6.2)

In Algorithm 2 we choose the index with the greatest ⌘k, which here relates
to choosing either the greatest error reduction or the cheapest approximation.
If �1f = 0, then we simply take another reference value or approximation.
⇠ = 1 gives a greedy algorithm that ignores the cost and chooses the index
that gives the greatest error reduction.
⇠ = 0 ignores the error and chooses the most efficient approximation. This
case corresponds to the usual isotropic sparse grids (1.4).
This estimate works well if we assume that f is smooth enough such that the
differential quadrature rules are decreasing as k “increases”.
Note that there are cases where this may not be true, which can “trick” the
adaptive algorithm, but such cases are also not smooth enough to be handled
well by other methods, e.g., QMC.
Numerical results [Gerstner & Griebel 2003] suggest that for this choice of
local error estimators the total error ⌘ underestimates the true error. But that
the underestimation is by a constant factor, i.e., true error = C · ⌘ for C > 1.
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Summary

Anisotropic sparse grids, which are based on general index sets, allow more
flexibility to account for structure of the integrand. However, theoretically
and practically they can be hard to work with, requiring a priori knowledge of
the integrand.
Adaptive sparse grids compute a general index set at the same time as
computing the sparse grid approximation.
One of the key components is a reliable local error estimator, which balances
the error reduction and the added cost, and is based on the size of a
differential quadrature approximation and the cost to compute that
approximation.
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7. Extensions
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Sparse grid quadrature/interpolation on Rs can be performed using Hermite
polynomials.
More general 1D approximation rules can be used within the sparse grid
framework, e.g., least-squares approximation, best n-term approximation,
trigonometric polynomials...
Sparse grids may also be used to efficiently approximate the solution to
high-dimensional PDEs, by setting up a sparse mesh corresponding to the
sparse grid and then computing a Galerkin approximation on the sparse
approximation space Vs,` (as defined in Definition 4.1), see [Bungartz &
Griebel 2004].
Adaptive sparse grids can also be used for stochastic collocation, in which
case it is natural to combine them with adaptive FEM, see [Lang, RS &
Sylvester 2019] and others.
Sparse grids can be made dimension independent.
In particular, they also be applied to infinite-dimensional problems (i.e,
s!1), by using them within a multivariate decomposition algorithm [Kuo,
Nuyens, Plaskota, Sloan & Wasilkowski 2017; AG, Kuo, Nuyens &
Wasilkowski 2018] or by appropriately choosing a general index set [Zech &
Schwab 2020], and others.
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V. Stochastic collocation for s =∞

Jakob Zech

July 6, 2020

1 Sparse-grid interpolation in infinite dimensions

We now generalize our previous notions of multiindices and interpolation operators to the infinite
dimensional case s =∞.

1.1 Infinite dimensional multiindices

In the following we write k = (kj)j∈N ∈ NN
0 (where N0 = {0, 1, 2, . . . }) for a multiindex. Contrary to

our previous notation for s <∞, in case s =∞ it is more convenient to consider multiindices with
kj ∈ N0 (instead of kj ∈ N as before). We only consider multiindices such that |k| :=

∑
j∈N kj <∞.

That means k has finite support in the sense that supp(k) = {j ∈ N : kj 6= 0} ⊆ N has finite
cardinality. We denote the set of such multiindices by

F := {k ∈ NN
0 : |k| <∞}.

For m, k ∈ F we write m ≤ k iff mj ≤ kj for all j ∈ N, and the multiindex with all zero entries is
denoted by 0 = (0)j∈N ∈ F .

Definition 1.1. We call a set J ⊆ F downward closed if k − ej ∈ J for each k ∈ J and each
j ∈ suppk.

Throughout, for k ∈ F and ρ = (ρj)j∈N, a sequence of real numbers, we denote

ρk :=
∏
j∈N

ρ
kj
j =

∏
j∈suppk

ρ
kj
j .

1.2 Lagrange interpolation

We begin by recalling the one dimensional Lagrange interpolation operators. For n ∈ N0 and
f ∈ C0(R) we denote the one dimensional Lagrange interpolant

In[f ](x) =

n∑
j=0

f(χn,j)`n,j(x), `n,j(x) =

n∏
i=0
i 6=j

x− χn,i
χn,j − χn,i

, (1.1)

where for each n ∈ N, (χn,j)
n
j=0 is a distinct sequence of points in [−1, 1] (the “interpolation nodes”).

Additionally, in case n = 0 we let `0,0 ≡ 1 be the constant 1 function.
There hold the following facts:
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• In is a well-defined map from C0([−1, 1]) to the space Pn of polynomials of degree n,

• In[f ](χn,i) = f(χn,i) for all i ∈ {0, . . . , n},

• In[f ] = f whenever f ∈ Pn.

1.3 Multivariate Lagrange interpolation

1.3.1 Tensorized interpolation

We wish to approximate functions f mapping from [−1, 1]N to R, i.e. f assigns a real value to
each sequence y = (yj)j∈N with yj ∈ [−1, 1]. For a multiindex k ∈ F introduce the tensorized
interpolation operator

Ik = ⊗j∈NIkj .

By definition, Ikj acts on the j th variable, i.e. for f : [−1, 1]N → R: For x = (xj)j∈N ∈ [−1, 1]N

Ik[f ](x) :=

k1∑
i1=0

k2∑
i2=0

. . . f(χk1,i1 , χk2,i2 , . . . )
∏
j∈N

`kj ,ij (xj).

Since we chose k ∈ F , the infinite number of sums and the infinite product are in fact finite:
First note that kj = 0 for every j /∈ suppk, and since `0,0 ≡ 1, we have

∏
j∈N `kj ,ij (xj) =∏

j∈suppk `kj ,ij (xj) which is a finite product (for k = 0, we have suppk = ∅, and this case we
use the convention

∏
j∈suppk `kj ,ij (xj) := 1 for this empty product). Furthermore, since kj = 0 for

all j > J := max{i : i ∈ suppk}, we can write

Ik[f ](x) =

k1∑
i1=0

· · ·
kJ∑
iJ=0

f(χk1,i1 , . . . , χkJ ,iJ , χ0,0, χ0,0, . . . )
∏

j∈suppk

`kj ,ij (xj).

Finally, a more compact way to write this is

Ik[f ](x) =
∑

{m∈F :m≤k}

f((χkj ,mj
)j∈N)

∏
j∈suppm

`kj ,mj
(xj).

We emphasize again that the set {m ∈ F : m ≤ k} is finite, so that Ik[f ](x) can be evaluated
and computed.

Let us point out that for m ≤ k holds

Ik[ym](x) =
∏

j∈suppm

Ikj [y
mj

j ](xj) =
∏

j∈suppm

x
mj

j . (1.2)

Here we used that Ik = ⊗j∈NIkj , where Ikj only acts on the jth variable yj . Furthermore we used
In[f ] = f whenever f ∈ Pn. Thus, (1.2) shows Ik[ym] = ym whenever m ≤ k.
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1.3.2 Sparse-grid interpolation

Let J ⊆ F be a finite downward closed index set. Then we introduce a further interpolation
operator

IJ =
∑
k∈J
⊗j∈N(Ikj − Ikj−1), (1.3)

with the convention I−1 ≡ 0.
There is another representation of this operator as a linear combination of the tensorized oper-

ators Ik for k ∈ J : It holds

IJ =
∑
k∈J

ck,J Ik with the coefficients ck,J =
∑

{e∈{0,1}N :k+e∈J}

(−1)|e|. (1.4)

This is known as the combination formula.

Exercise 1.2. Show (1.4).

1.4 Properties of IJ

For y = (yj)j∈N ∈ [−1, 1]N and k = (kj)j∈N ∈ NN
0 set

yk =
∏
j∈N

y
kj
j =

∏
j∈suppk

y
kj
j .

For a finite set J define
PJ := span{yk : k ∈ J }.

The next lemma justifies the definition of IJ in the previous section. Recall that the one-dimensional
Lagrange interpolation operator In has the property of reproducing all polynomials of degree at
most n, i.e. In[f ] = f whenever f ∈ Pn. We now show that the same holds for IJ , in the sense
that IJ [f ] = f whenever f ∈ PJ .

Lemma 1.3. Let J ⊆ F be finite and downward closed. Then IJ [f ] = f for all polynomials
f ∈ PJ .

Proof. In the following we show IJ [ym] = ym for all m ∈ J . The linearity of IJ then implies
IJ [f ] = f for all f ∈ span{ym : m ∈ J }.

Let n ≥ k be two multiindices and assume that there exists j such that nj > kj . For r ≥ s ∈ N0

we have Ir[y
s] = yk since Ir is the identity on the space of polynomials with degree r ≥ s. This

implies that (Ir − Ir−1)[ys] ≡ 0 whenever r > s.
Hence, if there exists i such that ni > ki, then

(⊗j∈N(Inj − Inj−1))[yk](x) =
∏
j∈N

(Inj − Inj−1)[y
kj
j ](xj) ≡ 0.

Here we used that (Inj − Inj−1) only acts on the jth variable yj , so that, applied to the product

yk =
∏
j∈N y

kj
j , we obtained a product of functions

∏
j∈N(Inj − Inj−1)[y

kj
j ], which equals 0 since for

the ith term it holds (Ini − Ini−1)[ykii ] ≡ 0. We conclude with (1.3) that

IJ [ym] =
∑
k∈J

(⊗j∈N(Ikj − Ikj−1))[y
m] =

∑
{k∈J :k≤m}

(⊗j∈N(Ikj − Ikj−1))[y
m].
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Next note that the downward closedness of J actually means that {k ∈ J : k ≤m} = {k ∈ F :
k ≤m} whenever m ∈ J . Thus for m ∈ J

IJ [ym] =
∑

{k∈F :k≤m}

(⊗j∈N(Ikj − Ikj−1))[y
m].

To conclude the proof we note that with J = max{j : j ∈ suppm}∑
{k∈F :k≤m}

(⊗j∈N(Ikj − Ikj−1)) =

m1∑
k1=0

· · ·
mJ∑
kJ=0

⊗j≤J(Ikj − Ikj−1)⊗j>J I0

=

m2∑
k2=0

· · ·
mJ∑
kJ=0

(Im1 − I−1︸︷︷︸
=0

)⊗j≤J (Ikj − Ikj−1)⊗j>J I0

= · · · = ⊗j∈NImj = Im.

where we used the multilinearity of the tensor product operator. The statement follows by (1.2).

1.5 The Lebesgue constant

For In in (1.1), the Lebesgue constant is defined as its operator norm as a function mapping from
C0([−1, 1]) to itself:

Λn := sup
‖f‖C0([−1,1])=1

‖In[f ]‖C0([−1,1])

where ‖f‖C0([−1,1]) = maxx∈[−1,1] |f(x)|. Note that Λn is a function of the interpolation nodes
(χn,i)

n
i=0, and in general they should be chosen such as to minimize Λn. The reason is that (1+Λn)

provides a bound on how far the interpolant is from the best approximating polynomial: Since In
is linear and satisfies In[p] = p for all p ∈ Pn, it holds for any f ∈ C0([−1, 1])

‖f − In[f ]‖C0([−1,1]) = inf
q∈Pn

‖f − In[f − q + q]‖C0([−1,1])

= inf
q∈Pn

‖f − q − In[f − q]‖C0([−1,1])

≤ (1 + Λn) inf
q∈Pn

‖f − q‖C0([−1,1]).

This argument can be generalized to the operators IJ , to obtain an error bound on f−IJ [f ]. For
our purpose, it will be sufficient to understand the behaviour of IJ on the multivariate monomials
ym. In the following, we’ll assume that:

∃τ > 0 : Λn ≤ (1 + n)τ ∀n ∈ N. (1.5)

We point out again, that this is an assumption on the interpolation nodes. For example, for the
Chebyscheff nodes, the Lebesgue constant Λn grows merely logarithmically in n (and in particular
there exists τ > 0 such that (1.5) holds).

We will need the following bound (which we do not prove here) on the multivariate interpolant
IJ applied to the multivariate monomials ym. A proof can be found in [1, Lemma 3.1].

Lemma 1.4. Let J be downward closed and assume that (1.5) holds. Then for all m ∈ F

sup
x∈[−1,1]N

|IJ [ym](x)| ≤ |J |1+τ

where |J | denotes the cardinality of the set J .

4
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2 UQ for s =∞
In this section we want to approximate the solution u(y) ∈ H1

0 (D) to the parametric PDE

−div(a(y)∇u(y)) = f, u(y)|∂D = 0, (2.1)

depending on y ∈ [−1, 1]N. Here all functions depend on x ∈ D, and we assume the diffusion
coefficient to be given by

a(y, x) := 1 +
∑
j∈N

yjψj(x) x ∈ D. (2.2)

For simplicity, we use both notations a(y) and a(y, x), and omit the x argument unless we wish to
emphasize the dependence on x. The norm on H1

0 (D) is given by

‖v‖2H1
0 (D) :=

∫
D
∇v · ∇vdx,

and we work under the following assumptions:

(i) D ⊆ Rd, d ∈ {2, 3}, is a bounded Lipschitz domain,

(ii) f ∈ H−1(D),

(iii) ψj : D → R such that
∑

j∈N ‖ψj‖L∞(D) < 1.

The last condition guarantees that a(y) ∈ L∞(D) is well-defined since for y ∈ [−1, 1]N

‖a(y)‖L∞(D) ≤ 1 +
∑
j∈N
|yj |‖ψj‖L∞(D) ≤ 1 +

∑
j∈N
‖ψj‖L∞(D) <∞.

Additionally a(y) satisfies for all y ∈ [−1, 1]N

ess inf
x∈D

a(y, x) ≥ 1−
∑
j∈N
‖ψj‖ > 0.

By the Lax-Milgram lemma we conclude that the following proposition holds:

Proposition 2.1. For every y ∈ [−1, 1]N there exists a unique solution u(y) ∈ H1
0 (D) to (2.1)-

(2.2).

2.1 Linear and multilinear maps

In this section we denote by X and Y two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y . Later we
will choose X = H1

0 (D) and Y = H−1(D), but the following discussion holds in more generality.
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2.1.1 Linear maps

We write L(X,Y ) to denote the set of bounded linear operators from X to Y . Hence if A ∈ L(X,Y ),
then A : X → Y is linear and

‖A‖L(X,Y ) = sup
‖x‖X=1

‖Ax‖Y <∞.

In this case ‖Ax‖Y ≤ ‖A‖L(X,Y )‖x‖X for all x ∈ X. For two linear operators A1 ∈ L(X1, X2),
A2 ∈ L(X2, X3) we write A2A1 to denote the composition A2 ◦ A1. The definition of the norm
immediately implies ‖A2A1x‖ ≤ ‖A2‖L(X2,X3)‖A1‖L(X1,X2)‖x‖X1 and thus

‖A2A1‖L(X1,X3) ≤ ‖A1‖L(X1,X2)‖A2‖L(X2,X3) <∞

so that A2A1 ∈ L(X1, X3). Similarly, if A ∈ L(X,X), then An ∈ L(X,X) stands for n fold
composition of A with itself, i.e. An = A ◦ · · · ◦A, and ‖An‖L(X,X) ≤ ‖A‖nL(X,X).

We call A ∈ L(X,Y ) an isomorphism, in case A : X → Y is bijective. Recall that the open
mapping theorem in this case implies A−1 ∈ L(Y,X), that is, the inverse of A is also a bounded
linear map.

Example 2.2. Under our current assumptions (on D), the Laplace operator −∆ : H1
0 (D) →

H−1(D) is an isomorphism: First of all, −∆ : H1
0 (D) → H−1(D) is well-defined. Second, by the

Lax-Milgram lemma, for every g ∈ H−1(D) there exists a unique v ∈ H1
0 (D) such that −∆v = g,

which shows that −∆ is bijective. The operator has norm 1 (and is thus bounded) due to

sup
‖v‖

H1
0(D)

=1
‖ −∆v‖H−1(D) = sup

‖v‖
H1
0(D)

=1
sup

‖w‖
H1
0(D)

=1
〈−∆v, w〉

= sup
‖v‖

H1
0(D)

=1
sup

‖w‖
H1
0(D)

=1

∫
D
∇v · ∇wdx

= sup
‖v‖

H1
0(D)

=1

∫
D
∇v · ∇vdx = 1.

Here we used that H−1(D) is the dual space of H1
0 (D), so that ‖g‖H−1(D) = sup‖w‖

H1
0(D)

=1〈g, w〉

for all g ∈ H−1(D). Also the inverse operator −∆ : H−1(D)→ H1
0 (D) has norm 1: Let −∆v = g,

i.e. v = (−∆)−1g. Then

‖(−∆)−1g‖2H1
0 (D) = ‖v‖2H1

0 (D) =

∫
D
∇v · ∇vdx = 〈g, v〉 ≤ ‖v‖H1

0 (D)‖g‖H−1(D),

and thus ‖(−∆)−1g‖H1
0 (D) ≤ ‖g‖H−1(D).

Theorem 2.3 (Neumann series). Let A ∈ L(X,Y ) be an isomorphism and B ∈ L(X,Y ) such that
‖B‖L(X,Y ) < ‖A−1‖−1L(Y,X). Then A−B ∈ L(X,Y ) is an isomorphism and

(A−B)−1 =
∑
n∈N0

(A−1B)nA−1 ∈ L(Y,X).
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Proof. Since A is invertible, we note that A−B ∈ L(X,Y ) is invertible iff A−1(A−B) ∈ L(X,X)
is invertible, and in this case

(A−B)−1A = (A−1(A−B))−1 = (IX −A−1B)−1, (2.3)

with IX denoting the identity on X. Thus it suffices to check that IX − A−1B is boundedly
invertible.

Set C := A−1B. By assumption

‖C‖L(X,X) = ‖A−1B‖L(X,X) ≤ ‖A−1‖L(Y,X)‖B‖L(X,Y ) < 1. (2.4)

With C0 := IX set
D :=

∑
n∈N0

Cn =
∑
n∈N0

(A−1B)n,

and note that D ∈ L(X,X) is well-defined due to

‖D‖L(X,X) ≤
∑
n∈N0

‖(A−1B)n‖L(X,X) ≤
∑
n∈N0

‖A−1B‖nL(X,X) <∞,

where we used (2.4). We claim thatD = (IX−A−1B)−1. To verify this we show (IX−A−1B)D = IX
and D(IX −A−1B) = IX . The first equality holds by

(IX −A−1B)D = (IX − C)
∑
n∈N0

Cn =
∑
n∈N0

Cn −
∑
n∈N

Cn = C0 = IX .

Similarly one checks D(IX −A−1B) = IX .
Finally, by (2.3)

(A−B)−1 = (IX −A−1B)−1A−1 =
∑
n∈N0

(A−1B)nA−1.

2.1.2 Multilinear maps

Definition 2.4. We call Mn : X × · · · × X → Y a multilinear map (or n-linear map) if for
(x1, . . . , xn) ∈ Xn and each j ∈ {1, . . . , n} the map

xj 7→Mn(x1, . . . , xn) ∈ Y

is linear. We denote
‖Mn‖ := sup

‖xj‖X≤1 ∀j
‖M(x1, . . . , xn)‖Y .

The definition of the norm immediately implies that for any (x1, . . . , xn)

‖Mn(x1, . . . , xn)‖Y ≤ ‖Mn‖
n∏
j=1

‖xj‖X .
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2.2 Expanding u(y)

We now get back to the solution u(y) of problem (2.1)-(2.2). With X := H1
0 (D) and Y := H−1(D)

let A := −∆ ∈ L(X,Y ) and

Bj := div(ψj∇·) ∈ L(X,Y ), B(y) :=
∑
j∈N

yjBj ∈ L(X,Y ).

Then by definition of u(y) we can write

u(y) = (A−B(y))−1f,

since A − B(y) = −div((1 +
∑

j∈N yjψj)∇·). Here f ∈ Y is the right-hand side in (2.1). By
Thm. 2.3 it holds

u(y) =
∑
n∈N0

(A−1B(y))nA−1f. (2.5)

With A−1 ∈ L(Y,X), define for arbitrary C1, . . . , Cn ∈ L(X,Y )

Mn(C1, . . . , Cn) := A−1 C1︸︷︷︸
∈L(X,Y )

· · ·A−1 Cn︸︷︷︸
∈L(X,Y )

A−1 f︸︷︷︸
∈Y

∈ X.

Then Mn is an n-linear map from L(X,Y )× · · · × L(X,Y )→ X, and (2.5) becomes

u(y) =
∑
n∈N0

Mn(B(y), . . . , B(y)). (2.6)

The idea in the following is to use the multilinearity of each Mn to write this as an expansion
in terms of y. To this end, for every k ∈ F define

Sk := {(i1, . . . , i|k|) : |{r : ir = j}| = kj ∀j ∈ N},

where |{r : ir = j}| denotes the cardinality of the set |{r : ir = j}|. For example

if k = (0, 1, 2, 0, 0, . . . ) ∈ F then Sk = {(2, 3, 3), (3, 2, 3), (3, 3, 2)}.

Note that the cardinality of Sk equals

|Sk| =
|k|!
k!

where k! :=
∏
j∈N

kj !.

Now set
tk :=

∑
(i1,...,i|k|)∈Sk

M|k|(Bi1 , . . . , Bi|k|) ∈ X.

We obtain the upper bound

‖tk‖X ≤
∑

(i1,...,i|k|)∈Sk

‖M|k|‖
|k|∏
r=1

‖Bir‖L(X,Y )

=
∑

(i1,...,i|k|)∈Sk

‖M|k|‖
∏
j∈N
‖Bj‖

kj
L(X,Y )

≤ |k|!
k!
‖M|k|‖

∏
j∈N
‖Bj‖

kj
L(X,Y ) (2.7)

where we used the definition of Sk.
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Lemma 2.5. It holds

‖Bj‖L(X,Y ) = ‖ − div(ψj∇·)‖L(X,Y ) ≤ ‖ψj‖L∞(D).

Proof. Exercise. Hint: Use that Y = H−1(D) is the dual space of X = H1
0 (D) so that ‖v‖Y =

sup‖w‖X=1〈v, w〉.

Lemma 2.6. For all n ∈ N0

‖Mn‖ ≤ ‖f‖Y .

Proof. For all Cj ∈ L(X,Y )

‖A−1C1 · · ·CnA−1f‖Y ≤ ‖A−1‖L(Y,X)‖C1‖L(X,Y ) · · · ‖C1‖L(X,Y )‖A−1‖L(Y,X)‖f‖Y .

The lemma follows by definition of ‖Mn‖ and the fact that ‖A−1‖L(Y,X) ≤ 1 by Example 2.2.

Theorem 2.7. Assume
∑

j∈N ‖ψj‖L∞(D) < 1. Then for all y ∈ [−1, 1]N

u(y) =
∑
k∈F

tky
k. (2.8)

Moreover, if ρ = (ρj)j∈N is a sequence of positive numbers such that
∑

j∈N ‖ψj‖L∞(D)ρj < 1, then∑
k∈F

ρk‖tk‖X <∞. (2.9)

Proof. We start with (2.9). By (2.7) and Lemma 2.5∑
k∈F

ρk‖tk‖X =
∑
n∈N0

∑
|k|=n

ρk‖tk‖X

≤ ‖f‖Y
∑
n∈N0

∑
|k|=n

n!

k!
ρk
∏
j∈N
‖Bj‖kj

= ‖f‖Y
∑
n∈N0

∑
|k|=n

n!

k!

∏
j∈N

(ρj‖ψj‖L∞(D))
kj .

Now observe that ∑
|k|=n

n!

k!

∏
j∈N

(ρj‖ψj‖L(D))
kj =

∑
j∈N

ρj‖ψj‖L∞(D)

n

,

since each of the product terms on the left-hand side occurs exactly n!
k! times on the right-hand side

(this is known as the multinomial theorem, which is a generalization of the binomial theorem). Our
assumptions imply that

r :=
∑
j∈N

ρj‖ψj‖L∞(D) < 1,

and thus ultimately ∑
k∈F
‖tk‖Xρk ≤ ‖f‖Y

∑
n∈N0

rn <∞.
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Equation (2.8) formally follows by expanding (2.6):

u(y) =
∑
n∈N0

Mn(B(y), . . . , B(y)) =
∑
n∈N0

Mn

( ∑
j1∈N

yj1Bj1 , . . . ,
∑
jn∈N

yjnBjn

)
=
∑
n∈N0

∑
j1∈N
· · ·
∑
jn∈N

Mn(Bj1 , . . . , Bjn)
n∏
i=1

yji

=
∑
n∈N0

∑
{k∈F : |k|=n}

∑
(j1,...,jn)∈Sk

Mn(Bj1 , . . . , Bjn)yk

=
∑
k∈F

yktk.

This formal reordering of the sum is justified if the last sum is absolutely convergent. This holds
by (2.9) with the choice ρj := 1 for all j, since for y ∈ [−1, 1]N∑

k∈F
|yk|‖tk‖X =

∑
k∈F
|yk|‖tk‖Xρk ≤

∑
k∈F
‖tk‖Xρk <∞

due to the assumption
∑

j∈N ‖ψj‖L∞(D)ρj =
∑

j∈N ‖ψj‖L∞(D) < 1.

Remark 2.8. By (2.8), for any m ∈ F

∂|m|

∂m1
y1 ∂

m2
y2 . . .

u(y)|y=0 =
∑
k∈F

tk
∂|m|

∂m1
y1 ∂

m2
y2 . . .

yk|y=0y
m = m!tm,

where we formally exchanged the derivative with the summation over k (this can be made rigorous).
Thus

tm =
1

m!

∂|m|

∂m1
y1 ∂

m2
y2 . . .

u(y)|y=0,

and (2.8) can be interpreted as a Taylor expansion in infinitely many variables.

2.3 Interpolation error

In this section we’ll see that we can approximate u with an algebraic convergence rate. The rate
will depend on how fast the sequence (‖ψj‖L∞(D))j∈N tends to 0. Roughly speaking, we will see
if we have the bound ‖ψj‖L∞(D) ≤ Cj−γ for some γ > 1, then we can uniformly approximate the
function y 7→ u(y) at a converence rate proportional to γ. Hence, the larger γ, the stronger the
decay of the sequence (‖ψj‖L∞(D))j∈N and the faster the convergence rate.

Lemma 2.9. Let ρ = (ρj)j∈N be a sequence of numbers larger than one and let p ∈ (0, 1] be such
that

∑
j∈N ρ

−p
j <∞. Then ∑

k∈F
(ρ−k)p <∞.

Proof. It holds ∑
k∈F

(ρ−k)p =
∑
k∈F

∏
j∈N

ρ
−pkj
j =

∏
j∈N

∑
n∈N0

ρ−pnj =
∏
j∈N

1

1− ρ−pj
.
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With κ := maxj∈N ρ
−p
j < 1 we have 1

1−ρ−p
j

≤ 1 + 1
1−κρ

−p
j . Since log(1 + x) ≤ x for all x ≥ 0,

∏
j∈N

1

1− ρ−pj
= exp

∑
j∈N

log(1 +
1

1− κ
ρ−pj )

 ≤ exp

∑
j∈N

1

1− κ
ρ−pj

 <∞.

Lemma 2.10. Let q > 0 and (aj)j∈N ∈ `q(N). If (aj)j∈N is monotonically decreasing then aN ≤
N
− 1

q (
∑

j∈N a
q
j)

1
q .

Proof. Since (aj)j∈N is monotonically decreasing, for every N ∈ N

aqN ≤
1

N

N∑
j=1

aqj ≤
1

N

∑
j∈N

aqj

and consequently

aN ≤ N−1/q
∑
j∈N

aqj

1/q

.

Let us now define sets of multiindices as follows: given ε > 0 and a sequence (ρj)j∈N we let

Jε := {k ∈ F : ρ−k > ε}. (2.10)

This strategy is called thresholding : We choose all multiindices k corresponding to the largest
values of ρ−k, with the threshold given by ε > 0. We now show that these multiindex sets provide
suitable polynomial spaces to approximate u: the following theorem proves a convergence rate for
the polynomial expansion and the polynomial interpolant. Since this is an infinite dimensional
problem, the following result shows that the curse of dimensionality can be overcome.

Theorem 2.11. Let p ∈ (0, 1) and assume that
∑

j∈N ‖ψj‖
p
L∞(D) < 1. Define

ρj := ‖ψj‖p−1L∞(D) > 1,

and let Jε ⊆ F be as in (2.10).
Then there exists C > 0 such that

(i) for all ε > 0

sup
y∈[−1,1]N

∥∥∥∥∥∥u(y)−
∑
k∈Jε

yktk

∥∥∥∥∥∥
X

≤ C|Jε|−
1
p
+1

(ii) if the interpolation nodes satisfy the bound (1.5) on the Lebesgue constant, then for all ε > 0

sup
y∈[−1,1]N

‖u(y)− IJε [u](y)‖X ≤ C|Jε|−
1
p
+2+τ

.
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Proof. By (2.8)

sup
y∈[−1,1]N

∥∥∥∥∥∥u(y)−
∑
k∈Jε

yktk

∥∥∥∥∥∥
X

≤ sup
y∈[−1,1]N

∑
k∈F\Jε

|yk| ‖tk‖X ≤
∑

k∈F\Jε

‖tk‖X ,

since |yk| ≤ 1 for all y ∈ [−1, 1]N.

Since ρ
−p/(1−p)
j = ‖ψj‖p and

∑
j∈N ‖ψj‖p <∞, Lemma 2.9 yields with q := p

1−p that∑
k∈F

(ρ−k)q <∞.

Moreover
∑

j∈N ‖ψj‖ρj =
∑

j∈N ‖ψj‖p < 1 and Thm. 2.7 gives∑
k∈F
‖tk‖Xρk =: C0 <∞. (2.11)

Now, by (2.11) and Lemma 2.10∑
k∈F\Jε

‖tk‖X =
∑

k∈F\Jε

‖tk‖X ρ
−kρk ≤ C0

∑
k∈F\Jε

ρ−k ≤ C|Jε|−
1
q = C|Jε|−

1
p
+1
, (2.12)

for some C > 0 independent of ε > 0.
Finally, using Lemma 1.4, and the fact that IJε [x

k] = xk whenever k ∈ Jε (shown in Lemma
1.3)

sup
y∈[−1,1]N

‖u(y)− IJε [u](y)‖X = sup
y∈[−1,1]N

∥∥∥∥∥∑
k∈F

tk(yk − IJε [xk](y))

∥∥∥∥∥
X

≤
∑

k∈F\Jε

‖tk‖X sup
y∈[−1,1]N

|yk − IJε [xk](y)|

≤ (1 + |Jε|1+τ )
∑

k∈F\Jε

‖tk‖X

≤ C|Jε|−
1
p
+1+τ+1

,

where we used again (2.12).

Remark 2.12. By a slightly more involved analysis one can show the convergence rate 1
p−1 (instead

of 1
p − τ − 2) also for the interpolant IJ in Thm. 2.11 (ii).

Remark 2.13. The statement in Thm. 2.11 (i) is often referred to as “best N -term approximation”:
we approximate u by the truncating u(y) =

∑
k∈F tky

k after the “best” N terms in this expansion.

Remark 2.14. The statement in Thm. 2.11 (ii) gives a convergence rate for the interpolant in
terms of cardinality of the set Jε. In case the chosen interpolation points are nested in the sense
that χn,i = χm,i whenever i ≤ n < m, then |Jε| equals the number of required function evaluations
of u to compute the interpolant IJεu. Hence this convergence rate is also valid in terms of the
number of required evaluations of u.
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Examples from real applications

Structural Mechanics (e.g. aerospace composites, additive manufacture):

r ·

✓
C(x,!) :

1

2

⇥
ru+ruT

⇤◆
+ F(x,!) = 0 in D(!)

subject to BCs

Dune [Butler, Dodwell, Reinarz, Sandhu, RS, Seelinger, ’19]
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Spatial Mesh Hierarchy (so far)

TL

T0

Uniform!
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Model Problems

Model elliptic problem with uncertain source or uncertain geometry:

��u = f(x,!) in D(!)

subject to u = 0 on @D(!)

0
6

0.5

4

1

2

Two Hole Problem: Solution

640 20

Computational Mesh

) Spatial Adaptivity (sample-wise) !
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2. Multilevel Stochastic Collocation
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Stochastic Collocation Method (Section IV.5) [Xiu, Hesthaven, ’05]

Stochastic PDE example in parametric form in D ⇥ � ⇢ Rd⇥s :

�r ·

⇣
a(x, y)ru(x, y)

⌘
= f(x, y), (x, y) 2 D ⇥ � and u|@D ⌘ 0 (2.1)

where y = (y1, . . . , ys) 2 � = �1 ⇥ · · ·⇥ �s with �j bounded (Assumption)

Use sampling points {y
(i)
}i=1,...,N in � and

FE solutions u`(y(i)) 2 V` ⇢ V (w.r.t. mesh T`) and Q`(y(i)) =  (u`(y(i)))

to construct the (single-level) interpolant (here only for functionals)

Q
(SL)
N,` (y) = IN [Q`](y) =

NX

i=1

Q`(y
(i))�i(y) (2.2)

in the polynomial space PN = span{�i}Ni=1 ⇢ L
2
⇢(�) such that

I[Q`](y(i)) = Q`(y(i)), for i = 1, . . . , N (interpolating condition)

E[Q`] approximated by integrating Q
(SL)
N,` (repeated 1D integrals)
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Adaptive Sparse Grid Stochastic Collocation

Problem:
Curse of Dimensionality for full tensor grid (N exponential in s!)

Remedy:
Anisotropic Smolyak sparse grids [Nobile, Tempone, Webster, 2008].

Can choose collocation points {y
(i)
}i=1,...,N s.t.

��E
⇥
Q` � IN [Q`]

⇤��  C(s)N�µ(s) (2.3)

under suitable regularity conditions [Nobile, Tamelini, Tempone, ’16],
[Haji-Ali, Harbrecht, Peters, Siebenmorgen, 2018].

In general, µ = µ(s) (i.e. dimension dependent) but under suitable
p-sparsity assumptions µ = 2

p � 1 [Zech, 2018] (see Chapter V).

Can compute {y
(i)
}i=1,...,N adaptively using a posteriori estimation of errors

via surplus operators (see Section IV.6).
[Gerstner, Griebel, 2003], [Schieche, Lang, 2014], [Guignard, Nobile, 2018]
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Multilevel Stochastic Collocation [Teckentrup, Jantsch, Webster et al., ’15]

Q
(ML)
L =

LX

`=0

INL�` [Q` �Q`�1] =
LX

`=0

⇣
Q

(SL)
NL�`,`

�Q
(SL)
NL�`,`�1

⌘
(2.4)

where Q` =  (u`) with u` computed on T` with h` ⇠ 2�` (uniform in y).

Theorem 2.1 (Multilevel Complexity Theorem [Teckentrup, ’13])

Let us assume there are ↵,�, �, µ > 0 such that

(M1) |E [Q` �Q] | = O(h↵
` ),

(M2)
��E

⇥
Q` �Q`�1 � INL�` [Q` �Q`�1]

⇤�� = O(N�µ
L�`h

�
` ),

(M3) Cost/sample on Level ` = O(h��
` ).

Then, for any " < e
�1, there are L and {N`}

L
`=0 s.t.

��E[Q�Q
(ML)
L ]

��  " and

Cost
⇣
Q

(ML)
L

⌘
= O

⇣
"
� 1

µ�max(0 , �µ��
↵µ )

⌘

(+ possible log-factor)

Usually � ⇡ ↵ and
1
µ < �

↵ ) Cost
�
Q(ML)

L

�
⇡ O

�
"�

�
↵
�

(cost/sample on finest level !)
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3. Sample-Adaptive Finite Element Spaces
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Fully Adaptive Multilevel Stochastic Collocation

Combine sample-wise spatial adaptivity and adaptive sparse grids

Using a posteriori error estimators:
compute u`(y(j)) 2 V`(y(j)) s.t. |Q(y(j))�Q`(y(j))|  ⌘X` (prescribed)

(e.g. using the dual weighted residual method (DWRM) [Becker, Rannacher, ’01])

and choose {y
(j)

}j=1,...,N adaptively such that
��E
⇥
Q` �Q`�1 � INL�` [Q` �Q`�1]

⇤�� = C(s) · ⌘YL�` (optimised)

Theorem 3.1 (Adaptive Complexity Theorem [Lang, RS, Silvester, 2020])

Let ⌘X` = q
`
⌘X0 , for some q 2 (0, 1) and ⌘X0 > 0, and suppose 9 t, µ > 0 s.t.

�
Cost/sample

�
`

= O
�
⌘
�t
X`

�
often 1

µ < t < �
↵ !

⌘YL�` = O
�
N

�µ
L�`⌘X`�1

�

Then there exist L, {⌘Y`}
L
`=0 (explicit) to obtain

��E[Q�Q
(ML)
L ]

��  " with

Cost
⇣
Q

(ML)
L

⌘
= O

⇣
"
�max

�
1
µ , t

�⌘

(+ possible log-factor)
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Comments

Many different ways to estimate errors and to adapt spatial/stochastic grids.

With optimal linear solver (such as multigrid), we can typically achieve (A1)
with t = d/2 (for functionals).

Adaptive spatial schemes with guaranteed convergence exist [Dörfler, ’96]

With suitable choice of collocation points, (A2) follows from (2.3).

But rigorous proof of convergence for adaptive sparse grid stochastic
collocation still lacking (see below).

Analogous results for interpolation.

For the numerical experiments we use:

Matlab package p1afem: adaptive piecewise linear FEs and the DWRM
(http://www.asc.tuwien.ac.at/~praetorius/matlab)

Matlab package Sparse Grid Kit: adaptive Smolyak algorithm
(https://www.epfl.ch/labs/csqi/)
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4. Numerical Experiments
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Numerical Example (uncertain source): d = 2, s = 2

Poisson equation �r
2
u = f on D = (�1, 1)2 with u|@D = 0

Random source location (y1, y2) ⇠ U [�1/4, 1/4]2 with f(x, y) s.t.

u(x, y) = exp
⇥
50

�
↵(y1)(x1 � y1)

2 + (x2 � y2)
2
�⇤

with ↵(y1) = 18y1 +
11
2

Quantity of interest: Q =  (u) =
R
D u

2 dx
Full H2-regularity, but strong local refinement near centre of source: t ⇡ 1

Scheichl & Gilbert High-dim. Approximation / VI. Adaptivity / 4. Numerical Experiments SS 2020 15/23



Numerical Example (uncertain source): d = 2, s = 2

0.005
0.2

0.01

0.015

QoI Variation with Parameters

0.02

0.025

-0.2

0.03

0.035

-0.1 0
Y2

0
Y1

0.1 -0.20.2 4 5 6 7 8 9 10 11 12
NUMBER OF SPARSE GRID POINTS

10-8

10-7

10-6

10-5

10-4

10-3

One Peak Problem: Anisotropic Smolyak

ERROR
ESTIMATE
TOLY
ORDER -9.75

Figure: Very smooth parameter dependence (left); consequently, very fast convergence of

anisotropic Smolyak algorithm (right). The estimated convergence order for E[ (u)] in

terms of collocation points is �9.75.

The adaptive Smolyak rules are in fact one-dimensional rules in the y1 direction
and 11 collocation points are suuficient for a tolerance of ⌘Y = 10�6!
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Numerical Example (uncertain source): d = 2, s = 2

101 102 103

CPU[s]

10-7

10-6

10-5

10-4

EX
PE

CT
AT

IO
N

One Peak Problem: Multilevel Approach

ORDER -0.91
ORDER -1.00
ADAPTIVE: LEV1-ERROR
ADAPTIVE: LEV3-ERROR
UNIFORM:  LEV3-ERROR

Figure: Errors in the expected values E[Q]: Comparing 3-level adaptive MLSC, adaptive

SLSC, 3-level (uniform) MLSC for ✏ = 10�5, 5⇥ 10�6, 2.5⇥ 10�6, 10�6
. The orders of

convergence predicted by Theorem 3.1 for aMLSC and aSLSC are �1 and �0.91, resp.

To achieve an accuracy of ✏ = 2.8⇥ 10�6
with three-level adaptive MLMC, requires

N2 = 243 and N0 > 500000 and 7.8⇥ 104 seconds.
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Numerical Example (uncertain domain): d = 2, s = 16

Poisson eqn. �r
2
u = f with u|@D = 0 and f ⌘ 1 on random domain D(y):

(coordinates of corners of holes uniformly distributed, i.e. s = 16 parameters)

0
6

0.5

4

1

2

Two Hole Problem: Solution

640 20

Computational Mesh

Quantity of interest: Q =  (u) =
R
D u

2 dx

Regularity: u at least in H
13
8 (D) and no better than H

5
3 (D)

(can be reformulated as variable coefficient problem to apply analysis)

Adaptive FEM: t ⇡ 1; Uniform FEM: 1.5 < t < 1.6 (using MG)
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Numerical Example (uncertain domain): d = 2, s = 16

10-2 10-1 100 101 102 103

CPU[s]

10-4

10-3

10-2

10-1

100

101 Two Hole Problem: y=0

ADAPTIVE: DWR-ESTIMATOR
ADAPTIVE: | (u)- (uh)|
UNIFORM: DWR-ESTIMATOR
UNIFORM: | (u)- (uh)|
ADAPTIVE: ORDER -1.00
UNIFORM:  ORDER -0.66

Spatial convergence rates 1/t
(for rectangular holes)

30 35 40 45 50 55 60
NUMBER OF SPARSE GRID POINTS

10-4

10-3

10-2

Two Hole Problem: Anisotropic Smolyak

ERROR
ESTIMATE
TOLY
ORDER -3.4

Sparse grid convergence rate µ
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Numerical Example (uncertain domain): d = 2, s = 16

101 102 103 104 105

CPU[s]

10-4

10-2

100
EX

PE
CT

AT
IO

N
ORDER -0.77
ORDER -1.00
ORDER -0.54
ADAPTIVE: LEV1-ERROR
ADAPTIVE: LEV3-ERROR
ADAPTIVE: LEV3-ERROR-MC
UNIFORM:  LEV3-ERROR

Comparing AMLSC, ASLSC, MLSC & MLMC w. uniform grid refinement
(tolerances (green): " = 10�2, 5⇥10�2, 2.5⇥10�2, 10�3, 5⇥10�4, 2.5⇥10�4)
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5. Conclusions & Further Reading
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Conclusions & Further Reading

Often very smooth parameter dependence: Huge gains of multilevel
stochastic collocation over multilevel Monte Carlo.
For problems with random local features: Huge gains through adaptive,
sample-dependent FE spaces.
So far no rigorous convergence theory for adaptive stochastic collocation.
Alternative to stochastic collocation: Stochastic Galerkin
Use orthogonal basis and integrate against test function (as for FEs) also in stochastic
variable (instead of collocation at interpolation points).

I Ghanem & Spanos, Stochastic FEs: A Spectral Approach, Springer, NY, 1991

I Schwab & Gittelson, Sparse tensor discretizations of high-dimensional

parametric and stochastic PDEs, Acta Num, 20, 2011

I Lord, Powell & Shardlow, An Introduction to Computational Stochastic PDEs,

Cambridge University Press, 2014

Due to Galerkin orthogonality property, rigorous convergence analysis for
adaptive algorithms possible:

I Eigel, Gittelson, Schwab & Zander, A convergent adaptive stochastic Galerkin

FE method with quasi-optimal spatial meshes, ESAIM M2AN, 49, 2015

I Bespalov, Praetorius, Rocchi & Ruggeri, Convergence of adaptive stochastic

Galerkin FEM, SIAM J Numer Anal, 57, 2019
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Conclusions & Further Reading

But leads to big, coupled linear system and due to tensor product structure,
no sample-wise adaptivity at individual stochastic grid points possible.

Current research in our group: local hp-adaptivity in stochastic space.

Other References:
I Gerstner & Griebel, Dimension-adaptive tensor-product quadrature,

Computing, 71, 2003

I Xiu & Hesthaven, High-order collocation methods for differential equations

with random inputs, SIAM J Sci Comput, 27, 2005

I Nobile, Tempone & Webster, A sparse grid stochastic collocation method for

PDEs with random input data, SIAM J Numer Anal, 46, 2008

I Teckentrup, Jantsch, Webster & Gunzburger, A multilevel stoch. collocation

method for PDE with random input data, SIAM/ASA J Uncertainty Q, 3, 2015

I Guignard & Nobile, A posteriori error estimation for the stochastic collocation

FE method, SIAM J Numer Anal, 56, 2018

I Zech, Sparse-grid approximation of high-dimensional parametric PDEs, PhD

Thesis, ETH Zürich, 2018

I Lang, RS & Silvester, A fully adaptive multilevel stochastic collocation

strategy for solving elliptic PDEs with random data, J Comput Phys, 2020
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1. High-Dimensional Approximation
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High-dimensional problems in mechanics and mhysics

Many problems of computational science, probability and statistics require the
approximation, integration or optimization of functions of many variables

u(x1, . . . , xd)

Navier Stokes equation

Find u(x, t) :
@u

@t
+ u ·ru� ⌫�u = f, x 2 ⌦ ⇢ Rd, 0 < t < T

Multiscale problems

Find u(x, y, t), x 2 ⌦, y 2 Y where

⌦
Y

Schrödinger equation

Find  (x1, . . . , xd, t) : i~@ 
@t

= �
~
2µ
� + V 
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High-dimensional problems in statistics and data science

Unsupervised learning: Estimation of the probability distribution

F (x1, . . . , xd) = P(X1  x1, . . . , Xd  xd),

of random vector X = (X1, . . . , Xd) from samples of X or a function of X.

Supervised learning: Approximation of a random variable Y by a function of
a set of random variables X = (X1, . . . , Xd), using samples of (X,Y ). The
approximation is used as a predictive model.

These are two typical tasks in Uncertainty Quantification, where Y is some
output variable of a (numerical or experimental) model depending on a set of
random parameters X.

The following high level, abstract introduction of high dimensional approximation
and low-rank tensor formats is following

A. Nouy, Deep Tensor Networks, Mini-Course, Airbus Group, Paris, June 2019

https://anthony-nouy.github.io/tutorials.html
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High-dimensional approximation

Goal. Approximate a function u(x1, . . . , xd) by an element of a subset of
functions Xn described by n parameters.

Xn is called an approximation tool, model class or hypothesis set,
e.g. splines, wavelets, polynomials (with or without adaptivity).

For a function u from a normed space, the best approximation error

en(u) = inf
v2Xn

ku� vk,

quantifies what we can expect from Xn.

We distinguish linear approximation, where Xn are linear spaces, from
nonlinear approximation, where Xn are nonlinear spaces.

Fundamental questions.
determine the complexity n = n(", u) required for obtaining an error

en(u)  ",

provide practical approximation algorithms that achieve this precision with
almost optimal complexity (using available information on the function).
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The Curse of Dimensionality

For a function u from classical regularity classes (Sobolev or Besov spaces) and for
standard approximation tools (polynomials, splines, wavelets), it is known that

n(✏, u) . ✏�d/k .

We observe that n(✏, u) grows exponentially with the dimension d, which is
the curse of dimensionality.

Better performance observed for particular functions and approximation tools.

But a priori, we can not expect a better performance from any (reasonable)
approximation tool without further assumptions on the function.

To break the curse of dimensionality we have to

make stronger assumptions on the structure of the function, beyond standard
assumptions (see Chapters III-V on mixed smoothness classes),

propose approximation tools (model classes) that capture these structures.
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Some standard model classes

Linear models
a1x1 + . . .+ adxd

Polynomial or more general sparse tensor models
X

↵2⇤

a↵x
↵1
1 . . . x↵d

d
or

X

↵2⇤

a↵'
1
↵1
(x1)...'

d

↵d
(xd)

with ⇤ ⇢ Nd a set of multi-indices, either fixed (linear) or free (nonlinear).

Additive or multiplicative models

u1(x1) + . . .+ ud(xd) or u1(x1) . . . ud(xd)

or more generally X

↵⇢T

u↵(x↵) or
Y

↵2T

u↵(x↵)

where T ⇢ 2{1,...,d} is again either fixed (linear approximation) or a free
parameter (nonlinear approximation). An instance of a graphical model.
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Composition of functions

f(g(x)) using standard model classes for both f and g.

Linear transformations (ridge functions) g = Wx, W 2 Rm⇥d, with an
additive model for f :

f1(w
T

1 x) + . . .+ fm(wT

m
x) (projection pursuit)

A special case is the sum of m perceptrons:

mX

i=1

ai�(w
T

i
x+ bi),

i.e. a shallow neural network with one hidden layer of width m.

Sparse transformations, e.g. f(g1,2(x1, x2), g3,4(x3, x4), ...).

More compositions f � gL � gL�1 � . . . � g1(x) ! deep neural networks
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Deep Neural Networks

Recurrent networks: sparse transformations with sparsity induced by a
linear tree

f1,2,3,4 (f1,2,3 (f1,2 (f1(x1), f2(x2)) , f3(x3)) , f4(x4))

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

These are highly nonlinear approximation tools, with a high approximation power.

Known to achieve optimal performance for standard regularity classes, but cannot
expect better than classical tools without further assumptions on the function.

However, even if the expected error en(u) is small for a certain function u,
there is no known, certified algorithm for constructing an approximation
achieving this error,

and a best approximation (when it exists) may be highly unstable.
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2. Multilinear Maps and Tensor Networks
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Low-rank formats (more details below)

A multivariate function u(x1, . . . , xd) can be identified with an order-d tensor.

The rank of an order-2 tensor u 2 V ⌦W (a matrix if V = Rm, W = Rn),
denoted rank(u), is the minimal integer r such that

u =
rX

k=1

vk ⌦ wk , for some vk 2 V, wk 2W.

Can be computed via singular value decomposition (SVD) and truncated
SVD (after the largest r terms) provides a best rank-r approximation of u.

Extension to order-d tensors:
I Canonical rank one (multiplicative model): v(x) = u1(x1) . . . ud(xd)
I Canonical tensor format with rank less than r:

v(x) =
rX

k=1

uk

1(x1) . . . u
k

d
(xd)

But canonical format and canonical rank not practically useful for d > 2.

Scheichl & Gilbert High-dim. Approximation / VII. Tensor Trains / 2. Tensor Networks SS 2020 12/70



Tensor formats and ↵-rank

A better notion for rank for high-order tensors is the following:
(again more details below)

Let ↵ ⇢ {1, . . . , d} := D and let x↵ and x↵c denote the complementary
groups of variables. Then u(x) can be identified with a bivariate function

ũ(x↵, x↵c)

and the rank of this bivariate function ũ is called the ↵-rank of u, denoted
rank↵(v). It is the minimal integer r↵ such that

u(x) =
r↵X

k=1

v↵
k
(x↵)w

↵
c

k
(x↵c)

Any collection T ⇢ 2D of subsets of D defines a tensor format

T
T

r
= {v : rank↵(v)  r↵, 8↵ 2 T} .
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Tree-based tensor formats

When T is a dimension partition tree over D with

root D and leaves L(T ) = {{⌫} : 1  ⌫  d}

such that, for any ↵ 2 T , the sons S(↵) form a non-tivial partition of ↵,
then T

T

r
defines a tree-based tensor format.

Prominent examples of tree-based tensor formats:

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker
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Tree-based tensor formats

Elements of T T

r
admit an explicit representation. Let u 2 T

T

r
with T -rank

r = (r↵)↵2T . At the first level, v admits the representation

v(x) =

r�1X

k�1=1

. . .

r�sX

k�s
=1

C(D)
k�1 ,...,k�s

v(�1)
k�1

(x�1) . . . v
(�s)
k�s

(x�s
)

where {�1, . . . ,�s} = S(D) are the children of the root node and {v(�)
k�

}1k�r�

form a basis of Umin
�

(v), the minimal subspace s.t. ṽ(x� , x�c) 2 Umin
�

(v)⌦ V�c

(spanned by dominant r� singular vectors)

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C(D)

v(1,2,3)

x{1,2,3}

k1,2,3

v(4,5,6)

x{4,5,6}

k4,5,6
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Tree-based tensor formats

Then, for an interior node ↵ of the tree, with children S(↵) = {�1, . . . ,�s}, the
functions (or tensors) v(↵)

k↵
admit the representation

v(↵)
k↵

(x↵) =

r�1X

k�1=1

. . .

r�sX

k�s
=1

C(↵)
k↵,k�1 ,...,k�s

v(�1)
k�1

(x�1) . . . v
(�s)
k�s

(x�s
).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C(D)

C(1,2,3)

v(1)

x1

k1

v(2,3)

x2,3

k2,3

k1,2,3

C(4,5,6)

v(4)

x4

k4

v(5)

x5

k5

v(6)

x6

k6

k4,5,6
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Tree-based tensors as compositions of multilinear maps

For each node ↵ with children {�1, . . . ,�s}, the tensor C↵ in Rr�1⇥...⇥r�s
⇥r↵ can

be identified with a multilinear map from Rr�1 ⇥ . . .⇥ Rr�s to Rr↵ .

Also, given bases {�↵
i↵
(x↵)}

n↵

i↵=1 of functions for the spaces V↵ for ↵ 2 L(T ), the
leaf-tensors '⌫ can be identified with multilinear maps from Rn↵ to Rr↵ .

Thus, the tree-based format can be written as a composition of multilinear maps.
For example,

CD

C{1,2,3}

'{1}
C{2,3}

'{2} '{3}

C{4,5}

'{4} '{5}

v(x) = CD
⇣
C{1,2,3}

⇣
'{1}(x1), C

{2,3}
⇣
'{2}(x2),'

{3}(x3)
⌘⌘

, C{4,5}
⇣
'{4}(x4),'

{5}(x5)
⌘⌘

Tree-based tensor formats correspond to deep neural networks with multilinear
mappings and a sparse architecture given by a dimension partition tree.
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Storage complexity for the tree-based format (r↵  r, n⌫  n)

For the Tucker format (one level), the storage complexity is

C(T, r) = O(dnr + rd)

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

For any binary tree such as a linear binary tree (Tensor Train Tucker format)
or a balanced binary tree (Hierarchical Tucker format) the storage complexity
is

C(T, r) = O(dnr + (d� 2)r3) (linear in d and n)
{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}
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Computing with tree-based tensor formats

Many favorable properties from a computational point of view:

Complexity for storage, evaluation, differentiation, integration,. . . linear in d
and cubic in the rank

“Not so nonlinear” approximation tool. Geometrical properties can be
exploited for optimization and dynamical approximation.

Topological properties ensure the well-posedness of optimization problems
and existence of stable algorithms

Notion of hierarchical singular value decomposition (HSVD; see below) and a
way to obtain approximations ur in T

T

r
such that

ku� urk 
p
2d� 2 inf

v2T T
r

ku� vk.

Universal approximation tool, i.e. for any u 2 V , we can find a sequence
{ur}r�1 with ur 2 T

T

r
that converges to u.

Key question. How fast does r grow with d and "�1? Depends on u!
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Training a tree-based tensor network

CD

C{1,2,3}

'{1}
C{2,3}

'{2} '{3}

C{4,5}

'{4} '{5}

Simple alternating algorithm for optimization in given tree-based format T T

r

that exploits the multilinearity of the parametrization.

At each step, optimization over one parameter (training a linear model!).

Efficient strategy for rank adaptation based on HSVD.

Tree adaptation using a stochastic algorithm, able to explore the set of
possible trees and recover hidden structures of functions.

A very powerful alternative to deep neural networks!
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Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has ↵-ranks equal to 2 whatever ↵ ⇢ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

TL (Linear tree)

I If rankTL(u)  r then rankTB (u)  r2

I If rankTB (u)  r then rankTL(u)  rlog2(d)/2
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Example: Canonical versus tree-based format

Consider the d-dimensional tensor space V = Rn
⌦ . . .⌦ Rn.

From canonical format to binary tree-based format.
For any v in V and any ↵ ⇢ D, the ↵-rank is bounded by the canonical rank:

rank↵(v)  rank(v).

Therefore,
Rr ⇢ T

T

r
, for any binary tree T,

so that an element in canonical format Rr with storage complexity O(dnr)
admits a representation in T

T

r
with storage complexity O(dnr + dr3).

From binary tree-based format to canonical format.
For a balanced or linear binary tree, the subset

S = {v 2 T
T

r
: rank(v) < qd/2}, q = min{n, r},

is of Lebesgue measure 0. Thus, a typical element v 2 T
T

r
with storage

complexity of order dnr + dr3 admits a representation in canonical format
with a storage complexity of order dnqd/2.
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How to choose a good tree (architecture of the network)?

A crucial but combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}

... but stochastic algorithms for tree adaption exist [Grelier, Nouy, Chevreuil, 2018]
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Choice of tree – historical note

Tree-based tensor formats were first introduced in quantum physics and
quantum chemistry for the approximation of the high-dimensional solutions of
Schrödinger’s equation, to deal with so-called quantum entanglement:

I renormalisation group ideas and matrix product states – linear binary tree (TT)
[Wilson, 1975], [White, 1992], [Fannes, Nachtergaele, Werner, 1992],
[Perez-Garcia, Verstraete, Wolf, Cirac, 2006],

I tensor network states – General Hierarchical Trees
[Murg, Verstraete, Cirac, 2007], [Schollwöck, 2011], ...

I multi-configurational time-dependent Hartree (MCTDH) – basic Tucker format
[Meyer, Manthe, Cederbaum, 1990], ...

I multilayer MCTDH – General Hierarchical Trees
[Wang, Thoss, 2003], [Vendrell, Meyer, 2011]

Often due to structure of system, but more often as a compromise for ease of
treatment versus control of the ranks and the accuracy.

We will only focus on linear binary trees, the Tensor Train Tucker or TT format.
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3. Tensors, Ranks and Singular Value Decompositions
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Algebraic tensors

Given d index sets I⌫ = {1, . . . , N⌫}, 1  ⌫  d, we introduce the multi-index set

I = I1 ⇥ . . .⇥ Id.

An element v of the vector space RI is a tensor of order d and is identified with a
multidimensional array

(vi)i2I = (vi1,...,id)i12I1,...,id2Id

which represents the coefficients of v on the canonical basis of RI , also denoted

v(i) = v(i1, . . . , id).

d = 1 d = 2 d = 3
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Algebraic tensors

Given d vectors v(⌫) 2 RI⌫ , 1  ⌫  d, the tensor product of these vectors

v := v(1) ⌦ . . .⌦ v(d)

is defined by
v(i) = v(1)(i1) . . . v

(d)(id)

and is called an elementary tensor.

d = 2

⌦ ⌘

Using matrix notations, v ⌦ w is
identified with the matrix vwT .

d = 3

⌦ ⌦ ⌘
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Algebraic tensors

The tensor space RI = RI1⇥...⇥Id , also denoted RI1 ⌦ . . .⌦ RId , is defined by

RI = RI1 ⌦ . . .⌦ RId = span{v(1) ⌦ . . .⌦ v(d) : v(⌫) 2 RI⌫ , 1  ⌫  d}

The canonical norm on RI , also called the Frobenius norm, is given by

kvk =

sX

i2I

v(i)2 (3.1)

and makes RI a Hilbert space with inner product

(v(1) ⌦ . . .⌦ v(d), w(1)
⌦ . . .⌦ w(d)) = (v(1), w(1))2 . . . (v

(d), w(d))2 .

It coincides with the natural norm on `2(I) and is the only norm associated with
an inner product that has the property

kv(1) ⌦ . . .⌦ v(d)k = kv(1)k2 . . . kv
(d)
k2.
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Tensor product of functions

Let X⌫ ⇢ R, 1  ⌫  d, and V⌫ ⇢ RX⌫ be a space of functions defined on X⌫ .

The tensor product of functions v(⌫) 2 V⌫ , denoted

v = v(1) ⌦ . . .⌦ v(d),

is a multivariate function defined on X = X1 ⇥ . . .⇥ Xd and such that

v(x) = v(x1, . . . , xd) = v(1)(x1) . . . v
(d)(xd), for x = (x1, . . . , xd) 2 X .

For example, for i 2 Nd

0, the monomial xi = xi1
1 . . . xid

d
is an elementary tensor.

The algebraic tensor product of spaces V⌫ is defined as

V1 ⌦ . . .⌦ Vd = span{v(1) ⌦ . . .⌦ v(d) : v(⌫) 2 V⌫ , 1  ⌫  d}

which is the space of multivariate functions v that can be written as a finite sum

v(x) =
nX

k=1

v(1)
k

(x1) . . . v
(d)
k

(xd).

(Can be extended to arbitrary vector spaces V⌫ , up to the definition of the tensor product ⌦.)
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Infinite-dimensional tensor spaces

For infinite dimensional Hilbert spaces V⌫ , a Hilbert tensor space with norm k · k is
obtained by the completion of the algebraic tensor space

V
k·k

= V1 ⌦ . . .⌦ Vd

k·k
.

If (·, ·)⌫ is the inner product in V⌫ , a canonical inner product on V can be first
defined for elementary tensors

(v(1) ⌦ . . .⌦ v(d), w(1)
⌦ . . .⌦ w(d)) = (v(1), w(1))1 . . . (v

(d), w(d))d

and then extended by linearity to the whole space V . As usual, the associated
norm k · k is called the canonical norm.
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Example 3.1 (Lp spaces & Sobolev spaces)
(a) Let 1  p <1. If V⌫ = Lp

µ⌫
(X⌫), then with µ = µ1 ⌦ . . .⌦ µd

Lp

µ1
(X1)⌦ . . .⌦ Lp

µd
(Xd) ⇢ Lp

µ
(X1 ⇥ . . .⇥ Xd) and

Lp

µ1(X1)⌦ . . .⌦ Lp

µd
(Xd)

k·k
= Lp

µ
(X1 ⇥ . . .⇥ Xd)

where k · k is the natural norm on Lp

µ
(X1 ⇥ . . .⇥ Xd).

(b) The Sobolev spaces

Hk(X ) = Hk(X1)⌦ . . .⌦Hk(Xd)
k·k

Hk and

Hk

mix
(X ) = Hk(X1)⌦ . . .⌦Hk(Xd)

k·k
H

k

mix

of functions defined on X = X1 ⇥ . . .⇥ Xd, equipped with the norms

kuk2
Hk =

X

|↵|k

k@↵uk2
L2 and kuk2

H
k

mix

=
X

|↵|1k

k@↵uk2
L2 ,

respectively, are two different tensor Hilbert spaces (see Section III.3).
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Tensor product basis

If { (⌫)
i

}i2I⌫
is a basis of V⌫ , then a basis of V = V1 ⌦ . . .⌦ Vd is given by

n
 i =  (1)

i1
⌦ . . .⌦  (d)

id
: i 2 I = I1 ⇥ . . .⇥ Id

o
.

A tensor v 2 V admits a decomposition

v =
X

i2I

ai i =
X

i12I1

. . .
X

id2Id

ai1,...,id 
(1)
i1
⌦ . . .⌦  (d)

id
,

and v can be identified with the (algebraic) tensor of its coefficients a 2 RI .

If { (⌫)
i

}i2I⌫
is an orthonormal basis of V⌫ , then { i}i2I is an orthonormal basis

of V k·k and
kvk2 =

X

i2I

a2
i
:= kak2.

The map  : a 7!
P

i2I ai i defines a linear isometry from RI to V for finite dimensional

spaces and from `2(I) to V
k·k for infinite dimensional spaces.
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Tensor ranks (order-two tensors)

The rank of an order-two tensor u 2 V ⌦W , denoted rank(u), is the minimal
integer r s.t.

u =
rX

k=1

vk ⌦ wk, for some vk 2 V, wk 2W.

If V = Rn and W = Rm it can be identified with a matrix u 2 Rn⇥m and
rank(u) coincides with the matrix rank, i.e.

u =
rX

k=1

vkw
T

k
= VWT , where V 2 Rn⇥r, W 2 Rm⇥r.

= + + =

The set of tensors in V ⌦W with rank bounded by r, denoted

Rr = {v : rank(v)  r},

is neither a linear space nor a convex set. However, best approximation in Rr is
well posed and it has many favorable properties for numerical treatment.
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Canonical rank of higher-order tensors & canonical format

For tensors u 2 V1 ⌦ . . .⌦ Vd with d � 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for
order-two tensors, is the minimal integer r such that

u(x1, . . . , xd) =
rX

k=1

v(1)
k

(x1) . . . v
(d)
k

(xd), for some v(⌫)
k
2 V⌫ .

The subset of V = V1 ⌦ . . .⌦ Vd with canonical rank bounded by r is denoted

Rr = {v 2 V : rank(v)  r}. (3.2)

If dim(V⌫)  n, the storage complexity of tensors in Rr is

storage(Rr) = r
dX

⌫=1

dim(V⌫)  rdn .

Unfortunately, for d � 3, the set Rr loses many of the favourable properties.
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Drawbacks of canonical format

Determining the rank of a given tensor is a NP-hard problem.

The set Rr is not an algebraic variety or a manifold.

No notion of singular value decomposition.

The map v 7! rank(v) is not lower semi-continuous and so Rr is not closed.

Example 3.2
Consider the order-3 tensor

v = a⌦ a⌦ b+ a⌦ b⌦ a+ b⌦ a⌦ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The
sequence of rank-2 tensors

vn = n(a+
1

n
b)⌦ (a+

1

n
b)⌦ (a+

1

n
b)� na⌦ a⌦ a

converges to v as n!1.

As a consequence, for most problems, there is no robust method for
approximation in canonical format Rr.
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↵-rank (tensors)

For a non-empty subset ↵ of D = {1, . . . , d}, a tensor u 2 V = V1 ⌦ . . .⌦ Vd can
be identified with an order-two tensor

M↵(u) 2 V↵ ⌦ V↵c , (3.3)

where V↵ =
N

⌫2↵
V⌫ , and ↵c = D \ ↵. The operator M↵ = V ! V↵ ⌦ V↵c is

called the matricisation operator.

M{1}
 ����

M{2}
����!

The ↵-rank of u, denoted rank↵(u), is the rank of the order-two tensor M↵(u),

rank↵(u) = rank(M↵(u)),

which is the minimal integer r↵ such that

M↵(u) =
r↵X

k=1

v↵
k
⌦ w↵

c

k
, for some v↵

k
2 V↵, w↵

c

k
2 V↵c .

Note that rank↵(u) = rank↵c (u).
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↵-rank (functions)

A multivariate function u(x1, . . . , xd) with rank↵(u)  r↵ is such that

u(x) =
r↵X

k=1

v↵
k
(x↵)w

↵
c

k
(x↵c)

for some functions v↵
k
(x↵) and w↵

c

k
(x↵c) of x↵ = {x⌫}⌫2↵ and x↵c = {x⌫}⌫2↵c .

Example 3.3
(a) u(x) = u1(x1) . . . ud(xd) can be written u(x) = u↵(x↵)u↵

c

(x↵c),
with u↵(x↵) =

Q
⌫2↵

u⌫(x⌫). Therefore, for any ↵, rank↵(u) = 1.

(b) u(x) = u1(x1)+ . . .+ud(xd) can be written u(x) = u↵(x↵) ·1+1 ·u↵
c

(x↵c),
with u↵(x↵) =

P
⌫2↵

u⌫(x⌫). Therefore, rank↵(u)  2.

(c) u(x) =
P

r

k=1 u
1
k
(x1) . . . ud

k
(xd) can be written

P
r

k=1 u
↵

k
(x↵)u↵

c

k
(x↵c)

with u↵

k
(x↵) =

Q
⌫2↵

u⌫

k
(x⌫).

Hence, rank↵(u)  rank(u) = r, for any ↵, with equality if the functions
{u↵

k
(x↵) : 1  k  r} and {u↵

c

k
(x↵c) : 1  k  r} are linearily independent.
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Singular value decomposition of order-two tensors

When V and W are Hilbert spaces, an algebraic tensor u 2 V ⌦W admits a
singular value decomposition (SVD)

u =
X

k�1

�kvk ⌦ wk, (3.4)

where vk 2 V and wk 2W are orthonormal vectors (singular vectors) and
�k 2 R+ are the singular values. The rank of u coincides with the number of
non-zero singular values:

rank(u) = #{k : �k 6= 0}.

For V = Rn and W = Rm, u is identified with a matrix in Rn⇥m and

u =

rank(u)X

k=1

�kvkw
T

k
= V⌃WT . (3.5)

with orthogonal matrices V 2 Rn⇥n,W 2 Rm⇥m and diagonal matrix ⌃ 2 Rn⇥m.

(A tensor u 2 V ⌦W
k·k_ still admits a SVD of the form (3.4). The rank is possibly infinite.)
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Best approximation of order-two tensors via truncated SVD

With the singular values {�k}k�1 sorted by decreasing order, an element of best
approximation of u in the set of tensors with rank bounded by r is provided by the
truncated singular value decomposition

ur =
rX

k=1

�kvk ⌦ wk, (3.6)

with an error
ku� urk

2 = min
rank(v)r

ku� vk2 =
X

k�r+1

�2
k
. (3.7)

An approximation ur with relative precision ✏, such that ku� urk  ✏kuk, can be
obtained by choosing a rank r such that

X

k�r+1

�2
k
 ✏2

X

k�1

�2
k
. (3.8)

The complexity of computing the SVD is O(n3) if dim(V ) = dim(W ) = n. For u
given in low-rank format u =

P
r

k=1 ak ⌦ bk, with a rank r < n, the complexity
reduces to O(r3 + 2rn2).
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Higher-order singular value decomposition

For a non-empty ↵ ⇢ D = {1, . . . , d}, a tensor u 2 V1 ⌦ . . .⌦ Vd can be identified
with its matricisation

M↵(u) 2 V↵ ⌦ V↵c ,

an order-two tensor which admits a singular value decomposition

M↵(u) =
X

k�1

�↵

k
v↵
k
⌦ w↵

c

k
.

The set �↵(u) := {�↵

k
}k�1 is called the set of ↵-singular values of u. The ↵-rank

of u is the number of non-zero ↵-singular values

rank↵(u) = #{k : �↵

k
6= 0}.

Scheichl & Gilbert High-dim. Approximation / VII. Tensor Trains / 3. Tensors, Ranks & SVDs SS 2020 40/70



Truncated higher-order singular value decomposition

By sorting the ↵-singular values by decreasing order, an approximation ur with
↵-rank r can be obtained by retaining the r largest singular values, i.e.

ur such that M↵(ur) =
rX

k=1

�↵

k
v↵
k
⌦ w↵

c

k
,

which satisfies

ku� urk
2 = min

rank↵(v)r

ku� vk2 =
X

k>r

(�↵

k
)2.

But, there are 2d�1 different binary partitions ↵ [ ↵c of D, each with
corresponding SVD and a way to truncate a higher-order tensor!

For tree-based tensor formats

T
T

r
= {v : rank↵(v)  r↵,↵ 2 T},

where T is a dimension partition tree over D = {1, . . . , d}, a higher order singular
value decomposition (HOSVD) (also called hierarchical SVD) can also be defined
from SVDs of matricisations M↵(u) of u.

Will now consider the tensor train format.
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4. Tensor Train Decomposition
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Linear binary trees – Tensor Train (TT) Tucker format

Arguably the simplest tree-based tensor
format T T

r
⇢ RI with I = I1 ⇥ . . .⇥ Id

is the Tensor Train Tucker format based
on a linear binary tree (short TT format): T =

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

It is equivalent to matrix product states [White, 1992] in quantum physics, since
each element of a tensor A 2 T

T

r
can be factorised into a product of matrices:

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id) with G⌫(i⌫) 2 Rr⌫�1⇥r⌫ , (4.1)

where r0 = rd = 1 and i = (i1, . . . , id) 2 I.

Each G⌫ is in fact a tensor of order 3 in Rr⌫�1⇥n⌫⇥r⌫ where n⌫ = dim(I⌫), such
that the decomposition in index form becomes

A(i1, . . . , id) =
r1X

k1=1

. . .

rd�1X

kd�1=1

G1(1, i1, k1)G2(k1, i2, k2) . . . Gd(kd�1, id, 1). (4.2)
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TT decomposition and ↵-ranks [Oseledets, SISC, 2011]

For any 1  ⌫  d� 1, let ↵ = {1, . . . , ⌫} ⇢ T . Since (4.2) implies

A =
r⌫X

k⌫=1

A↵

k⌫
⌦A↵

c

k⌫
with A↵

k⌫
2 RI1⇥...⇥I⌫ , A↵

c

k⌫
2 RI⌫+1⇥...⇥Id ,

it follows that
r⌫ � rank↵(A) = rank(M↵(A)).

Moreover, these ranks are achievable, providing a constructive way to compute the
TT-decomposition.

Theorem 4.1

Let A 2 RI and suppose that for all 1  ⌫  d� 1 and ↵ = {1, . . . , ⌫},

rank↵(A) = r⌫ .

Then there exists a TT-decomposition (4.2) of A with TT-ranks less than or
equal to r⌫ .

Proof. Demonstrated on the iPad.
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Approximate TT decomposition and error bound

In practical computations, the matricisations M↵(A) are rarely going to be of
low rank (exactly). However, if {�↵

k
}k�1 are the ↵-singular values of A (sorted by

decreasing order) and, for ↵ = {1, . . . , ⌫},

"2
⌫
:=

X

k>r⌫

(�↵

k
)2 ,

Then (using HOSVD) there exist two matrices A⌫ , E⌫ , such that

M↵(A) = A⌫ + E⌫ with rank(A⌫) = r⌫ and kE⌫k = "⌫ . (4.3)

Theorem 4.2

Let A 2 RI . Then there exists a tensor B in TT-format (4.2) with TT-ranks r⌫
and

kA�Bk 

vuut
d�1X

⌫=1

"2
⌫
. (4.4)

Proof. Demonstrated on the iPad.
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TT-SVD algorithm

The proof of Theorems 4.1 and 4.2 leads to the following practial algorithm:

TT-SVD Algorithm
Input. d-dimensional tensor A, tolerance ".
Output. TT cores G1, . . . , Gd of TT approximation B, with r⌫ such that (4.3)

holds with "⌫ = "p
d�1
kAk, in order to guarantee kA�Bk  "kAk.

1: Set C = A, r0 = 1.
2: for ⌫ = 1, . . . , d� 1 do
3: C = M↵(C) where ↵ = {k⌫�1, ⌫} and ↵c = {⌫ + 1, . . . , d}.
4: Compute truncated SVD C = V ⌃W + E s.t. rank(V ⌃W ) = r⌫ , kEk  "⌫ .
5: G⌫ := tensor(V ) 2 Rr⌫�1⇥n⌫⇥r⌫ .
6: C = tensor(⌃W ) 2 Rr⌫ ⌦ RI⌫+1 ⌦ . . .⌦ RId .
7: end for
8: Gd := C.

Here, C = M↵(C) denotes matricisation w.r.t. a set ↵ and its complement ↵c (as above)
and C = tensor(C) is the reverse operation from matricised form back to tensor form.
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Quasi-best approximation

Corollary 4.3
Let T be a linear binary tree on {1, . . . , d}, r = (r⌫)

d�1
⌫=1 ⇢ Nd�1 and let A 2 RI

be arbitrary. Then the best approximation Abest
2 T

T

r
to A in the Frobenius

norm exists and the TT-approximation B computed by the TT-SVD algorithm is
quasi-optimal:

kA�Bk 
p
d� 1 kA�Abest

k

Proof. Let " := infC2T T
r
kA�Ck. For the proof that this infimum is in fact

attained in T
T

r
, see [Oseledets, 2011, Cor. 2.4]. Let Bmin

2 T
T

r
be this minimum.

(It follows from the fact that for any tensor B 2 T
T
r there exists a one-to-one correspondence

with its matricisations M↵(B) and the set of matrices of rank less than or equal to r⌫ is closed.)

Since kA�Bmin
k = ", each matricisation of A can be approximated s.t. (4.3)

holds with "⌫  " and the quasi-optimality result follows from Theorem 4.2.
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Complexity considerations, rounding & basic operations

In the basic TT format (4.2), the storage complexity, i.e. the number of
parameters, is (d� 2)nr2 + 2nr. However, by using an auxiliary Tucker
decomposition of the core tensors G⌫ this can be reduced to

O(dnr + (d� 2)r3).

Many basic linear algebra operations with TT tensors yield results also in TT
format, but with increased ranks. Therefore a crucial operation for TT
tensors is that of rounding (also called truncation or recompression),
i.e. given a tensor A 2 T

T
r , to estimate r0⌫  r⌫ such that A can be approximated in T

T
r0

maintaining the prescribed tolerance ".

Rounding can be carried out with computational complexity

O(dnr2 + dr4).

Basic operations with TT tensors, such as addition, multidimensional
contraction (e.g. for integration), elementwise (Hadamard) product, scalar
product or Frobenius norm, can also all be computed with a complexity of

O(dnr2 + dr4).

For details on those points see [Oseledets, 2011, Sect. 3-4].
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5. TT Cross Approximation
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Curse of Dimensionality for TT-SVD

For large d� 2, the TT-SVD algorithm is of course not practical !
It requires access to all

Q
d

⌫=1 n⌫ entries of the tensor.

For simplicity, let n⌫ = n 2 N\{1} for all ⌫. Then #entries of A 2 RI is nd !
(Case n⌫ = 1 can be ignored, since then the tensor reduces to a lower-dimensional tensor.)

Curse of Dimensionality!

Also the computational complexity of TT-SVD is O(nd+1 + r2nd) !
(for a single SVD of an M ⇥N matrix with M  N the cost is O(M2N))

We need a significantly more efficient approximate method for finding good
low-rank approximations of matrices to break the curse of dimensionality:

Cross (or skeleton) approximation and the maxvol algorithm
[Bebendorf, 2000], [Goreinov, Tyrtyshnikov, 2001]
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Cross approximation methods for matrices (d = 2)

Let U 2 Rm⇥n. Recall SVD is best approximation kU � VWT
k
2
F

among all
matrices V 2 Rm⇥r, W 2 Rn⇥r.
Use interpolation instead: Choose V , W s.t.

U(I, :) = V (I, :)WT , U(:,J ) = VWT (:,J )

for some index sets I,J ⇢ {1, . . . , n} with |I| = |J | = r.
Equivalent to cross decomposition (i.e. truncated, pivoted LU factorisation):

⇡

�1

U ⇡ eU := U(:,J )U�1(I,J )U(I, :).

How to find index sets I,J ?
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Maximum Volume principle [Tyrtyshnikov, ’00], [Goreinov, Tyrtyshnikov, ’01]
(the modulus of the determinant of a square matrix is referred to as its volume)

Best indices: If |detU(I,J )| = maxÎ,Ĵ

���detU(Î, Ĵ )
��� then

kU � eUkC  (r + 1) min
rank(V )=r

kU � V k2

(where kAkC := maxi,j |Aij | is the Chebyshev norm and kAk2 is the spectral norm).

But: NP-hard to look through all submatrices.

However, if |detU(I,J )| = ⌘maxÎ,Ĵ

���detU(Î, Ĵ )
���, for some ⌘ > 0, then

also
kU � eUkC  ⌘�1(r + 1) min

rank(V )=r

kU � V k2.

If optimal J known a priori, maxvol algorithm [Goreinov et al, ’10] provides
optimal index set I in n⇥ r submatrix in O(nr(r+ p)) complexity, where p is
number of iterations in the maxvol algorithm. Similar to row pivoting in LU.
In practice, J not known, but volume non-decreasing when iterating between
row and column sets I and J [Tyrtyshnikov, ’00] . . .
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Cross approximation via alternating iteration (d = 2)
[Bebendorf, ’00], [Tyrtyshnikov, ’00]

Practically realizable strategy (with O(2nr) samples & O(nr2) flops):

Assume initial set J ⇢ {1 . . . n} is given (e.g. random) ! V = U(:,J )

1. I = pivots (V ) ! W = U�1(I,J )U(I, :)

2. J = pivots (W ) ! V = U(:,J )

3. repeat...

Get U ⇡ VWT .

pivots feasible via pivoted LU [Bebendorf, ’00] or maxvol [Tyrtyshnikov ’00].

For numerical stability better to use (rank-revealing) QR �! allows rank
reduction
To avoid underestimating rank, fix ’search’ rank slightly larger and add
random columns after QR-factorisation.
Heuristic algorithm, but converges very fast in most important cases.

Scheichl & Gilbert High-dim. Approximation / VII. Tensor Trains / 5. TT Cross SS 2020 53/70

Cross approximation via alternating iteration (d = 2)

j1 j2 j3

i3

i2

i1

j1 j2 j3
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Extension to d > 2: The TT Cross algorithm

[Oseledets, Tyrtyshnikov, ’10]

Given initial sets Jk, 0 < k < d, let k = 1 and iterate:
(for notational convenience set I0 = Jd = ;)

1. eGk(ik) = U(Ik�1, ik,Jk). {Update a block}

2. Ik = pivotsrow( eGk) or Jk�1 = pivotscol( eGk). {Update sets}

3. Move to the next block (set k = k + 1 or k = k � 1), switching direction if
k = d or k = 1 is reached.

Using different matrizations of the tensors in each step.

O(dnr2) samples & O(dnr3) flops per iteration linear in d and n

Creates left- and right-nested sequences of index sets {Ik} and {Jk}, resp.

Explores the entire range in each variable in O(r2) “fibres”, defined by the
index sets {Ik} and {Jk}.

Theory of quasi-best approximation for matrix cross can be extended to TT
cross, e.g. [Savostyanov, 2014]
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TT Cross – An Efficient Computation of a TT Decomposition

(j1, k1) (j2, k2) (j3, k3)

i3

i2

i1
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6. ALS-Cross: TT Surrogates for Parametric PDEs
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Recall: Stochastic Collocation Method (Section IV.5 or VI.2)

Stochastic PDE example in parametric form in D ⇥ � ⇢ Rdx⇥d :

�r ·

⇣
a(x, y)ru(x, y)

⌘
= f(x, y), (x, y) 2 D ⇥ � and u|@D ⌘ 0 (6.1)

where y = (y1, . . . , yd) 2 � = �1 ⇥ · · ·⇥ �d with �j bounded (Assumption)

Use sampling points {y(i)}i=1,...,N in � and

FE solutions uh(x, y(i)) 2 Vh ⇢ V (w.r.t. mesh Th)

to construct the (stochastic collocation) interpolant

u(SC)

N,h
(x, y) = IN [uh](x, y) =

NX

i=1

uh(x, y
(i))�i(y) (6.2)

in the polynomial space PN = span{�i}Ni=1 ⇢ L2
⇢
(�) such that

(basis made up of products of basis functions for univariate polynomials)

u(SC)

N,h
(x, y(i)) = uh(x, y(i)), for i = 1, . . . , N (interpolating condition)

Functionals Q` =  (u`) and integrals E[Q`] approximated by applying the
functional to the interpolant u(SC)

N,h
and integrating result (repeated 1D integrals)
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Block-diagonal structure of collocation system (first for d = 1)

For each sampling point y(i) solve
Z

D

a(x, y(i))r j(x) ·ruh(x, y
(i)) dx =

Z

D

 j(x)f(x, y
(i)))dx

Important: independent equations over x for different y(i):
2

6664

A(1)

A(2)

. . .
A(n)

3

7775

2

6664

u(1)

u(2)

...
u(n)

3

7775
=

2

6664

f (1)

f (2)

...
f (n)

3

7775

but every block A(i) is a FE system and not diagonal.

Strategy:
Approximate and solve system in TT format without ruining block structure.
Approximate a(x, y), A, f and u in TT format.
Apply variant of alternating least squares (ALS) to linear system in TT format
[Holtz, Rohwedder, Schneider, ’12]
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Cross interpolation for stochastic collocation system via ALS

[Dolgov, RS, SIAM JUQ, 2019]

Main idea: Apply cross algorithm directly to the entire PDE solution
(rather than scalar entries).

Rewrite interpolation as projection:

E>
J · I · vec(VWT ) = E>

J · I · vec(U),

where EJ is a rectangular submatrix of identity on the index set J .

Replace I by the stiffness matrix A:

E>
J ·A · vec(VWT ) = E>

J vec(F )

. . . and A · vec(U) by the right hand side vec(F ).

Then find V ,W implicitly via alternating least squares (ALS)
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Represent PDE coefficient and matrix in TT format

Coefficient is low-rank (approximable):
(clear for uniform coefficients, but also for lognormal)

a(x, y) ⇡
RX

�=1

g�(x)h�(y).

Hence A is low-Kronecker-rank:

A =
RX

�=1

A� ⌦D�

and the matrix-vector product becomes

A · vec(VW>) = vec

2

4
X

�

(A�V ) (D�W )>

3

5

A� is a FEM matrix, but D� = diag(d�) is diagonal.
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Interpolatory representation

VWT is not unique ! ensure W (J ) = I (by choosing U�1(I,J )U(I, :))

. . . as a by-product V = U(:,J ) (as above in the TT Cross).

Distribute the products

E>
J ·A · vec(VWT ) =

RX

�=1

A�V ⌦ [D�(J , :)W ] =
RX

�=1

A�U(:,J )⌦ diag(d�(J ))

Now as in the matrix cross algorithm:
I start with initial parameter set J and solve r decoupled FE problems;
I project the linear system onto the new subspace spanned by V ⇥ I;
I solve the resulting (block-diagonal) Galerkin system for W and apply maxvol

to find a new pivot set J ;
I repeat until convergence. . .
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Iteration for d = 1, i.e. one parameter (in a nutshell)

Stage 1 (Space):
{j1, . . . , jr} = pivots (W )

2

4
Aj1

Aj2

Ajr

3

5

2

4
v1
v2
vr

3

5 =

2

4
fj1
fj2
fjr

3

5

Solve r independent deterministic problems.
Similar to MC or stochastic collocation (can use specialised PDE solvers)

Stage 2 (Parameter): (Aj is not diagonal ! ALS-projection)

1. Make V orthogonal ! projection matrix V = V ⌦ I.
2. Solve

�
V
>AV

�
w = V

>f ! reduces to n systems of size r ⇥ r !
3. Use maxvol to find new pivot set {j1, . . . , jr} = pivots (W )

4. Repeat . . .

Similar to the Reduced Basis Method (in 2D), but with more sophisticated search
via maxvol algorithm and . . .
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Tensor Train for stochastic (or parametric) PDEs

Idea extensible to many dimensions: �ra(x, y1, . . . , yd)ru = f

A =

(r0,...,rd)X

(�0,...,�d)=1

A(0)
�0
⌦ diag(d(1)

�0,�1
)⌦ · · ·⌦ diag(d(d)

�d�1
)

even for d� 1 ! Find solution u in TT format by alternating iteration:

u1 · · ·uk�1| {z }
U<k

· uk · uk+1 · · ·ud| {z }
U>k

The algorithm in a nutshell:

1. Jk = pivotscol (U>k).

2. U<k = U<k ⌦ I.

3. Generate and solve
⇥
U<k

>AJk
U<k

⇤
uk = U

>
<k

fJk
.

(for k = 0: r0 independent PDE solves; for k > 0: nr dense r ⇥ r systems)

4. Ik = pivotsrow (U<k+1).

5. Set k = k + 1 or k = k � 1 and repeat...
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Hybrid ALS-Cross algorithm

[Dolgov, RS, SIAM JUQ, 2019]

The main step is solving reduced systems with block-diagonal matrices:
⇥
U<k

>AJk
U<k

⇤
| {z }
P

�
Ã�⌦diag(d̃�)

uk = U
>
<k

fJk

Most important properties:
Spatial unknowns: O(r) decoupled deterministic PDEs (preconditioning. . . )
Parameters: O(dnr) dense r ⇥ r systems solved directly at O(dnr4) cost.

Given the (k1, . . . , kd)-element of the TT approximation of the FE solution

uh(x
(j), y(k1)

1 , . . . , y(kd)
d

) ⇡ u0(j)u1(k1) . . .ud(kd), j = 1, . . . ,Mh ,

the interpolant at an arbitrary point x 2 D, y 2 � is evaluated as

u(SC)

h
(x, y) =

2

4
MhX

j=1

u0(j) j(x)

3

5
"

n1X

k1=1

u1(k1)Lk1(y1)

#
. . .

"
ndX

kd=1

ud(kd)Lkd
(yd)

#

at O(r + dnr2) cost ! (since the  j are local and each TT core uj has dimension r ⇥ r)
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Numerical experiment

�ra(x, y)ru = 0 in (0, 1)2

u|x1=0 = 1, u|x1=1 = 0,

@u

@n
|x2=0 =

@u

@n
|x2=1 = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Karhunen-Loève like expansion [Eigel, Pfeffer, Schneider ’16]

a(x, y) = 10 +
dX

k=1

ykak(x)

with yk ⇠ U [�1, 1] and kakk1 = O(k�
⌫+1
2 ) (in the experiment below ⌫ = 3).

Discretisation with bilinear FEs on uniform mesh.

Truncation dimension d and mesh size h chosen such that bias error is less
than requested error tolerance.

Quantity of Interest: 10 first moments of average over a subdomain.
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Benchmarking ALS-Cross vs. (ML)QMC and Sparse Grids

Quasi MC with lattice vector (Kuo)
lattice-39102-1024-1048576.3600.txt

Multilevel QMC with same vector

Adaptive Sparse Grids toolbox (Klimke)
www.ians.uni-stuttgart.de/spinterp/

ALS-Cross TT algorithm
TT1r: 1 iteration with random initial
guess and TT ranks 800

TTKa: K iterations with initial guess
the coefficient and lower TT ranks

�7 �6.5 �6 �5.5 �5 �4.5
101

102

103

104

105

1.031.32

2.18
1.18

log10 "

CP
U

tim
e

TT1r
TTKa

Adapt.SG
QMC

MLQMC

�7 �6.5 �6 �5.5 �5 �4.5
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104
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log10 "

#
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E
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7. Conclusions & Further Reading
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Conclusions & Further Reading

Low-rank tensor approximation is a powerful, general-purpose
high-dimensional approximation tool.
TT cross approximation provides a very efficient algorithm to compute a
low-rank approximation of a high dimensional tensor.
Very competitive to deep neural networks !
So far no rigorous convergence theory for the TT cross iteration.
Extension of the idea to stochastic collocation systems arising from
stochastic PDEs ! efficient surrogates of the PDE solution.

I More details in Dolgov & RS, A Hybrid Alternating Least Squares – TT-Cross
Algorithm for Parametric PDEs, SIAM/ASA J Uncertain Q, 7, 2019

I See also Ballani & Grasedyck, Hierarchical Tensor Approximation of Output
Quantities of parameter-dependent PDEs, SIAM/ASA J Uncertain Q, 3, 2015

Current research in our group: TT approximation of distributions, in
particular PDE-constrained Bayesian inverse problems and normalizing flows

I Dolgov, Anaya, Fox & RS, Approximation and Sampling of Multivariate
Probability Distributions in the TT Decomposition, Stats & Comput, 30, 2020

I Rohrbach, Dolgov, Grasedyck & RS, Rank Bounds for Approximating Gaussian
Densities in the Tensor-Train Format, arXiv Preprint, arXiv:2001.08187, 2020
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A. Probability Theory
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Probability Theory

Probability measure

We denote an abstract probability space by (⌦,A,P), in which

⌦ is an abstract set of elementary events,
A is a �-algebra of subsets of ⌦ containing the measurable events and
P is a probability measure on A.

Definition A.1
A measure P on a measurable space (⌦,A) is called a probability measure if
P(⌦) = 1.

Definition A.2
An event A 2 A is said to occur almost surely with respect to the measure P
(P-a.s.) if P(A) = 1.
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Probability Theory

Borel-Cantelli lemma

Proposition A.3 (Boole’s inequality)
For events {An}n2N there holds

P ([1
n=1An) 

1X

n=1

P(An).

Definition A.4
The set of all ! 2 ⌦ such that ! 2 An for infinitely many values of n, i.e., !
occurs infinitely often (i.o.), is defined as

{An, i.o. } := lim sup
n2N

An := \1
k=1 [1n=k

An.

Theorem A.5 (Borel-Cantelli Lemma)
If
P1

n=1 P(An) <1, then P{An, i.o.} = 0. For independent events {An}n2N
such that

P1
n=1 P(An) =1 there holds P{An, i.o.} = 1.
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Probability Theory

Random variables

Definition A.6
Let (⌦,A,P) be a probability space and (E,E) a measurable space. A measurable
function X : ⌦! E is called an (E-valued) random variable. Individual values
X(!) for ! 2 ⌦ are called realisations of the random variable.

Remark: If E is a topological space then the �-algebra generated by the open
subsets of E is called the Borel �-algebra B(E).

Definition A.7
Let X be an E-valued random variable where (E,E) is a measurable space and
(⌦,A,P) is the underlying probability space. The probability distribution PX of X
(also called the law of X) is the probability measure on (E,E) defined by
PX(A) := P(X�1(A)) for pre-images X

�1(A) := {! 2 ⌦ : X(!) 2 A)} of sets
A 2 E.

Remark: This construction is sometimes called the push-forward measure defined
by (⌦,A,P), (E,E) and X.
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Probability Theory

Expectation, moments

Definition A.8
The expectation of a Banach space-valued random variable X is defined as the
integral

E [X] :=

Z

⌦
X(!) dP(!).

Definition A.9
The k-th moment (k 2 N) of a real-valued random variable X is E

⇥
X

k
⇤
.

The first moment µ := E [X] is also called the mean or mean value.
The central moments E

⇥
(X � µ)k

⇤
measure the deviation of X from its mean.

The second central moment

VarX := E
⇥
(X � µ)2

⇤
= E

⇥
X

2
⇤
� µ

2

of a random variable X is called its variance.

Remark: The quantity � :=
p
VarX is called the standard deviation of X.
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Probability Theory

Computation of moments

Moments of a random variable are sometimes more easily computed by integrating
over the image variable.

Consider a real-valued random variable X from (⌦,A) to (�,B(�)) where � ⇢ R.
For B 2 B(�), set A := X

�1(B). Then by the definition of the probability
distribution PX

Z

⌦
A(!) dP(!) = P(A) = PX(B) =

Z

�
B(x) dPX(x).

For measurable functions f : �! R we have
Z

⌦
f(X(!)) dP(!) =

Z

�
f(x) dPX(x)

and, in particular,

E [X] =

Z

⌦
X(!) dP(!) =

Z

�
x dPX(x).
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Probability Theory

Probability density functions

Definition A.10
Let P be a probability measure on (�,B(�)) for some � ⇢ R. If there exists a
function p : �! [0,1) such that P(B) =

R
B
p(x) dx for any B 2 B(�) we say

that P has a density p with respect to Lebesgue measure and we call p its
probability density function (pdf). If X is a �-valued random variable on (⌦,A,P),
the pdf pX of X (if it exists) is the pdf of the probability distribution PX .

For real-valued random variables X from (⌦,A,P) to (�,B(�)) we then have1

E [X] =

Z

⌦
X(!) dP(!) =

Z

�
x dPX(x) =

Z

�
xp(x) dx. (A.1)

Event probabilities are then easily calculated as

P(X 2 (a, b)) = P ({! 2 ⌦ : a < X(!) < b}) = PX((a, b)) =

Z
b

a

p(x) dx.

1(where we have omitted the subscript X)
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Probability Theory

Uniform distribution

A random variable X is uniformly distributed on D = [a, b] ⇢ R, (a < b), denoted

X ⇠ Uni(a, b),

if its pdf is

p(x) =
1

b� a
, x 2 [a, b].

Using (A.1), we easily obtain

E [X] =

Z
b

a

x

b� a
dx =

a+ b

2
, E

⇥
X

2
⇤
=

Z
b

a

x
2

b� a
dx =

b
3 � a

3

3(b� a)
,

so that VarX = E
⇥
X

2
⇤
� E [X]2 = (b�a)2

12 .
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Probability Theory

Gaussian distribution

A random variable X is said to follow the Gaussian or normal distribution on
� = R if its pdf is given by

p(x) =
1p
2⇡�2

exp

✓
�(x� µ)2

2�2

◆
, x 2 R,

with two real parameters µ 2 R and � > 0, denoted X ⇠ N(µ,�2).
As is easily verified,

E [X] = µ, VarX = �
2
.

The probability that X is within ↵ of its mean is given by

P(|X � µ|  ↵) = erf

✓
↵p
2�2

◆
,

with the error function erf defined by

erf(x) =
2p
⇡

Z
x

0
e
�t

2

dt.
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Probability Theory

Gaussian distribution

The cumulative distribution function (cdf) of the standard normal distribution
N(0, 1) is denoted by

�(x) =
1p
2⇡

Z
x

�1
e
� t2

2 dt =
1

2
+

1

2
erf

✓
xp
2

◆
.

Any (finite) linear combination of (jointly) random variables is normally
distributed.
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Probability Theory

Change of variables formula

Lemma A.11 (Change of variables)

Suppose Y : ⌦! R is a real-valued random variable and f : (a, b)! R is

continuously differentiable with inverse function f
�1

. If pY is the pdf of Y , the

pdf of the random variable X : ⌦! (a, b) defined via X = f
�1(Y ) is

pX(x) = pY (f(x)) |f 0(x)| for a < x < b.
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Probability Theory

Lognormal distribution

If Y ⇠ N(µ,�2), then the random variable

X := exp(Y )

is said to follow a lognormal distribution. With f(x) = log x, Lemma A.11 yields
the pdf of X as

pX(x) =
1p

2⇡�2x2
exp

✓
� [log(x)� µ]2

2�2

◆
.

Moreover, there holds

E [X] = exp

✓
µ+

�
2

2

◆
, VarX = (e�

2

� 1)e2µ+�
2

.
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Probability Theory

Covariance

Definition A.12
The covariance between two real-valued random variables is defined as

Cov(X,Y ) = E [(X � µX)(Y � µY )] ,

where µX := E [X] and µY := E [Y ]. In particular, Cov(X,X) = VarX.

Note: An equivalent expression is Cov(X,Y ) = E [XY ]� E [X]E [Y ].

Calculation of the covariance requires evaluating the integral

E [XY ] =

Z

⌦
X(!)Y (!) dP(!) =

Z

X(⌦)⇥Y (⌦)
xy dPX,Y (x, y),

in which PX,Y is the joint probability distribution of X and Y .
Sometimes it is useful to scale the covariance to lie in [�1, 1]. The resulting
quantity is known as the correlation coefficient

⇢(X,Y ) :=
Cov(X,Y )

�X�Y
.
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Probability Theory

Joint probability distribution

Definition A.13
The joint probability distribution of two random variables X and Y is the
distribution of the bivariate random variable X = (X,Y ), i.e., for all
B 2 B(X(⌦)⇥ Y (⌦))

PX,Y (B) = P({! 2 ⌦ : X(!) 2 B}).

If it exists, the density pX,Y of PX,Y is known as the joint pdf and

PX,Y =

Z

B

pX,Y (x, y) dx dy.
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Probability Theory

Uncorrelated random variables

Definition A.14
If Cov(X,Y ) = 0 the random variables X and Y are said to be uncorrelated. A
family {X↵}↵ is said to be pairwise uncorrelated if X↵ and X� are uncorrelated
for all ↵ 6= �.

Note: Uncorrelated random variables may still be strongly related. As an example,

X ⇠ N(0, 1), and Y := cosX

satisfy µX = 0 and hence

Cov(X,Y ) = E [X cosX] =

Z

R
x cos(x) dPX(x)

=
1p
2⇡

Z

R
x cos(x) exp

✓
�x2

2

◆
dx = 0.

A stronger notion is that of independent random variables.
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Probability Theory

Sub �-algebras, �-algebras generated by random variables

Definition A.15
A �-algebra B is a sub �-algebra of A if B ⇢ A, i.e., if A 2 B implies A 2 A.

Definition A.16
Let X be an E-valued random variable on (⌦,A,P) for a measurable space
(E,E). The �-algebra generated by X, denoted �(X), is defined as

�(X) := {X�1(A) : A 2 E} ⇢ A.

Remark: �(X) is the smallest �-algebra such that X is measurable. It may be
considerably smaller than A.
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Probability Theory

Independence of events, �-algebras and random variables

Definition A.17
Two events A,B 2 A are independent if P(A \B) = P(A)P(B).
Two �-algebras A1 and A2 are independent if all pairs of events A1 and A2 with
A1 2 A1 and A2 2 A2 are independent.

Definition A.18
Two random variables X,Y on a probability space (⌦,A,P) are said to be
independent if the �-algebras �(X) and �(Y ) are independent.
A family {X↵}↵ of random variables is said to be pairwise independent if X↵ and
X� are independent for all ↵ 6= �.

Independence of random variables X and Y can be conveniently determined using
their joint distribution PX,Y : X and Y are independent if and only if PX,Y equals
the product measure PX ⇥ PY . If X and Y are real-valued with densities pX and
pY , they are independent if and only if their joint pdf is

pX,Y (x, y) = pX(x)pY (y).
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Probability Theory

Independence implies uncorrelatedness

Lemma A.19
If X and Y are independent real-valued random variables and

E [|X|] ,E [|Y |] <1, then X and Y are uncorrelated.

Note: The converse is generally false.

Theorem A.20 (Jensen’s inequality)
If X is a real-valued random variable with E [|X|] <1 and � : R! R a convex

function, then

�(E [X])  E [�(X)] . (A.2)
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Probability Theory

Bochner spaces

Definition A.21
Let (⌦,A,P) be a probability space and let W be a separable Banach space with
norm k · k. We denote by L

p(⌦;W ), 1  p <1, the space of W -valued
A-measurable random variables X : ⌦!W with E [kXkp] <1. The resulting
space is a Banach space with the norm

kXkLp(⌦;W ) :=

✓Z

⌦
kX(!)kp dP(!)

◆1/p

= E [kXkp]1/p .

Similarly, L1(⌦;W ) is the Banach space of W -valued random variables
X : ⌦!W for which

kXkL1(⌦;W ) = ess sup
!2⌦

kX(!)k <1.
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Probability Theory

Bochner spaces, p = 2

The case p = 2 when W is a Hilbert space W = H with inner product (·, ·)
occurs frequently. In this case L

2(⌦;H) is a Hilbert space with inner product

(X,Y )L2(⌦;H) := E [(X,Y )] =

Z

⌦
(X(!), Y (!)) dP(!).

Random variables in L
2(⌦;H) are called mean-square integrable random variables.

For random variables X,Y 2 L
2(⌦;H) the Cauchy-Schwarz inequality takes on

the form
|(X,Y )L2(⌦;H)|  kXkL2(⌦;H)kY kL2(⌦;H)

or
E [(X,Y )]  E

⇥
kXk2

⇤1/2 E
⇥
kY k2

⇤1/2
.
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Probability Theory

Bochner spaces, p = 2, covariance

Definition A.22

Let H be a separable Hilbert space. A linear operator C : H ! H is the
covariance of two H-valued random variables X and Y if

(C�, ) = Cov((�, X), ( , Y )) 8�, 2 H.

X and Y are said to be uncorrelated if C is the zero operator. If Y = X then C

is called the covariance of X.

More generally, the covariance of two random variables X and Y with values in a
separable Banach space W may be defined as a bilinear map c : W 0 ⇥W

0 ! R on
the dual space W

0 of W such that

c(�, ) = Cov(h�, XiW 0⇥W , h , Y iW 0⇥W ) 8�, 2W
0
.

Here h·, ·iW 0⇥W denotes the duality bracket between W
0 and W . The bilinear

map c may be identified with a linear operator from C : W 0 !W
00 via the identity

hC�, iW 00⇥W 0 = c(�, ).
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Probability Theory

Convergence of random variables

Definition A.23
Let W be a Banach space with norm k · k and {Xn}n2N be a sequence of
W -valued random variables. We say Xn converges to X 2W

almost surely if Xn(!)! X(!) for almost all ! 2 ⌦, i.e., if

P (kXn �Xk ! 0 for n!1) = 1.

in probability if P (kXn �Xk > ✏)! 0 for n!1 for any ✏ > 0.
in p-th mean or in L

p(⌦;W ) if E [kXn �Xkp]! 0 as n!1. When p = 2 this
is known as convergence in mean square.

in distribution if E [�(Xn)]! E [�(X)] as n!1 for any bounded and
continuous function � : W ! R.
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Probability Theory

Convergence of random variables

Theorem A.24

Let Xk ! X in p-th mean and, for r > 0 and a constant K = K(p), assume that

kXk �XkLp(⌦;W ) := E [kXk �Xkp]1/p  K(p)

kr
. (A.3)

Then the following convergence properties apply:

(a) Xk ! X in probability and, for any ✏ > 0,

P
�
kXk �Xk � k

�r+✏
�
 K(p)p

kp✏
. (A.4)

(b) E [�(Xk)]! E [�(X)] for all Lipschitz continuous functions on W and, if L denotes a

Lipschitz constant of �,

|E [�(Xk)]� E [�(X)]|  L
K(p)

kr
.

(c) If (A.3) holds for all p sufficiently large, then Xk ! X a.s. Furthermore, for each ✏ > 0
there exists a nonnegative random variable K such that kXk(!)�X(!)k  K(!)k�r+✏

for almost all !.
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Probability Theory

Random vectors

Random variables X = (X1, . . . , Xn)T from (⌦,A,P) to (�,B(�) with � ⇢ Rn

are known as random vectors or multivariate random variables (bivariate for
n = 2).

Their expected value

µ = E [X] =

Z

⌦
X(!) dP(!) = [E [X1] , . . . ,E [Xn]]

T

is a vector in Rn. If X has a pdf p, then for B 2 B(�)

P(X 2 B) = P({! 2 ⌦ : X(!) 2 B}) = PX(B) =

Z

B

p(x) dx.

The components {Xj}nj=1 of X are (pairwise) independent if and only if PX is the
product measure PX1 ⇥ · · ·⇥ PXn . In terms of the pdf, this is equivalent to

p(x) = pX1(x1) · pX2(x2) · · · pXn(xn).
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Probability Theory

Multivariate uniform

A random vector X : ⌦! � with values in a set � ⇢ Rn with finite Lebesgue
measure |�| follows a multivariate uniform distribution on �, denoted by

X ⇠ Uni(�)

if it has the pdf

p(x) ⌘ 1

|�| , x 2 �.
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Probability Theory

Covariance matrix

Definition A.25
The covariance of two real-valued random vectors X = [X1, . . . , Xm]T and
Y = [Y1, . . . , Yn]T is given by the m⇥ n matrix

Cov(X,Y) = E
⇥
(X� E [X])(Y � E [Y])T

⇤
.

X and Y are said to be uncorrelated if Cov(X,Y) = O (the m⇥ n zero matrix).
The matrix Cov(X,X) 2 Rn⇥n is called the covariance matrix of X.

Proposition A.26
Let X be an Rn

-valued random variable with mean vector µ and covariance

matric C. Then C is symmetric positive semi-definite and its trace is given by

E
⇥
kX� µk22

⇤
.
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Probability Theory

Multivariate normal distribution

A random vector with mean vector µ and positive definite covariance matrix C is
said to follow an n-variate Gaussian distribution if it has the pdf

p(x) =
1p

(2⇡)d detC
exp

✓
�(x� µ)TC�1(x� µ)

2

◆
. (A.5)

Definition A.27
An Rn-valued random vector X follows a multivariate normal (or Gaussian)
distribution, denoted

X ⇠ N(µ,C),

where µ 2 Rn and C 2 Rn⇥n is symmetric positive definite, if it has the pdf
(A.5).

Note: The case that C is singular (pos. semi-definite) can be handled by
characteristic functions.
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Probability Theory

Multivariate normal distribution

If X ⇠ N(µ,C) is a multivariate normal random vector, then for any a 2 Rn the
linear combination

Y = a
>
X =

nX

k=1

akXk

follows the normal distribution Y ⇠ N(a>µ,a>Ca).
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Probability Theory

i.i.d. random variables

Definition A.28
A sequence {Xj}j2N of random variables is said to be independent and identically
distributed (i.i.d.) if they all follow the same probability distribution and, in
addition, are pairwise independent.

The classical limit theorems of probability theory concern sums of i.i.d. random
variables. For an i.i.d. sequence {Xj}j2N, we introduce the notation

Sn := X1 + · · ·+Xn, n 2 N.
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Probability Theory

Weak Law of Large Numbers

Theorem A.29 (Chebyshev inequality)
A random variable X with finite mean µ and finite variance �

2
satisfies

c
2P(|X � µ| � c)  �2

.

Theorem A.30 (WLLN)
Let {Xk}k2N be a sequence of i.i.d. random variables on a given probability space

(⌦,A,P) with mean µ and finite variance. Then

Sn

n
! µ in probability, i.e.

for ever fixed ✏ > 0 there holds

P (|Sn/n� µ| > ✏)! 0 as n!1.
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Probability Theory

Strong Law of Large Numbers

Theorem A.31 (SLLN)
Let {Xk}k2N be a sequence of i.i.d. real-valued random variables on a given

probability space (⌦,A,P). Then Sn/n has a finite limit if and only if

E [|X1|] <1, in which case

Sn

n
! E [X1] a.s.

If E [|X1|] =1, then lim sup
n!1 |Sn|/n!1 a.s.
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Probability Theory

Central Limit Theorem

Let the sequence {Xk}k2N of real-valued random variables be independent, but
not necessarily identically distributed. In addition, let E [Xk] = 0 and
E
⇥
X

2
k

⇤
<1 for all k.

Besides Sn =
P

n

k=1 Xk, introduce the quantities

�
2
k
:= VarXk,

⌃2
n
:=

nX

j=1

�
2
j
= VarSn.

The central limit theorem (CLT) is the statement that

lim
n!1

Sn

⌃n

= lim
n!1

Sn � E [Sn]p
VarSn

⇠ N(0, 1) in distribution.
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Probability Theory

Central Limit Theorem

Definition A.32 (Lyapunov condition)
The sequence {Xk}k2N satisfies the Lyapunov condition if E

⇥
|Xk|3

⇤
<1 for

each k and

lim
n!1

1

⌃2
n

nX

k=1

E
⇥
|Xk|3

⇤
= 0.

Theorem A.33 (Lyapunov CLT)
If {Xk}k2N satisfies the Lyapunov condition, then Sn/⌃n ! N(0, 1) in

distribution.

Note: There exist several variants of the CLT with different assumptions.

Theorem A.34 (Simple CLT)
Let {Xk}k2N be a sequence of i.i.d. random variables, with E[Xk] = µ and

VarXk = �
2

for all k 2 N. Then
p
n(Sn/n� µ)! N(0,�2) in distribution.
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Probability Theory

Berry-Esseen Theorem

Theorem A.35 (Berry, 1941; Esseen 1942)

Let {Xk}k2N be i.i.d. random variables such that, for all k 2 N,

µ := E [Xk] , �
2 := VarXk > 0, ⇢ := E

⇥
|Xk � µ|3

⇤
<1.

If Fn denotes the distribution function of (Sn � nµ)/(�
p
n) and � that of the

standard normal distribution N(0, 1), then, with a universal constant C,

sup
x2R

|�(x)� Fn(x)|  C · ⇢

�3
p
n
.

Note: the constant C is known to satisfy 0.4097  C  0.7056 [Shevtsova, 2007].
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Statistical Estimation

Estimation theory is concerned with determining an unknown quantity ✓
associated with the probability distribution of a random variable X given n

i.i.d. samples {Xk}nk=1 of X.
Typical examples of such quantities ✓ are moments of X’s distribution such
as the mean and the variance. Another common situation is the estimation of
one or more parameters which determine the distribution of X.
An estimator for a scalar quantity ✓ is a function

� : Rn ! R, ✓̂ = �(X1, . . . , Xn)

mapping n i.i.d. realisations of X to the estimate ✓̂ of ✓.
Note that, since each of the n random samples Xk are random variables, the
same is true of

✓̂ = ✓̂(!) = �(X1(!), . . . , Xn(!)).

Once the samples have been drawn/realised, the estimate ✓̂ is a real number.
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Statistical Estimation

Sample average, unbiased estimator

The sample average

µ̂n :=
X1 + · · ·+Xn

n

is an estimate for the mean µ = E [X].
Since the Xk are i.i.d., we conclude from the linearity of expectation that

E [µ̂n] =
1

n

nX

k=1

E [Xk] =
1

n
· nµ = µ.

If E [|X|] <1 the SLLN tells us that also µ̂n ! µ = E [X] a.s. as n!1.

Since Var µ̂n = �
2

n
, where �2 = VarX, we note that the variance µ̂n

decreases like 1/n with growing sample size.

Definition A.36
An estimator for which E[✓̂] = ✓ is called unbiased.

Scheichl & Gilbert High-dim. Approximation / Background / A. Probability Theory SS 2020 38/86



Statistical Estimation

Sample variance

The sample variance

�̂
2
n
:=

1

n� 1

nX

k=1

(Xk � µ̂n)
2

is an unbiased estimator for �2 = VarX.

In addition, there holds �̂2
n
! �

2 a.s. as n!1.
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B. Elliptic Boundary Value Problems
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Elliptic Boundary Value Problem

We consider the elliptic boundary value problem (BVP) of finding the solution of
the partial differential equation with Dirichlet boundary condition

�r·(aru) = f on D, (B.1a)
u = g on @D, (B.1b)

given a bounded convex domain D ⇢ Rd, d = 1, 2, 3 with sufficiently smooth
boundary @D, a coefficient function a : D ! R+, a source term f : D ! R and
boundary data in the form of a function g : @D ! R.
The differential operator in (B.1a) is short for

r·(aru) =
dX

j=1

@

@xj

✓
a(x)

@u(x)

@xj

◆

Equation (B.1a) is a model for diffusion phenomena occurring in , e.g., heat
conduction, electrostatics, potential flow and elasticity. Generalisations of (B.1)
involve the addition of lower-order terms, other boundary conditions, a
matrix-valued coefficient function and dependence of a on u.
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Elliptic Boundary Value Problem

Strong and weak solution

If f 2 C(D) and a 2 C
1(D), then a function u 2 C

2(D) \ C
1(D) which satisfies

(B.1) is called a classical solution or a strong solution of the boundary value
problem.

There are (theoretical and practical) reasons for generalizing the classical solution
concept. The key to this generalisation lies in reformulating (B.1) as a variational
problem. Multiplying both sides of (B.1a) by an arbitrary function � 2 C

1
0 (D), in

this context known as a test function, and integrating by parts, we observe that
any (classical) solution of (B.1) also satisfies the equation

a(u,�) = `(�) for all � 2 C
1
0 (D), (B.2)

with the symmetric bilinear form a(·, ·) and linear functional `(·) given by

a(u,�) =

Z

D

a(x)ru(x) ·r�(x) dx, `(�) =

Z

D

f(x)�(x) dx. (B.3)

For (B.2) to make sense, it is sufficient that the integrals and derivatives are
well-defined.

Scheichl & Gilbert High-dim. Approximation / Background / B. Elliptic Boundary Value Problems SS 2020 43/86

Elliptic Boundary Value Problem

Strong and weak solution

This is the case if u and � are taken to lie in the Sobolev space

H
1(D) := {v 2 L

2(D) : rv 2 L
2(D)2},

which is a Hilbert space with respect to the inner product

(u, v)H1(D) =

Z

D

(ru ·rv + uv) dx = (ru,rv) + (u, v),

where we use (·, ·) to denote the inner product in L
2(D). The associated norm on

H
1(D) is

kuk2
H1(D) =

Z

D

�
|ru|2 + u

2
�
dx.

The gradients are in terms of weak derivatives in the sense of
✓
@u

@xj

,�

◆
= �

✓
u,

@�

@xj

◆
for all � 2 C

1
0 (D).
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Elliptic Boundary Value Problem

Strong and weak solution

Stating the boundary condition (B.1b) requires a well-defined notion of evaluating
a function from H

1(D) on the lower-dimensional manifold @D.

Functions in H
1(D) satisfying the BC with homogeneous boundary data

g ⌘ 0 are can be characterised as lying in the subspace H
1
0 (D) ⇢ H

1(D),
which is defined as the closure of smooth functions with compact support
with respect to k · kH1 :

H
1
0 (D) := C

1
0 (D) ⇢ H

1(D).

For inhomogeneous boundary data we define the space

W := H
1
g
(D) := {v 2 H

1(D) : u|@D = g}.

The evaluation on the boundary is understood in the following sense: for a
sufficiently smooth boundary there exists a bounded trace operator
� : H1(D)! L

2(@D) such that for all u 2 C
1(D) there holds �u = u|@D.

Since C
1(D) is dense in H

1(D), we have �u = limn!1 u|@D for any
approximating sequence {un} ⇢ C

1(D) converging to u in H
1(D).

Scheichl & Gilbert High-dim. Approximation / Background / B. Elliptic Boundary Value Problems SS 2020 45/86

Elliptic Boundary Value Problem

Strong and weak solution

Definition B.1
The trace space of H1(D) for a sufficiently smooth domain D is defined as

H
1/2(@D) := �(H1(D)) = {�u : u 2 H

1(D)}.

H
1/2(@D) is a Hilbert space with norm

kgkH1/2(@D) := inf{kukH1(D) : �u = g, u 2 H
1(D)}.

Sine in general H1/2(@D) ( L
2(@D), boundary data g in (B.1b) must be chosen

from H
1/2(@D).

Lemma B.2
There exists C� > 0 such that, for all g 2 H

1/2(@D), we can find ug 2 H
1(D)

with �ug = g and

kugkH1(D)  C�kgkH1/2(@D)
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Elliptic Boundary Value Problem

Strong and weak solution

We denote the spaces of trial and test functions by

W := H
1
g
(D), and V := H

1
0 (D).

Assumption 1

The coefficient function a = a(x) in (B.1a) satisfies

0 < amin  a(x)  amax <1 for almost all x 2 D

for positive constants amin and amax. In particular, a 2 L
1(D) and a is uniformly

bounded away from zero.

By Assumption 1, the bilinear form a(·, ·) is bounded on H
1(D), i.e.,

|a(u, v)|  CkukH1(D)kvkH1(D), for all u, v 2 H
1(D)

with a constant C  kakL1(D).
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Elliptic Boundary Value Problem

Strong and weak solution

Definition B.3
A weak solution of (B.1) is a function u 2W such that

a(u, v) = `(v) for all v 2 V, (B.4)

with a(·, ·) and `(·) as defined in (B.3).
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Elliptic Boundary Value Problem

Strong and weak solution

Definition B.4
A bilinear form a : H ⇥H ! R on a Hilbert space H is said to be coercive if
there exists a constant ↵ > 0 such that

a(u, u) � ↵kuk2
H

for all u 2 H.

Lemma B.5 (Lax–Milgram)
Let H be a real Hilbert space with norm k · kH and let ` be a bounded linear

functional on H. Let a : H ⇥H ! R be a bilinear form that is bounded and

coercive. Then there exists a unique u` 2 H such that a(u`, v) = `(v) for all

v 2 H, and the solution depends continuously on the data

ku`kH 
1

↵
k`k.

Scheichl & Gilbert High-dim. Approximation / Background / B. Elliptic Boundary Value Problems SS 2020 49/86

Elliptic Boundary Value Problem

Strong and weak solution

For functions in H
1(D) we introduce the H

1 semi-norm

|u|H1(D) :=

✓Z

D

|ru|2 dx
◆1/2

.

as well as the energy norm associated with the coefficient function a as

|u|a := a(u, u)1/2 =

✓Z

D

aru ·ru dx
◆1/2

.

Theorem B.6 (Poincaré–Friedrichs inequality)

For a bounded domain D there exists a constant C = CD > 0 such that

kukL2(D)  CD|u|H1(D) for all u 2 H
1
0 (D).
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Elliptic Boundary Value Problem

Strong and weak solution

Lemma B.7
Under Assumption 1 the bilinear form a : H1(D)⇥H

1
0 (D)! R is bounded and

the energy norm is equivalent to the H
1

semi-norm on H
1(D).

Theorem B.8

Let Assumption 1 hold, f 2 L
2(D) and g 2 H

1/2(@D). Then (B.1) has a unique

weak solution u 2W = H
1
g
(D). Furthermore, the weak solution u 2W satisfies

|u|H1(D)  C
�
kfkL2(D) + kgkH1/2(@D

�

where C = max{CD/amin, C�(1 + amax/amin)}.

Proof. Lax–Milgram Lemma.
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Finite Element Approximation

Galerkin discretisation

Given: linear variational problem of finding u 2 V , V a Hilbert space with norm
k · k, such that

a(u, v) = `(v) for all v 2 V (B.5)

with a bilinear form a(·, ·) and linear form `(·) on V which satisfy the assumptions
of the Lax-Milgram lemma.

Galerkin method for finding approximate solutions of (B.5) proceeds by restricting
the problem to a finite-dimensional subspace Vn ⇢ V : denote by un 2 Vn the
solution of

a(un, vn) = `(vn) for all vn 2 Vn. (B.6)

Note: The Galerkin approximation un of u with respect to the space Vn is
uniquely determined since the conditions of the Lax-Milgram Lemma are satisfied
for Problem (B.6) by inclusion.
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Finite Element Approximation

Céa’s lemma

Galerkin orthogonality
The Galerkin solution un 2 Vn satisfies

a(u� un, vn) = 0, for all vn 2 Vn.

The simple structure of a linear variational problem allows its reduction to a
problem of best approximation.

Lemma B.9 (Céa)
If the assumptions of the Lax-Milgram lemma apply to Problem (B.5) with

solution u 2 V , then the Galerkin approximation un, i.e., the solution of (B.6),
satisfies

ku� unk 
C

↵
inf

vn2Vn

ku� vnk. (B.7)
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Finite Element Approximation

Céa’s lemma, symmetric case

If the bilinear form a(·, ·) is, in addition, symmetric (Hermitian) then,
because of coercivity, it defines an inner product on V .
Galerkin orthogonality then implies un is the a-orthogonal projection of u
onto Vn and therefore the best approximation to u from Vn with respect to
the associated (energy) norm.
In the energy norm (B.7) is therefore satisfied with C = ↵ = 1.
Coercivity and boundedness also imply that the energy norm is equivalent to
k · k, i.e., p

↵kvk  |v|a 
p
Ckvk for all v 2 V,

which leads to the improved estimate over (B.7)

ku� unk 
r

C

↵
inf

v2Vn

ku� vk.
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Finite Element Approximation

Application to elliptic BVP

We have seen that, for the elliptic BVP (B.1), we have the equivalences

k · kH1(D) ⇣ | · |H1(D) ⇣ | · |a.

Corollary B.10

Under Assumption 1, the Galerkin approximation un fo the solution of the elliptic

boundary value problem (B.1), with respect to any subspace Vn of V = H
1
0 (D),

satisfies

|u� un|a = inf
v2Vn

|u� v|a,

|u� un|H1(D) 
r

amin

amax
|u� v|H1(D) for all v 2 Vn.
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Finite Element Approximation

Galerkin system

Given a basis {v1, . . . , vn} of Vn and the solution un =
P

n

j=1 ⇠jvj , then the
Galerkin variational equation (B.6) is equivalent to

nX

j=1

⇠j a(vj , vi) = `(vi), i = 1, . . . , n,

which, when rewritten as a linear system of equation, becomes the Galerkin system

Ax = b (B.8)

with Galerkin matrix [A]i,j = a(vj , vi), unknown vector [x]i = ⇠i and right-hand
side vector [b]i = `(vi).

If a(·, ·) is symmetric, then so is A.
If a(·, ·) is coercive, then A is (uniformly) positive definite.
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Finite Element Approximation

The finite element method

Different Galerkin methods result from different choices of subspaces.
Wavelets.
Trigonometric functions, global polynomials (spectral methods).
Radial basis functions.
The finite element method employs finite dimensional subspaces of the
variational spaces (trial and test spaces) consisting of piecewise polynomials
with respect to a partition of D.
We shall assume in the following that D is a polygon (polyhedron), but the
finite element method can also be applied to domains with curved boundaries.
For the remainder of this section we consider the case where D ⇢ R2, i.e.,
d = 2. The concepts can easily be extended to different d.
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Finite Element Approximation

Triangulations

Assumptions on the partition of the domain D, denoted by Th with elements K:

(Z1) D = [K2ThK.

(Z2) Each K 2 Th is a closed set with nonempty interor K̊.

(Z3) For two distinct K1,K2 2 Th there holds K̊1 \ K̊2 = ;.

(Z4) Each K 2 Th has a Lipschitz-continuous boundary @K.

The partition is usually assigned a discretisation parameter h > 0 given by

h := max
K2Th

diamK,

which is a measure of how fine the partition is.

Scheichl & Gilbert High-dim. Approximation / Background / B. Elliptic Boundary Value Problems SS 2020 58/86



Finite Element Approximation

Triangulations

Triangular mesh on a square domain.
Triangular mesh on a polygonal

approximation of a circle.
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Finite Element Approximation

Triangulations

Quadrilateral mesh on a rectangular (exterior)
domain.

Mesh consisting of triangles and
quadrilaterals.
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Finite Element Approximation

Triangulations

Tetrahedral mesh of complex 3D geometry (engine block).
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Finite Element Approximation

H
1-conforming finite element spaces

A conforming Galerkin approximation is one which employs finite-dimensional
spaces Vn such that Vn ⇢ V .

Let Vh denote a space of piecewise continuous functions v : D ! R with respect
to an admissible triangulation Th of D, i.e., such that each restriction v|K to any
K 2 Th is continuous on K.

Theorem B.11
With the notation defined above, there holds Vh ⇢ H

1(D) if, and only if,

Vh ⇢ C(D) and {v|K : v 2 Vh} ⇢ H
1(K).

In this case {v 2 Vh : v = 0 on @D} ⇢ H
1
0 (D).
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Finite Element Approximation

Finite elements

According to [Ciarlet, 1978], a finite element is a triple (K,PK , K) such that
(1) K is a nonempty set
(2) PK is a finite-dimensional space of functions defined on K and
(3)  K is a set of linearly independent linear functionals  on PK with the

property that, for any p 2 PK ,

 (p) = 0 for all  2  K ) p = 0.

We shall consider a single finite element, the so-called linear triangle, where
(1) K 2 R2 is a triangle with (non-collinear) vertices x1, x2 and x3,
(2) PK is the space of all affine functions on K and
(3)  K consists of the three functionals

 K = { j : PK ! R, j(p) = p(xj), j = 1, 2, 3}.
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Finite Element Approximation

Trianglular finite elements

To construct a (global) finite element space Vh based on linear triangle
elements consider a triangulation Th of D consisting of (closed) triangles K

which satisfy properties (Z1)–(Z4).
The functions in Vh will also lie in H

1(D) if they are continuous on D,
which, for piecewise linear (polynomial) functions, is equivalent to their being
continuous across triangle boundaries.
We thus obtain the space

Vh := {v 2 C(D) : v|K 2P1 for all K 2 Th},

where Pk denotes the space of (multivariate) polynomials of (complete)
degree k.
Define the subspace Vh,0 of Vh by

Vh,0 := {v 2 Vh : v|@D = 0} ⇢ H
1
0 (D).
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Finite Element Approximation

Degrees of freedom, nodal basis

A continuous piecewise linear function in Vh is completely determined by its
values at all triangle vertices.
Such a (finite) set of parameters which uniquely determine a finite element
function is called a set of degrees of freedom (DOF).
In Vh,0 these are the values at all nodes which do not lie on @D; denote their
number by n.
A particularly convenient basis {�1, . . . ,�n} of Vh,0 is the so-called nodal
basis characterised by

�j(xi) = �i,j i, j = 1, . . . , n.

If Nh = {x1, . . . , xn} denotes the set of vertices xj 62 @D, then

supp�j =
[

K2Th
xj2K

K.
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Finite Element Approximation

Nodal basis for linear triangles

A nodal basis function with its support.
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Finite Element Approximation

Nodal basis for linear triangles

Triangulation of an L-shaped domain with the supports of several basis functions.
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Finite Element Approximation

Galerkin matrix, linear triangles

Implications for Galerkin system (B.8):

[b]i = `(�i) =

Z

D

f�i dx =

Z

supp�i

f�i dx,

[A]i,j = a(�j ,�i) =

Z

D

a(x)�i(x) ·r�j(x) dx

=

Z

supp�i\supp�j

a(x)r�i(x) ·r�j(x) dx.

In particular, the Galerkin matrix A is sparse.
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Finite Element Approximation

Finite element assembly

Common procedure in assembling the Galerkin system:

(1) Ignore boundary condition initially, i.e., consider all of Vh with nodal basis

{�1,�2, . . . ,�n,�n+1, . . . ,�ñ},

ñ� n the number of vertices on the boundary @D.
Yields matrix Ã 2 Rñ⇥ñ, vector b̃ 2 Rñ.

(2) Then eliminate the DOF associated with boundary vertices.
Yields matrix A, vector b.

Note:
Initial approach for step (1): compute Ã, b̃, entry by entry, i.e., basis
function by basis function
But: shape and connectivity of supports typically very different.
Simpler: compute A, b element by element.
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Finite Element Approximation

Finite element assembly

K 2 Th: then for i, j = 1, 2 . . . , ñ:

a(�j ,�i) =

Z

D

ar�j ·r�i dx =
X

K2Th

Z

K

ar�j ·r�i dx =:
X

K2Th

aK(�j ,�i),

`(�i) =

Z

D

f�i dx =
X

K2Th

Z

K

f�i dx =:
X

K2Th

`K(�i).

Setting

[ÃK ]i,j := aK(�j ,�i) i, j = 1, 2, . . . , ñ,

[b̃K ]i := `K(�i, i = 1, 2, . . . , ñ,

we obtain
Ã =

X

K2Th

ÃK , b̃ =
X

K2Th

b̃K .
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Finite Element Approximation

Finite element assembly: element table

Since each element belongs to the support of exactly three basis functions, only
(at most) nine entries of ÃK and three entries of b̃K are nonzero.
Which entries these are can be determined by maintaining an element table:

[G(i, j)]i=1,2,3;j=1,...,nK :

Element K1 K2 . . . KnK

first vertex i
(1)
1 i

(2)
1 . . . i

(nK)
1

second vertex i
(1)
2 i

(2)
2 . . . i

(nK)
2

third vertex i
(1)
3 i

(2)
3 . . . i

(nK)
3

Here nK denotes the number of triangles in Th.

Besides the global vertex numbering

x1, x2, . . . , xñ,

the element table introduces a second, local vertex numbering

x
(K)
1 , x

(K)
2 , x

(K)
3

of the vertices (DOFs) associated with K. G is the local to global mapping of the
DOFs.
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Finite Element Approximation

Finite element assembly

Global numbering of
vertices (red) and
elements (black)
in a triangulation of an
L-shaped domain.
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Finite Element Approximation

Finite element assembly

With this notation the nonzero submatrix AK of ÃK and nonzero subvector bK

of b̃K are given by

AK :=

2

64
aK(�(K)

1 ,�(K)
1 ) aK(�(K)

2 ,�(K)
1 ) aK(�(K)

3 ,�(K)
1 )

aK(�(K)
1 ,�(K)

2 ) aK(�(K)
2 ,�(K)

2 ) aK(�(K)
3 ,�(K)

2 )

aK(�(K)
1 ,�(K)

3 ) aK(�(K)
2 ,�(K)

3 ) aK(�(K)
3 ,�(K)

3 )

3

75 , bK :=

2

64
`K(�(K)

1 )

`K(�(K)
2 )

`K(�(K)
3 )

3

75 .

If K has number k in the enumeration of the elements, then the association of the
local numbering {�(K)

i
}i=1,2,3 of the three basis functions whose support contains

K with the global numbering {�j}ñj=1 of all basis functions is given by

�
(K)
i

= �j , j = G(i, k), i = 1, 2, 3.

AK and bK are sometimes called the element stiffness matrix and element load
vector.
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Finite Element Approximation

Finite element assembly

We summarise phase (1) of the finite element assembly process in the following
algorithm2

Algorithm 1 Phase (1) of finite element assembly.

1: Initialise Ã := O, b̃ := 0.
2: for K 2 Th do
3: Compute AK and bK

4: k  [index of element K]
5: i1  G(1, k), i2  G(2, k), i3  G(3, k)
6: Ã([i1i2i3], [i1i2i3]) Ã([i1i2i3], [i1i2i3]) +AK

7: b̃([i1i2i3]) b̃([i1i2i3]) + bK

8: end for

2We use the following MATLAB-inspired notation:

A([i1i2i3], [i1i2i3]) =

2

4
ai1,i1 ai1,i2 ai1,i3
ai2,i1 ai2,i2 ai2,i3
ai3,i1 ai3,i2 ai3,i3

3

5 , b([i1i2i3]) =

2

4
bi1
bi2
bi3

3

5 .
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Finite Element Approximation

Reference element

Both the numerical integration as well as the error analysis benefit from a change
of variables to a reference element K̂ ⇢ R2. Each element K 2 Th then has a
parametrisation K = µK(K̂), where

µK : K̂ ! K, K̂ 3 ⇠ 7! x 2 K, x = µK(⇠) = BK⇠ + bK .

Most common for triangular elements: unit simplex

K̂ = {(⇠, ⌘) 2 R2 : 0  ⇠  1, 0  ⌘  1� ⇠}.

For each triangle K 2 Th the affine mapping µK is determined by prescribing,
e.g.,

(1, 0) 7! (x1, y1),

(0, 1) 7! (x2, y2),

(0, 0) 7! (x3, y3), i.e.
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Finite Element Approximation

Reference element

⇠

⌘

(0, 0)

(0, 1)

(1, 0)

K̂

µK

x

y

(x3, y3)

(x2, y2)

(x1, y1)

K


x

y

�
=


x1 � x3 x2 � x3

y1 � y3 y2 � y3

�

| {z }
BK


⇠

⌘

�
+


x3

y3

�

|{z }
bK
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Finite Element Approximation

Reference element

Local (nodal) basis on K̂: (dual basis of DOF)

�̂1(⇠, ⌘) = ⇠, �̂2(⇠, ⌘) = ⌘, �̂3(⇠, ⌘) = 1� ⇠ � ⌘, (⇠, ⌘) 2 K̂.

The correspondence

�̂ 7! � := �̂ � µ�1
K

, d.h. �(x) := �̂(⇠(x)) = �̂(µ�1
K

(x))

assigns to �̂ on K̂ a unique function � on K.

Local basis functions on K:

�j = �̂j � µ�1
K

: K ! R, j = 1, 2, 3.
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Finite Element Approximation

Reference element, change of variables

The chain rule3 applied to �(x) = �̂(⇠(x)) gives

r� =


�x

�y

�
=


�̂⇠⇠x + �̂⌘⌘x

�̂⇠⇠y + �̂⌘⌘y

�
=


⇠x ⌘x

⇠y ⌘y

� 
�̂⇠

�̂⌘

�
= (Dµ

�1
K

)>r̂�̂.

Since x = µK(⇠) = BK⇠ + bK , i.e. DµK ⌘ BK ,

⇠ = µ
�1
K

(x) = B
�1
K

(x� bK), i.e. Dµ
�1
K
⌘ B

�1
K

we obtain
r� = B

�>
K
r̂�̂.

3r̂ indicates differentiation with respect to the variables ⇠ and ⌘.

Scheichl & Gilbert High-dim. Approximation / Background / B. Elliptic Boundary Value Problems SS 2020 78/86



Finite Element Approximation

Reference element, element integrals

This finally gives the element integrals (�i = �
(K)
i

, i = 1, 2, 3)

aK(�j ,�i) =

Z

K

a(x)r�j(x) ·r�i(x) dx

=

Z

K̂

a(x(⇠))
⇣
B

�>
K
r̂�̂j(⇠)

⌘
·
⇣
B

�>
K
r̂�̂i(⇠)

⌘
| detBK | d⇠.

(B.9)

The determinant is given by (note K is a triangle)

| detBK | = 2|K|,

B
�>
K

=
1

2|K|


y2 � y3 x3 � x2

y3 � y1 x1 � x3

�
,

⇥
r̂�̂1 r̂�̂2 r̂�̂3

⇤
=


1 0 �1
0 1 �1

�
.
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Finite Element Approximation

Eliminate constrained boundary DOF

To impose the Dirichlet boundary condition we require that the Galerkin
approximation uh 2 Vh satisfy

uh(xj) = g(xj) at all boundary vertices {xj}ñj=n+1. (B.10)

We partition the coefficient vector u 2 Rñ into a first block uI 2 Rn

containing the coefficients associated with the interior vertices {xj}nj=1 and a
second block uB 2 Rñ�n containing the constrained coefficients associated
with boundary vertices.
For the assembled matrix Ã and vector b̃ this induces the partitionings

Ã =


ÃII ÃIB

ÃBI ÃBB

�
, b̃ =


b̃I

b̃B

�
.

The constraint (B.10) now reads uB = g, where g 2 Rñ�n contains the
boundary data {g(xj)}ñj=n+1.
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Finite Element Approximation

Eliminate constrained boundary DOF

This constraint is characterised by there being no coupling of the boundary DOF
to either interior DOF or among themselves, resulting in the modified linear
system of equations 

ÃII ÃIB

O I

� 
uI

uB

�
=


bI

g

�
,

which gives the reduced system

AuI = b, A = ÃII , b = bI � ÃIBg

for the interior DOF.

Note that this procedure is a discrete variant of the reformulation of the BVP with
inhomogeneous Dirichlet boundary conditions to an equivalent one with
homogeneous Dirichlet boundary conditions.
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Finite Element Convergence

Summary

Céa’s lemma characterises the Galerkin error as one of best appproximation
from the FE subspace Vh.
An upper bound for this error is the distance of the true solution from its
interpolant from the FE subspace. This is the uniquely determined function
from Vh which possesses the same global DOF as the exact solution.
The asymptotic behavior of the interpolant is then analyzed on a sequence of
meshes {Thn}n2N with limn!1 hn = 0.
For the interpolation error to become small, the mesh sequence has to be
shape-regular: if ⇢K denotes the radius of the inscribed circle in K and
hK = diamK, then a sequence of meshes is shape-regular provided the ratio

⇢K

hK

, K 2 Th

is bounded below uniformly for all {Thn}.
A priori convergence bounds are obtained by relating the smoothness of the
exact solution to the convergence rate h

↵ of the interpolation error as h! 0.
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Finite Element Convergence

Extra regularity

Interpolation estimates for u that is only in H
1(D) do not yield a useful rate h

↵

with an ↵ > 0. As such one looks for solutions that possesses higher regularity.

Definition B.12
For r 2 N and D ⇢ Rd bounded, we denote by H

r(D) the Sobolev space

H
r(D) := {v 2 L

2(D) : D↵
u 2 L

2(D) for all ↵ 2 Nd

0, |↵|  r}.

H
r(D) is a Hilbert space with the inner product

(u, v)Hr(D) =
X

|↵|r

Z

D

(D↵
u)(D↵

v) dx,

and the induced norm given by

kuk2
Hr(D) = (u, u)Hr(D) =

X

|↵| r

kD↵k2
L2(D).

Note: the vector ↵ 2 Nd

0 is called a multiindex, and |↵| :=
P

d

j=1 ↵j .
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Finite Element Convergence

Interpolation error of linear FE for H
2-regular functions

Let Vh denote the space of piecewise linear functions subject to a
shape-regular, admissible triangulation Th of D.
Denote by Ih : C(D)! Vh the (global) interpolation operator assigning to
each continuous function v the interpolant vh 2 Vh determined by the
condition that vh agrees with v at all vertices of Th.
Then the error of best approximation of u 2 C(D) is bounded by the
interpolation error

inf
v2Vh

|u� v|H1(D)  |u� Ihu|H1(D).

If the solution u of (B.4) has additional regularity u 2 H
2(D), then the

Sobolev imbedding theorem assures that u agrees a.e. with a function in
C(D), so that pointwise evaluation of u and thus the interpolant is
well-defined.
In this case a scaling argument can be used to show

|u� Ihu|H1(D)  C h |u|H2(D)

with a constant C independent of h and u.
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Finite Element Convergence

Model problem

Assumption 2 (H2/elliptic regularity)

There exists a constant C2 > 0 such that, for every f 2 L
2(D), the solution of (B.4) belongs to

H
2(D) and satisfies

|u|H2(D)  C2kfkL2(D).

Theorem B.13

Under Assumptions 1 and 2, the solution u of (B.4) with f 2 L
2(D) and the piecewise linear

finite element approximation uh on a sequence of shape-regular meshes satisfy

|u� uh|a  C
p
amax|u|H2(D) h  CC2

p
amaxkfkL2(D) h, (B.11)

with a constant C independent of h.

Corollary B.14
Under the assumptions of Theorem B.13 there holds

|u� uh|H1(D)  C

r
amax

amin
|u|H2(D) h  CC2

r
amax

amin
kfkL2(D) h.
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