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Chapter 1

Introduction

Definition 1.0.1. According to Hadamard (1865-1963) a problem is called well-posed, if

(i) a solution exists (existence),

(ii) the solution is unique (uniqueness),

(iii) the solution depends continuously on the input data (stability).

If any of these properties is violated, we speak of an ill-posed problem.

Let X,Y be Hilbert spaces and A : X → Y be linear and bounded (we write A ∈ L(X,Y )).
Then the (forward) problem to compute y = Ax for a given x ∈ X, is clearly well-posed. For
the corresponding inverse problem, to solve the linear equation Ax = y for a given y ∈ Y , the
conditions of Hadamard are:

(i) Existence: y ∈ R(A), i.e. A is surjective.

(ii) Uniqueness: A is injective

(iii) Stability: A−1 is bounded.

For finite dimensional problems, these conditions may be satisfied for a bounded linear operator A,
although the problem typically gets more and more ill-conditioned as the dimension increases.
In infinite dimensions on the other hand, it is in general impossible. In particular, for compact
operators A the singular values have to accumulate at 0, which implies that A−1 is unbounded.
Thus, fundamentally the inverse problem is ill-posed if the forward problem is well-posed.

In this course, we will study how ill-posed problems can be solved in a numerically stable
manner. Our particular focus will lie on the Bayesian approach and Bayesian techniques, but
before we get there, we will first study classical approaches.

1.1 A motivating example

Many processes in science and engineering can be modelled via differential equations. Assuming
complete knowledge of all the necessary parameters, initial and boundary conditions, the solution
of such a differential equation allows in principle to fully predict the process.
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Consider for example a rod of length 1 with thermal diffusivity coefficient α. The temperature
at the two ends of the rod is assumed to be 0. Then the temperature distribution u(x, t) satisfies

∂u

∂t
= α

∂2u

∂x2
, for 0 < x < 1, t > 0, (1.1)

with boundary conditions
u(0, t) = u(1, t) = 0, for t > 0, (1.2)

and initial condition
u(x, 0) = u0(x) , for 0 < x < 1. (1.3)

We can now consider the following inverse problem in this simple setting: Given the temperature
distribution at some time T > 0, can we recover the initial temperature profile u0 at time t = 0?

Using the Laplace transform method, the solution to the heat equation (1.1)-(1.3) has the
general form

u(x, t) =

∞∑
n=1

θne
−(nπ)2αt sin(nπx) ,

where θn are the Fourier-sine-coefficients of the initial condition u0, i.e.,

u0(x) =
∞∑
n=1

θn sin(nπx) .

Thus, in principle the coefficients θn of the initial condition u0 can be estimated from measurements

of u(x, T ) at time T > 0. However, consider two initial conditions u
(1)
0 and u

(2)
0 with θ

(1)
1 = θ

(2)
1 = 1

that differ only in one single frequency component, i.e.,

u
(1)
0 (x)− u(2)

0 (x) = θN sin(Nπx), for some N > 1.

At time T > 0 the two solutions will differ by

u(1)(x, T )− u(2)(x, T ) = θNe
−(Nπ)2αT sin(Nπx) ,

which is exponentially small. Therefore, any information about this difference will be lost due to
measurement noise for T or N sufficiently large, even if the noise is extremely small.

To demonstrate this consider the case of α = 0.01 (which after nondimensionalisation roughly
corresponds to a copper rod of length 10cm in dimensionless quantities with time measured in
seconds) and let

θ
(1)
1 = θ

(2)
1 = 1, θ

(2)
5 = 0.5 and θ

(j)
i = 0 otherwise.

In Figure 1.1, the solution is plotted at the initial time t = 0 and at t = 1 and t = 4. Even though
the two initial conditions clearly differ significantly and the difference is not even particularly
oscillatory, it is already very difficult to distinguish the two solutions at t = 1. At t = 4, it will be

impossible to say whether the observed temperature profile came from u
(1)
0 or from u

(2)
0 .
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Figure 1.1: Inverse heat equation example with two initial conditions that differ only in one fre-
quency: u(1)(x, t) (blue curve) and u(2)(x, t) (red curve) at times t = 0 (top), t = 1 (middle) and
t = 4 (bottom).
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Chapter 2

Linear Inverse Problems and
Regularisation

To motivate the remainder of this chapter and to relate to things that you have already come
across in earlier courses (e.g., in an introductory numerical analysis course, such as Numerik 0 in
Heidelberg), we will first consider the finite dimensional setting. However, the most relevant issue
in the numerical treatment of ill-posed problems, namely the lack of continuous dependence on
the data, only emerges in infinite dimensions. Thus, in the remainder of this chapter we analyse
infinite dimensional linear inverse problems and introduce regularisation techniques to solve them
approximatively in a numerically stable way.

2.1 Finite dimensional ill-posed problems (matrix equations)

It suffices to consider matrix equations. Every finite dimensional vector space X over R is isomor-
phic to Rn and every linear operator on Rn has a matrix representation.

The regular case. Thus, to begin with consider a linear equation system of the form

Ax = y (2.1.1)

with a symmetric, positive definite (SPD) n×n square matrix A ∈ Rn×n. Recall that such a matrix
A has n positive, real eigenvalues λ1 ≥ . . . ≥ λn > 0 with corresponding eigenvectors ui ∈ Rn,
i = 1, . . . , n, with ‖ui‖ = 1. Furthermore, A has the spectral decomposition

A =

n∑
i=1

λiuiu
>
i

(
= UΛU>

)
, (2.1.2)

where the ith column of U is ui and Λ is a diagonal matrix with Λii = λi. W.l.o.g. assume that
λ1 = O(1), in particular independent of n, otherwise rescale A and y.

As studied in detail in Numerik 0 (or an equivalent course), the condition number of A provides
a measure for how accurate and stable the system (2.1.1) can be solved. It is given by the ratio of
the largest and the smallest eigenvalue of A, i.e., κ(A) = λ1/λn.

Consider that the data, namely the right hand side y, is only available in only a perturbed (or
noisy) form as yδ, such that

‖yδ − y‖ ≤ δ (2.1.3)
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for some δ > 0 in the Euclidean norm on Rn, and denote by xδ the solution of the perturbed system
with right hand side yδ. Using the decomposition (2.1.2) of A, we get

xδ − x =
n∑
i=1

u>i (yδ − y)

λi
ui .

Since the eigenvectors of A can be chosen to be orthonormal (Numerik 0), we can apply the Bessel
inequality (A.1) to obtain the bound

‖xδ − x‖2 =

n∑
i=1

λ−2
i |u

>
i (yδ − y)|2 ≤ λ−2

n ‖yδ − y‖2 ≤ λ−2
n δ2 .

for the error in the solution. Using the condition number and our assumption on the scaling of λ1

this can also be expressed as
‖xδ − x‖ ≤ κλ−1

1 δ = O(κδ) .

The bound is sharp, which can be seen easily by choosing yδ − y = δun. Thus, any growth in the
condition number of A directly leads to an amplification of noise in the data in the solution.

Thus, for large condition numbers we say that the problem (2.1.1) is ill-posed – recall for
example that the condition number of the stiffness matrix A in finite element discretisations of
elliptic PDEs typically grows like O(h−2), where h is the mesh width. Note however that for finite
dimensional problems Hadamard’s third condition is not strictly speaking violated and so (2.1.1)
is not ill-posed in the sense of Hadamard, it is only ill-conditioned, but it is asymptotically
ill-posed for κ→∞ (e.g. as h→ 0 in the FE problem).

On the positive side, we also note that the above expansion shows clearly that errors in the low
frequency components i � n, i.e., the components in the direction of eigenvectors corresponding
to the larger eigenvalues, are not amplified as much. This is a typical situation in inverse problems
(recall the introductory example in Section 1.1).

The singular case. Let us now consider the case that A in (2.1.1) is positive semi-definite, i.e. it
has a nontrivial kernel. Since A∗ = AT = A, we can decompose the vector space in

Rn = N (A) +R(A) ,

where R is the range and N is the kernel (cf. Appendix A). Let λm be the smallest nonzero
eigenvalue and let κeff = λ1/λm be the effective condition number. Then

x =

m∑
i=1

λ−1
i uiu

>
i y

and the problem is solvable (Hadamard’s first condition) iff u>i y = 0 for i > m.
In the general noisy case, this will usually not be satisfied, but we can for example project the

noisy data yδ into the range of A via a projection P : Rn → R(A). Now the problem is solvable
and the solution xδP with data Pyδ satisfies

xδP − x =
m∑
i=1

λ−1
i uiu

>
i (Pyδ − y) .
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Since by construction u>i Py
δ = u>i y

δ, for i ≤ m, we have

‖xδP − x‖ ≤ λ−1
m δ = O(κeffδ) .

No (arbitrary) contributions in the kernel components are included and the error amplification is
again determined by the smallest nonzero eigenvalue (or equivalently by the effective condition
number). This is typical for finite dimensional operators, i.e. matrices. However, in practice it may
be difficult to find P without first performing a spectral decomposition of A.1

Outlook to infinite dimensions. In the general case of a linear operator A between two infinite
dimensional Hilbert spaces X and Y , the range of A and A∗ are not necessarily closed. In that
case we have

X = N (A) +R(A∗) and Y = N (A∗) +R(A)

(cf. Appendix A). If the range of A is not closed, i.e., R(A) 6= R(A), then the projection P is not
bounded, which leads again to instabilities. Any operator A with eigenvalues arbitrarily close to 0
will have this behaviour, in particular every compact operator (see below).

Regularisation. Let us now discuss ideas for numerically stable ways to solve such ill-posed
problems and introduce regularisation methods for matrix equations.

We saw above that small eigenvalues of A are causing instabilities. A natural approach would
thus be to approximate the matrix A with a family of matrices with eigenvalues bounded away
from zero. One such family is

Aα := A+ αI , α > 0 .

The eigenvalues of Aα are λi + α, i = 1, . . . , n and the eigenvectors remain unchanged.
To estimate the regularisation error consider again the regular (SPD) case, i.e. λn > 0 and

let x = A−1y and xα = A−1
α y. (The singular case can be handled similarly.) Then

x− xα =

n∑
i=1

(
1

λi
− 1

λi + α

)
uiu
>
i y =

n∑
i=1

α

λi(λi + α)
(u>i y) ui

and using again the Bessel inequality we can estimate the regularisation error by

Eα(α) := ‖x− xα‖ ≤
α

λn(λn + α)
‖y‖ .

In particular, we have Eα → 0 as α → 0. In the case of a noisy data yδ, with xδα the solution of
Aαx

δ
α = yδ, the spectral decomposition gives

xδα − xα =
n∑
i=1

(λi + α)−1uiu
>
i (yδ − y) .

and thus the perturbation error can be estimated by

Eδ(α, δ) := ‖xδα − xα‖ ≤
δ

λn + α
.

1Another way to deal with the singularity of A is to multiply (2.1.1) with AT and to form the normal equations
(see below), but κ(ATA) = κ(A)2 and so the ill-conditioning gets even worse!
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Finally, using the triangle inequality the total error between the exact solution and the solution
of the regularised problem with noisy data can be bounded by

‖x− xδα‖ ≤ Eα(α) + Eδ(α, δ) ≤
(

α

λn(λn + α)
‖y‖+

δ

λn + α

)
.

In practice, the exact data is not known, but we can bound ‖y‖ ≤ ‖yδ‖+ δ using (2.1.3) and thus
obtain

‖x− xδα‖ ≤
(

α

λn(λn + α)
(1 + δrel) +

δrel

λn + α

)
‖yδ‖ ,

where δrel = δ/‖yδ‖ is the relative noise level (or the inverse signal-to-noise ratio).
For fixed δrel the two terms in the error bound behave very differently with respect to α. The

first term decreases monotonically as α→ 0 while the second one grows monotonically.
The main task in regularisation is thus to determine the optimal α that minimises the total

error, either through an a priori choice α = α(δ) or through an a posteriori choice α = α(δrel) that
takes into account the size of the data ‖yδ‖. Clearly the optimal α will always depend on δ, but
any regularisation strategy needs to at least satisfy the requirement that α(δ) → 0 as δ → 0, so
that in the noise-free case the exact solution is recovered.

The discussion can easily be generalised also to arbitrary rectangular linear equation systems
with A ∈ Rn×m (and thus also to arbitrary linear operators between finite dimensional vector spaces
of possibly different dimension) by considering the normal equations

A>Ax = A>y .

However, the ill-conditioning is significantly worse since κ(ATA) = κ(A)2.
In the next section we will go one step further and look at general linear inverse problems on

arbitrary, infinite dimensional Hilbert spaces.

2.2 Generalised inverse - the infinite dimensional setting

In this section, throughout A ∈ L(X,Y ) is a linear bounded operator between the Hilbert spaces
X and Y , and we are interested in solutions of the linear operator equation

Ax = y (2.2.1)

for possibly non-injective and/or non-surjectiveA. For y /∈ R(A), (2.2.1) has no solution (Hadamard
1). In this case, a sensible thing to do – as we also did in Numerik 0 in finite dimensions – is to find
x ∈ X that minimises ‖Ax − y‖Y . On the other hand, for N (A) 6= {0} there are infinitely many
solutions (Hadamard 2). In that case, we choose the one that minimises ‖x‖X . This leads to the
following definition.

Definition 2.2.1. An element x ∈ X is called

• least-squares solution of Ax = y (more precisely the Y -best approximate solution), if

‖Ax− y‖Y = min
z∈X
‖Az − y‖Y ,

11
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• minimum-norm (or (X,Y )-best approximate) solution of Ax = y, if x is least-squares
solution and

‖x‖X = min{‖z‖X : z is least squares solution of Az = y} .

For A bijective, x = A−1y is the only minimum-norm solution. However, a minimum-norm
solution does not have to exist if R(A) is not closed. To study which y ∈ Y admit a minimum-
norm solution, we introduce an operator that maps y to the minimum-norm solution; it is called
generalised inverse or pseudoinverse.

To do this we first restrict its domain to the range of A to guarantee invertibility before extending
the domain as much as possible.

Definition 2.2.2. Let A ∈ L(X,Y ) and define

Ã := A
∣∣
N (A)⊥

: N (A)⊥ → R(A) . (2.2.2)

The Moore-Penrose (or generalised) inverse A† is the unique, linear extension of Ã−1 with

D(A†) := R(A)⊕R(A)⊥ , and (2.2.3)

N (A†) = R(A)⊥ .

Due to the restriction to N (A)⊥ and R(A) the operator Ã in (2.2.2) is bijective (cf. Appendix
A). Thus, A† is well-defined on R(A). For arbitrary y ∈ D(A†), an orthogonal decomposition
guarantees the existence of y1 ∈ R(A) and y2 ∈ R(A)⊥ such that y = y1 + y2. Finally, due to
N (A†) = R(A)⊥ we have

A†y = A†y1 +A†y2 = A†y1 = Ã−1y1 , (2.2.4)

and thus A† is well-defined on all of D(A†), defined in (2.2.3).

Theorem 2.2.3. The Moore-Penrose inverse A† satisfies R(A†) = N (A)⊥, as well as the Moore-
Penrose equations

(i) AA†A = A

(ii) A†AA† = A†

(iii) A†A = IdX − PN

(iv) AA† = (PR)
∣∣
D(A†)

where PN and PR are the orthogonal projections to N (A) and R(A), respectively. (The Moore-
Penrose equations characterise A† uniquely.)

Proof. As shown in (2.2.4), for all y ∈ D(A†), it follows that A†y ∈ R(Ã−1) = N (A)⊥, i.e..
R(A†) ⊂ N (A)⊥. Conversely, it follows from the definition of Ã that for all x ∈ N (A)⊥

A†Ax = A†Ãx = Ã−1Ãx = x,

i.e., x ∈ R(A†). Thus, R(A†) = N (A)⊥.
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Since orthogonal projections are always closed (cf. Appendix A), R(A)⊥ is closed and thus
R(PR) ∩ D(A†) = R(A). Thus, for all y ∈ D(A†)

A†y = Ã−1PRy (2.2.5)

which due to Ã−1PRy ∈ N (A)⊥ implies AA†y = PRy and thus equation (iv).
The proof of the other three Moore-Penrose equations is left as an exercise.

We will now show that the Moore-Penrose inverse provides the minimum-norm solution.

Theorem 2.2.4. Let y ∈ D(A†). Then Ax = y has a unique minimum-norm solution x† ∈ X,
which is given by

x† = A†y .

The set of all least-squares solution is x† +N (A).

Proof. Let y ∈ D(A†). To show existence of least-squares solutions consider the set

S := {z ∈ X : Az = PRy} ,

which is non-empty, since PR maps D(A†) to R(A) (cf. the discussion before (2.2.5)). Let z ∈ S.
Then, due to the optimality of the orthogonal projection

‖Az − y‖Y = ‖PRy − y‖Y = min
w∈R(A)

‖w − y‖Y ≤ ‖Ax− y‖ for all x ∈ X ,

i.e., z is least-squares solution of Ax = y. Conversely, let z ∈ X be a least squares solution. Then
it follows again from PRy ∈ R(A) that

‖PRy − y‖Y ≤ ‖Az − y‖ = min
x∈X
‖Ax− y‖Y = min

w∈R(A)
‖w − y‖Y ≤ ‖PRy − y‖Y ,

i.e., Az is the orthogonal projection of y onto R(A). In summary,

{x ∈ X : x is least squares solution of Ax = y} = S 6= ∅ .

Each element z ∈ S can be decomposed uniquely into x = x̃ + x0 with x̃ ∈ N (A)⊥ and
x0 ∈ N (A), but we have already seen in (2.2.5) that the unique solution to Az = PRy in N(A)⊥ is

x̃ = Ã−1PRy = A†y = x†.

Thus, the set of all least squares solution is x†+N (A). Finally, due to the orthogonality of x† and
x0,

‖z‖2X = ‖x† + x0‖2X = ‖x†‖2X + ‖x0‖2X ≥ ‖x†‖2X
so that x† is also the unique minimum-norm solution.

Theorem 2.2.5. Let y ∈ D(A†). Then x ∈ X is least-squares solution of Ax = y iff x satisfies the
normal equations

A∗Ax = A∗y .

If in addition x ∈ N (A)⊥, then x = x†.
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Proof. As in the previous proof, x ∈ X is least-squares solution iff Ax = PRy, which is equivalent

to Ax ∈ R(A) and Ax− y ∈ R(A)
⊥

= N (A∗). This in turn is equivalent to A∗(Ax− y) = 0. The
final part was already proved in the previous theorem.

The minimum-Norm solution x† of Ax = y is the solution and thus in particular the least-squares
solution of the normal equations with minimum norm, i.e.,

x† = (A∗A)†A∗y .

Thus, x† can be computed as the minimum-norm solution of the normal equations.
So far we have considered the generalised inverse on D(A⊥) = R(A)⊕R(A)⊥ without studying

this domain in detail. Since orthogonal complements are always closed,

D(A†) = R(A)⊕R(A)⊥ = N (A∗)⊥ ⊕N (A∗) = Y ,

i.e., D(A†) is dense in Y . Thus, D(A†) = Y iff R(A) is closed. Furthermore, for any y ∈ R(A)⊥ =
N (A†) the minimum- norm solution is x† = 0.

The central question is if R(A) is closed. If it is then A† is even bounded. Conversely, if there
exists any y ∈ R(A) \ R(A), then A† cannot be bounded.

Theorem 2.2.6. Let A ∈ L(X,Y ). Then A† ∈ L(D(A†), X) iff R(A) is closed.

Proof. We apply Theorem A.1.2, the Closed Graph Theorem, and show first that A† is closed.
Let (yn)n∈N ⊂ D(A†) be a convergent sequence with yn → y ∈ Y and A†yn → x ∈ X. From

Moore-Penrose equation (iv) and the continuity of orthogonal projections it follows that

AA†yn = PRyn → PRy ,

which due to the continuity of A implies

PRy = lim
n→∞

PRyn = lim
n→∞

AA†yn = Ax ,

i.e., x is least-squares solution. Furthermore, A†yn ∈ R(A†) = N (A)⊥ and so

A†yn → x ∈ N (A)⊥ ,

since N (A)⊥ = R(A∗) is closed. Hence, x is in fact the minimum-norm solution of Ax = y, i.e.,
x = A†y, and A† is closed.

Now let R(A) be closed. Then D(A†) = Y and Theorem A.1.2 implies that A† : Y → X is
bounded. Conversely, let A† be bounded on D(A†). In that case, since D(A†) is dense in Y , A† can

be continuously extended to an operator A† ∈ L(Y,X) by defining

A†y := lim
n→∞

A†yn for some sequence (yn)n∈N ⊂ D(A†) with yn → y ∈ Y.

Due to its continuity, A† maps Cauchy sequences to Cauchy sequences, and thus A† is well-defined
and bounded. Now let y ∈ R(A) and (yn)n∈N ⊂ R(A) with yn → y. It follows from Moore-Penrose
equation (iv) and the continuity of A that

y = PRy = lim
n→∞

PRyn = lim
n→∞

AA†yn = AA†y ∈ R(A) ,

and thus R(A) = R(A), which completes the proof.
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Unfortunately this excludes the most interesting case of a compact operator on a Hilbert space.

Lemma 2.2.7. Let K ∈ K(X,Y ), i.e., K is compact, with infinite dimensional image R(K). Then
K† is not bounded.

Proof. Suppose that K† is bounded. Then it follows from Theorem 2.2.6 that R(K) is closed and

K̃ := K
∣∣
N (K)⊥

: N (K)⊥ → R(K)

is a bijective operator with bounded inverse K̃−1 ∈ L
(
R(K),N (K)⊥

)
. Since K is compact, K◦K̃−1

is also compact. But K ◦ K̃−1 is the identity on R(K), which can only be compact iff R(K) is
finite dimensional.

2.3 Singular value decomposition of compact operators

We now use an orthonormal system to characterise the Moore-Penrose inverse of compact operators
K ∈ K(X,Y ). To do this for general non-selfadjoint operators we need to generalise the Spectral
Theorem (Thm. A.2.6). Because of Theorem 2.2.5 we can look at the selfadjoint operator K∗K
instead. This leads to the singular value decomposition (cf. again Numerik 0 for matrices).

Theorem 2.3.1. Let K ∈ K(X,Y ). Then there exists

(i) a (null) sequence (σn)n∈N with σ1 ≥ σ2 ≥ . . . > 0 and σn → 0 as n→∞,

(ii) an orthonormal basis (un)n∈N ⊂ Y of R(K), and

(iii) an orthonormal basis (vn)n∈N ⊂ X of R(K∗),

with
Kvn = σnun and K∗un = σnvn , for all n ∈ N , (2.3.1)

and
Kx =

∑
n∈N

σn〈x, vn〉Xun , for all x ∈ X . (2.3.2)

A sequence (σn, un, vn)n∈N that provides such a singular value decomposition (SVD) (2.3.2)
of K, is called singular system.

Proof. Since K∗K : X → X is compact and selfadjoint, it follows from Theorem A.2.6 that there
exists a null sequence (λn)n∈N ⊂ R \ {0} and an orthonormal system (vn)n∈N ⊂ X such that

K∗Kx =
∑
n∈N

λn〈x, vn〉Xvn for all x ∈ X .

Moreover, (vn) is an orthonormal basis (ONB) of R(K∗K).
Now, since

λn = λn‖vn‖2X = 〈λnvn, vn〉X = 〈K∗Kvn, vn〉X = ‖Kvn‖2X > 0 ,

we can define for all n ∈ N

σn :=
√
λn > 0 and un :=

1

σn
Kvn ∈ Y

15

[Draft of October 6, 2021. Not for dissemination.]



so that (σn) is a strictly positive null sequence and the first equation in (2.3.1) is satisfied. Moreover,

〈ui, uj〉Y =
1

σiσj
〈Kvi,Kvj〉Y =

1

σiσj
〈K∗Kvi, vj〉X =

λi
σiσj
〈vi, vj〉X =

{
1 , if i = j,

0 , otherwise,

and thus (un)n∈N is an orthonormal system in Y . Furthermore, for all n ∈ N,

K∗un = σ−1
n K∗Kvn = σ−1

n λnvn = σnvn ,

i.e., the second equation in (2.3.1) holds.
To show that (vn) ⊂ X is not only an ONB of R(K∗K) but also of R(K∗), it suffices to show

that R(K∗) ⊂ R(K∗K). Let x ∈ R(K∗). For any ε > 0, there exists a

y ∈ N (K∗)⊥ = R(K) with ‖K∗y − x‖X <
ε

2
and x̃ ∈ X with ‖Kx̃− y‖ < ε

2
‖K‖−1

L(X,Y ) ,

such that
‖K∗Kx̃− x‖X ≤ ‖K∗Kx̃−K∗y‖X + ‖K∗y − x‖X < ε

and thus x ∈ R(K∗K).
To prove the SVD (2.3.2) consider first an arbitrary x̃ ∈ N (K)⊥ and

x̃N :=
N∑
j=1

〈x̃, vj〉Xvj ,

i.e., the partial basis representation of x̃ with respect to the ONB (vn) of R(K∗) = N (K)⊥. Clearly

Kx̃N =

N∑
j=1

〈x̃, vj〉XKvj =

N∑
j=1

σj〈x̃, vj〉Xuj .

Since x̃N → x̃ and K is bounded,

Kx̃ = lim
N→∞

Kx̃N =

∞∑
j=1

σj〈x̃, vj〉Xuj . (2.3.3)

Now, let x ∈ X be arbitrary. Then, there exist unique x̃ ∈ N (K)⊥, x0 ∈ N (K) such that x = x̃+x0

and
σj〈x, vj〉X = 〈x,K∗uj〉X = 〈Kx, uj〉Y = 〈Kx̃, uj〉Y = σj〈x̃, vj〉X

Substituting this into (2.3.3) and using the fact that Kx = Kx̃ leads to the SVD (2.3.2).

Finally, to show that (un) ⊂ Y is an ONB of R(K) let y ∈ R(K) be arbitrary. Then, there
exists a sequence (xn) ⊂ X such that

y = lim
n→∞

Kxn = lim
n→∞

∞∑
j=1

〈Kxn, uj〉Y uj =

∞∑
j=1

〈y, uj〉Y uj and ‖y‖2Y =

∞∑
j=1

|〈y, uj〉Y |2 .

This implies that (un)n∈N ⊂ Y is an ONB of R(K).
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Since eigenvalues λn of K∗K with eigenvector vn are eigenvalues of KK∗ with eigenvector un
as well, (2.3.1) also provides a SVD of K∗:

K∗y =
∑
n∈N

σn〈y, un〉Y vn for all y ∈ Y .

We will now use the SVD of K to characterise the domain D(K†) = R(K) ⊕ R(K)⊥ of the
Moore-Penrose inverse K†. Recall that minimum-norm solution for y ∈ R(K)⊥ = N (K∗) is x† = 0,
and conversely N (K∗)⊥ = R(K). Thus, the crucial question is whether an element y ∈ R(K) also
lies in R(K).

Theorem 2.3.2. Let K ∈ K(X,Y ) with singular system (σn, un, vn)n∈N and y ∈ R(K). Then,
y ∈ R(K) iff the Picard-condition ∑

n∈N
σ−2
n |〈y, un〉Y |2 <∞ (2.3.4)

is satisfied. In this case

K†y =
∑
n∈N

σ−1
n 〈y, un〉Y vn . (2.3.5)

Proof. First let y ∈ R(K), i.e. there exists a x ∈ X with Kx = y. Then, using Bessel’s inequality∑
n∈N

σ−2
n |〈y, un〉Y |2 =

∑
n∈N

σ−2
n |〈x,K∗un〉X |2 =

∑
n∈N
|〈x, vn〉X |2 ≤ ‖x‖2X <∞ .

To show the reverse implication, let y ∈ R(K) and suppose that (2.3.4) holds. Then, the
sequence (sN )N∈N of partial sums sN :=

∑N
n=1 σ

−2
n |〈y, un〉Y |2 is a Cauchy sequence and thus

(xN )N∈N with xN :=
N∑
n=1

σ−1
n 〈y, un〉Y vn

is also a Cauchy sequence. In other words,

‖xN − xM‖2X = ‖
M∑
n=N

σ−1
n 〈y, un〉Y vn‖2X =

M∑
n=N

|σ−1
n 〈y, un〉Y |2 → 0 ,

where we used that (vn)n∈N is an orthonormal system in R(K∗). Thus, (xN )N∈N ⊂ R(K∗) con-
verges to

x :=
∑
n∈N

σ−1
n 〈y, un〉Y vn ∈ R(K∗) = N (K)⊥

(since R(K∗) is closed). Now,

Kx =
∑
n∈N

σ−1
n 〈y, un〉YKvn =

∑
n∈N
〈y, un〉Y un = PR(K)

y = y ,

so that y ∈ R(K).
However, due to Theorem 2.2.4, x ∈ N (K)⊥ and Kx = PR(K)

y is equivalent to K†y = x.
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The Picard-condition states that a minimum-Norm solution exists only if the coefficients 〈y, un〉Y
of y with respect to the ONB (un) decay faster than the singular values σn. The representation
shows clearly how perturbations of y will affect x†: In particular, if yδ = y + δun then

‖K†yδ −K†y‖X = δ‖K†un‖X = σ−1
n δ →∞ for n→∞ .

Therefore, the faster the singular values decay the more data errors are amplified for a fixed n. We
call a problem

• moderately ill-posed, if there are c, r > 0 such that σn ≥ cn−r for all n ∈ N,

• severely ill-posed, if this is not the case, and

• exponentially ill-posed. If there are c, r > 0 such that σn ≤ cen
−r

for all n ∈ N.

For exponentially ill-posed problems, such as the inverse heat equation in Section 1.1, we can
typically expect only very crude estimates for the solution. However, if R(K) is finite dimensional,
the sequence (σn) truncates at a finite N , i.e. σn = 0 for n > N and the error remains bounded; in
this case K† is bounded.

In practice, infinite dimensional problems typically need to be discretised. In general, integral
equations or differential equations can not be solved explicitly like the simple one-dimensional
inverse heat equation in Section 1.1. So strictly speaking, in practice we will always solve finite
dimensional inverse problems. But as highlighted already in Section 2.1, the problem will be
asymptotically ill-posed as the discretisation parameter h → 0, and so we need to find a way to
deal with this ill-posedness in a more uniform way, independently of h. One way to achieve this is
via regularisation which we will now discuss in the linear case in the remainder of this chapter.
The other is to apply a statistical (Bayesian) approach, which we will return to in Chapter 4.

2.4 Regularisation

We have seen that for y ∈ D(A†) the minimum-norm solution x† = A†y of the ill-posed operator
equation Ax = y exists. Now consider, as in Section 2.1, the situation where y is known only up to
the measurement (or representation) error δ (the noise level), i.e. we only know yδ with

‖yδ − y‖Y ≤ δ .

Since A† is in general not bounded, A†yδ will normally be a bad approximation to x†, even if
yδ ∈ D(A†). Thus, in a regularisation method we will typically aim to find an approximation
xδα, that depends on the one hand continuously on yδ and thus on δ, and on the other hand can
be selected as close to x† as the noise level δ allows by a judicious choice of the regularisation
parameter α > 0. In particular, the choice of α(δ) should guarantee that xδα(δ) → x† as δ → 0.

In the case of a linear operator on a Hilbert space this can be achieved by defining a family of
regularisation operators that provide bounded replacements of the unbounded pseudoinverse A†.

Definition 2.4.1. Let X,Y be two Hilbert spaces and A ∈ L(X,Y ) a bounded, linear operator.

A family (A†α)α>0 of linear operators A†α : Y → X is called a regularisation of A† for α > 0 if

(i) A†α ∈ L(Y,X) for all α > 0,

(ii) A†αy → A†y for all y ∈ D(A†), as α→ 0.
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Thus, a regularisation is a pointwise approximation of the Moore-Penrose inverse by a sequence
of bounded, linear operators. Since A† is in general not bounded, it follows from Theorem A.1.4
(Banach-Steinhaus) that the convergence will in general not be uniform.

Theorem 2.4.2. Let A ∈ L(X,Y ) and (A†α)α>0 ⊂ L(Y,X) a regularisation. If A† is unbounded

then the family (A†α)α>0 is not uniformly bounded. In particular, there exists a y ∈ Y such that

‖A†αy‖X →∞ as α→ 0.

In fact, by adding an additional condition we can show divergence for all y /∈ D(A†).

Theorem 2.4.3. Let A ∈ L(X,Y ) with A† unbounded and (A†α)α>0 ⊂ L(Y,X) a regularisation. If

sup
α>0
‖AA†α‖L(Y,Y ) <∞ , (2.4.1)

then ‖A†αy‖X →∞ as α→ 0 for all y /∈ D(y†).

Since in general yδ 6∈ D(A†), to analyse the total error we decompose it as

‖A†αyδ −A†y‖X ≤ ‖A†αyδ −A†αy‖X + ‖A†αy −A†y‖X

≤ δ‖A†α‖L(Y,X) + ‖A†αy −A†y‖X . (2.4.2)

This decomposition is a fundamental tool of regularisation theory that will be used throughout.
The first term represents the (propagated) data error that remains unbounded for α → 0 while
δ > 0. The second term is the regularisation error that due to the pointwise convergence of
A†α converges to zero as α → 0. Thus, to obtain a meaningful approximation, the regularisation
parameter α has to be chosen correctly as a function of δ, in particular such that the total error
converges to zero as δ → 0.

2.4.1 Parameter choice

Definition 2.4.4. A function α : R+ × Y → R+, (δ, y
δ) 7→ α(δ, yδ) is called parameter choice

rule. A regularisation (A†α)α>0 ⊂ L(Y,X) of A† together with a parameter choice rule α is called

a regularisation method of (2.2.1). The regularisation method (A†α, α) is called convergent if

lim sup
δ→0

{‖A†
α(δ,yδ)

yδ −A†y‖X : yδ ∈ Y, ‖yδ − y‖Y ≤ δ} = 0 , for all y ∈ D(A†) . (2.4.3)

We distinguish between

• a priori parameter choice rules that only depend on δ;

• a posterior parameter choice rules that depend on δ and yδ;

• heuristic rules that only depend on yδ.

It can be shown that for all regularisations there exists an a priori rule and thus a conver-
gent regularisation method. Furthermore, the following characterisation of a priori rules leads to
convergent regularisation methods.

Theorem 2.4.5. Let (A†α)α>0 be a regularisation and α : R+ → R+ an a-priori rule with
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(i) limδ→0 α(δ) = 0,

(ii) limδ→0 δ‖A†α(δ)‖L(Y,X) = 0.

Then (A†α, α) is a convergent regularisation method.

Proof. Due to the decomposition (2.4.2) it follows that

‖A†α(δ)y
δ −A†y‖X ≤ δ‖A†α(δ)‖L(X,Y ) + ‖A†α(δ)y −A

†y‖X → 0 as δ → 0,

where we have used (ii) and the pointwise convergence of the regularisation operators under con-
dition (i).

Let y ∈ D(A†) and yδ ∈ Y with cδ ≤ ‖yδ − y‖Y ≤ δ for some 0 < c ≤ 1. The main idea of

a-posteriori rules can be described as follows: for xδα := A†αyδ we consider the residual

‖Axδα − yδ‖Y .

Even for y ∈ R(A) and the minimum-norm solution Ax† = y we only have

‖Ax† − yδ‖Y = ‖y − yδ‖Y ≥ cδ .

Thus, it makes no sense to expect a smaller residual for the approximation xδα. This motivates:

Definition 2.4.6 (Discrepancy Principle of Morozov). Given δ > 0 and yδ, choose α = α(δ, yδ)
such that

‖Axδα − yδ‖Y ≤ τδ for some τ > 1 . (2.4.4)

This principle does not have to be satisfied: if y ∈ D(A†) such that y = Ax+y⊥ for some x ∈ X
and 0 6= y⊥ ∈ R(A)⊥ and δ < 1

2‖y
⊥‖Y , then even for exact data yδ = y,

‖Ax† − y‖Y = ‖AA†y − y‖Y = ‖PR(A)
y − y‖Y = ‖y⊥‖Y > 2δ .

Thus, we have to assume that this is not possible. It suffices to assume that R(A) is dense in Y ,
since in that case R(A)⊥ = {0}.

A practical approach to implement such an a posteriori rule is to choose a null sequence (αn)n∈N,
to successively calculate xδαn for n = 1, . . . and to terminate the iteration as soon as the discrepancy
principle (2.4.4) is satisfied. The following theorem justifies this approach.

Theorem 2.4.7. Let (A†α)α>0 be a regularisation of A ∈ L(X,Y ) with R(A) dense in Y , and

suppose that the family (AA†α)α>0 is uniformly bounded. Consider a strictly monotonic null sequence
(αn)n∈N and τ > 1. Then for all y ∈ D(A†) and yδ ∈ Y with ‖y − yδ‖Y ≤ δ there exists n∗ ∈ N
such that

‖Axδαn∗ − y
δ‖Y ≤ τδ < ‖Axδαn − y

δ‖Y for all n < n∗ .

Proof. For all y ∈ D(A†), AA†αy converges pointwise to AA†y = PRy. Thus, due to the uniform

boundedness of (AA†α)α>0 this convergence extends to all y ∈ Y = D(A†). This implies for all
y ∈ D(A†) = R(A) and yδ ∈ Y with ‖yδ − y‖Y ≤ δ that

lim
n→∞

‖Axδαn − y
δ‖Y = lim

n→∞
‖AA†αny

δ − yδ‖Y

= ‖PRy
δ − yδ‖Y = min

z∈R(A)
‖z − yδ‖Y ≤ ‖y − yδ‖Y ≤ δ .

The existence of an n∗ ∈ N then follows directly, since τ > 1.
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Heuristic rules do not even assume any knowledge of the noise level δ, which is highly relevant
in practice, since often it is hard or impossible to estimate δ accurately. However, such a strategy
cannot work in general, as the following important result (called the “Bakushinskii veto”) shows.

Theorem 2.4.8 (Bakushinskii, 1985). Let (A†α)α>0 be a regularisation. If there exists a heuristic

parameter choice rule α 6= α(δ) such that (A†α, α) is a convergent regularisation method, then A† is
bounded.

2.4.2 Convergence rates

We will only give a very general discussion here and refer to the references given at the start of the
notes for details.2

A central question in the regularisation of inverse problems is the derivation of error bounds of
the form

‖A†
α(δ,yδ)

yδ −A†y‖ ≤ φ(δ)

for some function φ : R+ → R+ with limt→0 φ(t) = 0 that is independent of y. We are interested
in particular in the worst case error

e(y, δ) := sup{‖A†
α(δ,yδ)

yδ −A†y‖X : yδ ∈ Y with ‖y − yδ‖Y ≤ δ} . (2.4.5)

This would allow us to provide a priori error bounds for the regularisation method. However,
without any further assumptions on y or on x† = A†y this hope is futile.

Theorem 2.4.9. Let (A†α, α) be a convergent regularisation method. If there exists a function
φ : R+ → R+ with limt→0 φ(t) = 0 and

sup
y∈D(A†) s.t. ‖y‖Y ≤1

e(y, δ) ≤ φ(δ) , (2.4.6)

then A† is bounded.

Proof. Let y ∈ D(A†) with ‖y‖Y ≤ 1 and (yn)n ⊂ D(A†) with ‖yn‖Y ≤ 1 a sequence satisfying
yn → y as n→∞. With δn := ‖y − yn‖Y → 0 it then follows that

‖A†yn −A†y‖X ≤ ‖A†yn −A†α(δn,yn)yn‖X + ‖A†α(δn,yn)yn −A
†y‖X

≤ e(yn, δn) + e(y, δn) ≤ 2φ(δn)

and thus, A† is bounded on D(A†) ∩ BY . Since A† is linear the boundedness extends to all of
D(A†).

Thus the convergence can be arbitrarily slow without further assumptions on y or on x†. For
compact operators K ∈ K(X,Y ) (which are smoothing operators), this can be achieved via an
abstract smoothness condition on x†, called a source condition, namely that

x† ∈ R(|K|ν), for some ν > 0,

2Note that this is also one of the central research questions in Prof. Jan Johannes’ group and the topic of specialist
seminars offered by him and his group.
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where |K|νx :=
∑

n∈N σ
ν
n〈x, vn〉Xvn, using the singular system (σn, un, vn) of K. This is in fact

equivalent to a strengthened Picard-condition∑
n∈N

σ−2(ν+1)
n |〈y, un〉Y |2 <∞ ,

i.e. a faster decay of the coefficients of y (or equivalently of Kx†) with respect to (un) than necessary
to purely guarantee the existence of x† (as in Theorem 2.3.2).

Under this condition, it can be shown that the convergence rate as δ → 0 for the total error (with
respect to δ) is bounded below by ν

ν+1 for any regularisation method. A regularisation method is

called order-optimal for ν > 0, if for all x† ∈ R(|K|ν) there exists a constant c = c(x†) > 0 such
that

e(Kx†, δ) ≤ c δ
ν
ν+1 .

2.5 Construction of regularisation methods

Let us now consider the construction of regularisation methods for linear ill-posed problems. We
focus on compact operators K ∈ K(X,Y ) and recall that stability issues with the Moore-Penrose
inverse arose from error amplification through small singular values. Therefore, we aim to construct
regularisation methods in such a way that they modify the smallest singular values appropriately.

Thus, recall the SVD of K† with respect to the singular system (σn, un, vn)n∈N of K. It suggests
to construct regularisation operators of the form

K†αy :=
∞∑
n=1

gα(σn)〈y, un〉Y vn for y ∈ Y ,

with a suitable function gα : R+ → R+ that satisfies gα(σ) → 1
σ for all σ > 0 as α → 0. We will

see that (K†α)α≥0 is a regularisation if

gα(σ) ≤ Cα <∞ , for all σ > 0 . (2.5.1)

Note that (2.5.1) implies

‖K†αy‖2X =
∞∑
n=1

(gα(σn))2|〈y, un〉Y |2 ≤ C2
α

∞∑
n=1

|〈y, un〉Y |2 ≤ C2
α‖y‖2Y ,

i.e. Cα is a bound for the norm of K†α . Moreover, the condition limδ→0 δ‖K†α(δ)‖L(Y,X) = 0 can be
replaced by

lim
δ→0

δCα(δ) = 0 .

Before proving that such a construction leads to a convergent regularisation method, we illus-
trate the idea on some examples.
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Example 2.5.1 (Truncated SVD). Here, all singular values smaller than a prescribed value
(controlled by α) are ignored (i.e. set to 0). We choose

gα(σ) :=

{
1
σ , if σ ≥ α,
0 , otherwise.

(2.5.2)

Clearly, gα(σ)→ 1
σ as α→ 0 and Cα = 1

α . Thus, this regularisation with a-priori parameter choice

rule leads to a convergent regularisation method provided δ
α → 0. Furthermore, supσ,α σgα(σ) = 1.

The regularised solution is

xδα := K†αy
δ =

∑
σn≥α

1

σn
〈yδ, un〉Y vn , for yδ ∈ Y ,

motivating the name of the method. The sum in xδα is always finite for α > 0, since zero is the only
accumulation point of the sequence (σn).

Example 2.5.2 (Lavrentiev Regularisation). Here, all singular values are shifted away from
zero by α, i.e. gα(σ) = 1

σ+α , and

xδα := K†αy
δ =

∞∑
n=1

1

σn + α
〈yδ, un〉Y vn , for yδ ∈ Y ,

As in Example 2.5.1, the computation of this approximation requires an explicit knowledge of the
singular system (σn, un, vn)n∈N of K, which is not very useful in practice. However, for selfadjoint,
positive semidefinite operators K (i.e. Y = X, λn = σn and un = vn) we have

(K + αI)xδα =

∞∑
n=1

(σn + α)〈xδα, un〉Xun =

∞∑
n=1

〈yδ, un〉Y un = yδ

and the regularised solution can be found without explicit knowledge of the singular system of K
by solving

(K + αI)xδα = yδ .

Since 1
σ+α ≤

1
α , we have again Cα = 1

α . Furthermore, gα(σ)→ 1
σ as α→ 0 and σgα(σ) < 1.

Example 2.5.3 (Tikhonov Regularisation). Here

gα(σ) =
σ

σ2 + α
,

such that

xδα := K†αy
δ =

∞∑
n=1

σn
σ2
n + α

〈yδ, un〉Y vn , for yδ ∈ Y .

Since σ2+α ≥ 2σ
√
α, we can choose Cα = 1

2
√
α

. Thus, a necessary condition for convergence with a-

priori parameter rule is δ√
α
→ 0. Furthermore, again gα(σ)→ 1

σ as α→ 0 and σgα(σ) = σ2

σ2+α
< 1.

As in Example 2.5.2, xδα can be computed without explicit knowledge of the singular system,
however, in this case for arbitrary K ∈ K(X,Y ). In particular,

(K∗K + αI)xδα = K∗yδ , (2.5.3)

a well-posed linear system for α > 0. Tikhonov regularisation is in fact equivalent to Lavrentiev
regularisation applied to the normal equations.
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Example 2.5.4 (Landweber Iteration). For ω > 0, consider the fixed point iteration

x0 = 0 and xk+1 = xk + ωK∗(yδ −Kxk) , for k ≥ 0,

to compute regularised solutions xk of Kx = yδ. The associated family of regularisation operators
(K†k)k∈N satisfies K†ky

δ = xk. Using the SVD of K and K∗ we get

∞∑
j=1

〈xk+1, vj〉Xvj =

∞∑
j=1

(
(1− ωσ2

j )〈xk, vj〉X + ωσj〈yδ, uj〉Y
)
vj

and due to orthogonality

〈xk+1, vj〉X = (1− ωσ2
j )〈xk, vj〉X + ωσj〈yδ, uj〉Y .

Since x0 = 0, we get

〈xk, vj〉X = ωσj〈yδ, uj〉Y
k∑
i=1

(1− ωσ2
j )
k−i =

1− (1− ωσ2
j )
k

σj
〈yδ, uj〉Y .

Now we interpret the iteration number as the regularisation parameter and set α := 1/k, so that

xδα = K†αy
δ =

∞∑
j=1

1− (1− ωσ2
j )

1
α

σj
〈yδ, uj〉Y ,

i.e. gα(σ) = (1− (1− ωσ2)
1
α ) 1

σ . This function converges to 1
σ as α→ 0 provided |1− ωσ2| < 1. A

sufficient condition for σ ∈ {σn} is

0 < ω < 2‖K‖−2
L(X,Y ) .

Since gα is continuous and limσ→0 gα(σ) = 0, it is also bounded and σgα(σ) < 1 for any α > 0.

Under the stated conditions on gα(σ), we can now prove the convergence of all the above
regularisation methods with parameter choice rule α = α(δ, yδ) satisfying limδ→0 δCα(δ,yδ) = 0.

Theorem 2.5.5. Let gα : R+ → R+ be a piecewise continuous function such that gα(σ) → 1
σ for

σ > 0 as α → 0, and suppose that there exist a constant Cα > 0 depending on α and a constant
γ > 0 independent of α such that

σgα(σ) ≤ γ and gα(σ) ≤ Cα <∞ for all σ, α > 0 .

Consider (2.1.1) with A = K ∈ K(X,Y ), y ∈ D(K†) and perturbed data yδ ∈ Y with ‖y−yδ‖Y ≤ δ.

Then the regularisation method (K†α, α) with

K†αy :=
∞∑
n=1

gα(σn)〈y, un〉Y vn , for y ∈ Y ,

and parameter choice rule α = α(δ, yδ) converges provided

Cα(δ,yδ)δ → 0 as δ → 0 .
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Proof. To show convergence we bound again the two terms in the decomposition (2.4.2).

First to show that K†α → K† on D(K†) let y ∈ D(K†). Then,

K†αy −K†y =
∞∑
n=1

(gα(σn)− 1

σn
)〈y, un〉Y vn =

∞∑
n=1

(σngα(σn)− 1)〈x†, vn〉Xvn .

Due to the assumptions on gα, the coefficients in the above expansion satisfy

|(σngα(σn)− 1)〈x†, vn〉X | ≤ (γ + 1)|〈x†, vn〉X | ,

i.e. the sequence is bounded, and thus

lim sup
α→0

‖K†αy −K†y‖2X ≤ lim sup
α→0

∞∑
n=1

|σngα(σn)− 1|2|〈x†, vn〉X |2

≤
∞∑
n=1

( lim
α→0
|σngα(σn))− 1|2|〈x†, vn〉X |2 = 0 ,

since σgα(σ)→ 1 pointwise. Thus, ‖K†αy −K†y‖X → 0 for α→ 0, independently of δ.
To bound the propagated data error, note that, for all α, δ > 0,

‖K†αy −K†αyδ‖2X ≤
∞∑
n=1

gα(σn)2|〈y − yδ, un〉Y |2

≤ C2
α

∞∑
n=1

|〈y − yδ, un〉Y |2 ≤ C2
α‖y − yδ‖2Y ≤ (Cαδ)

2 .

Thus, under the condition on the limit of δCα(δ,yδ) for the parameter choice rule α(δ, yδ), this term
also converges with δ → 0 and the proof is complete.

Remark 2.5.6. The bound
‖K†αy −K†αyδ‖X ≤ Cαδ

in the proof suggests that the propagated data error is of order δ. However, this is not true since Cα
depends on δ and will in general grow with δ → 0. However, since we required that Cα(δ,yδ)δ → 0
as δ → 0, Cα grows slower than δ decreases such that Cαδ will be of order δν for some 0 < ν < 1.

2.6 Variational regularisation and extensions

The solution of the Tikhonov regularised linear system (2.5.3) is equivalent to minimising the
following quadratic functional

K†αy
δ := arg min

x∈X

{
1

2
‖Kx− yδ‖2Y +

α

2
‖x‖2X

}
. (2.6.1)

This is how Tikhonov regularisation is typically introduced. In this variational setting, it is easier
to generalise to other regularising functionals and to nonlinear inverse problems.
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Indeed, if Φ(x) := 1
2‖Kx− y

δ‖2Y + α
2 ‖x‖

2
X , the first-order optimality condition for a minimiser

x∗ ∈ X of Φ is equivalent to setting d
dtΦ(x∗ + th)

∣∣
t=0

= 0 for arbitrary h ∈ X with ‖h‖X = 1.
Expanding, we get

Φ(x+ th) =
1

2

〈
K(x+ th)− yδ,K(x+ th)− yδ

〉
Y

+
α

2
〈x+ th, x+ th〉X

= Φ(x) + t
(
〈Kx− yδ,Kh〉Y + α〈x, h〉X

)
+
t2

2

(
‖Kh‖2Y + α‖h‖2X

)
and thus

0 =
d

dt
Φ(x∗ + th)|t=0 = 〈Kx∗ − yδ,Kh〉Y + α〈x∗, h〉X = 〈K∗(Kx∗ − yδ) + αx∗, h〉X ,

which is equivalent to x∗ being the solution of (2.5.3), since h ∈ X with ‖h‖X = 1 was arbitrary.
Let J : X → R be a functional on X, then generalised Tikhonov regularisation seeks the

regularised solution as the minimum of

Φα,yδ(x) :=
1

2
‖Kx− yδ‖2Y +

α

2
J(x) .

Example 2.6.1 (Tikhonov-Philipps Regularisation). A simple generalisation of the classi-
cal Tikhonov regularisation consists in simply replacing 1

2‖x‖X by 1
2‖Dx‖Z for some linear (not

necessarily bounded) operator D : X → Z from X to some Hilbert space Z. Then minimising

Φα,yδ(x) :=
1

2
‖Kx− yδ‖2Y +

α

2
‖Dx‖2Z ,

constitutes the so-called Tikhonov-Philipps regularisation. It allows to penalise certain properties
of x through a suitable choice of D. In image processing, a typical choice for D is the gradient
operator, i.e. the regularisation functional J is chosen to be the square of the H1-seminorm. This
penalises only variations in x, but not the size of x.

Example 2.6.2. (l1-Regularisation) For non-injective operators K ∈ L(l1, l2) on sequence
spaces, a popular choice for J is the l1-norm which is suitable to enforce sparsity in the regu-
larised solution, i.e.,

Φα,yδ(x) :=
1

2
‖Kx− yδ‖2Y + α

∞∑
j=1

|xj | .

As mentioned above, in variational form, Tikhonov regularisation can also easily be generalised
to nonlinear inverse problems

F (x) = y , (2.6.2)

where F : D(F ) ⊂ X → Y is a nonlinear bounded operator with domain D(F ) between two Hilbert
spaces X and Y .

Definition 2.6.3. Let x ∈ D(F ). The nonlinear equation (2.6.2) is called locally ill-posed in x,
if for every r > 0 there exists a sequence (xn)n∈N ⊂ Br(x) ⊂ D(F ) such that

F (xn)→ F (x) , but xn 9 x .

Otherwise (2.6.2) is called locally well-posed in x.
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For nonlinear problems, the classical Tikhonov regularisation computes a regularised approxi-
mation xδα of x by minimising the functional

Φα,yδ(x) :=
1

2
‖F (x)− yδ‖2Y +

α

2
‖x‖2X . (2.6.3)

Under certain conditions on the nonlinear operator F it can again be shown that together with an
a priori parameter choice rule α = α(δ) such that

α(δ)→ 0 and
δ2

α(δ)
→ 0 as δ → 0 ,

(2.6.3) provides a convergent regularisation method for (2.6.2). As in the linear case, the regulari-
sation functional ‖ ·‖2X can again be replaced by another functional J : X → R that penalises other
features in the solution x.

For more details on regularisation for nonlinear inverse problems see, e.g., [Engl, Hanke, Neubauer,
Regularization of Inverse Problems, Kluwer, 2000] or [Rieder, Keine Probleme mit Inversen Prob-
lemen, Kluwer, 2003].

27

[Draft of October 6, 2021. Not for dissemination.]



Chapter 3

Basic Concepts of Probability Theory

Bertrand’s paradox from Exercise sheet 0 shows that one must be careful when introducing the
notion of “randomness”. In this chapter, among others we formally introduce probability spaces,
random variables and most importantly conditional expectations and probabilities. In uncertainty
quantification and inverse problems for partial differential equations, we often deal with quantities of
interest or random objects belonging to a Sobolev space. For this reason, throughout we concentrate
on random variables taking values in separable Banach spaces. For such random variables we will
show the existence of so-called “regular conditional distributions”, which allows to consider a version
of Bayes’ theorem in this setting.

Proofs for the stated results on probability theory that are not given in this chapter, can be
found in the book “Wahrscheinlichkeitstheorie” by Achim Klenke.

3.1 Measure spaces

3.1.1 σ-algebras

In the following Ω denotes a set, interpreted as the collection of all “elementary events”. We write
2Ω for its power set (the set of all subsets of Ω). A σ-algebra is a specific subset of 2Ω, on which
we will be able to define measures. For A ⊆ Ω we denote its complement by Ac := Ω\A.

Definition 3.1.1 (σ-algebra). We call A ⊆ 2Ω a σ-algebra iff

(i) Ω ∈ A,

(ii) A ∈ A implies Ac ∈ A,

(iii) Ai ∈ A for all i ∈ N implies
⋃
i∈NAi ∈ A.

Definition 3.1.2. For Ω 6= ∅ and a σ-algebra A on Ω, the tuple (Ω,A) is called a measurable
space. A subset A ⊆ Ω is called measurable iff it belongs to A.

Remark 3.1.3. Note that (i) and (ii) imply Ωc = ∅ ∈ A and (iii) and (ii) imply (
⋃
i∈NAi)

c =⋂
i∈NA

c
i ∈ A. In particular

⋂
i∈NAi ∈ A whenever Ai ∈ A for all i ∈ N.

Recall that (Ω, T ) is called a topological space, if T ⊆ 2Ω is a topology on Ω, i.e. T is the
collection of all “open sets” and satisfies that
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(i) ∅, Ω ∈ T

(ii)
⋂N
j=1Oj ∈ T ,

(iii)
⋃
j∈I Oj ∈ T ,

whenever O1, . . . , ON and (Oj)j∈I belong to T . Here I is an arbitrary index set and need not
be countable. On a topological space we can define the Borel σ-algebra, which is the σ-algebra
generated by the open sets. To introduce it, we need the following result:

Proposition 3.1.4. Let E ⊆ 2Ω be nonempty. Then

σ(E) :=
⋂

A is a σ-algebra s.t. E⊆A
A (3.1.1)

defines a σ-algebra called the σ-algebra generated by E.

Proof. The intersection in (3.1.1) is not empty since 2Ω is a σ-algebra containing E . Let (Ai)i∈I be
a family of σ-algebras (I is not necessarily countable). Then it is simple to check that

⋂
i∈I Ai (by

which we mean {A ⊆ Ω : A ∈ Ai ∀i ∈ I}) is again a σ-algebra (by verifying each item in Def. 3.1.1
for this intersection). Hence (3.1.1) defines a σ-algebra containing E .

Evidently σ(E) is the smallest σ-algebra containing E .

Definition 3.1.5 (Borel σ-algebra). For a topological space (Ω, T ) we call σ(T ) the Borel σ-algebra
and denote it by B(Ω).

In case there is no confusion about the topology, we simply say that “B is the Borel σ-algebra
on Ω”. In case of Ω being an open or closed subset of Rd, the “Borel σ-algebra on Ω” is always
understood w.r.t. the Euclidean topology on Rd.
Remark 3.1.6. There exist sets A ⊆ Rd which do not belong to B(Rd), i.e. B(Rd) 6= 2R

d
.

Since complements of open sets are closed (and closed sets are in general not open), the Eu-
clidean topology on Rd is not a σ-algebra. Furthermore:

Exercise 3.1.7. Use Rmk. 3.1.6 to show that B(Rd) is not a topology.

3.1.2 Measures

We are now in position to introduce measures. These are functions assigning nonnegative numbers
to each set in A:

Definition 3.1.8 (measure). Let A be a σ-algebra on Ω 6= ∅. A function µ : A → [0,∞] is called
a measure iff

(i) µ(∅) = 0,

(ii) if Ai ∈ A for all i ∈ N and Ai ∩Aj = ∅ for all i 6= j then

µ
( ⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai).
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A measure is called σ-finite if there exist (Aj)j∈N ∈ A such that Ω =
⋃
j∈I Aj and µ(Aj) <∞

for all j ∈ N. A measure µ with µ(Ω) = 1 is called a probability measure.

Definition 3.1.9. For a set Ω 6= ∅, a σ-algebra A on Ω and a measure µ on A we call the triple
(Ω,A, µ) a measure space. If P is a probability measure on (Ω,A), we call (Ω,A,P) a probability
space.

Example 3.1.10. Let Ω = {ω1, . . . , ωn} be a finite set and let 0 ≤ pj ≤ 1 for j = 1, . . . , N such

that
∑N

j=1 pj = 1. Set A := 2Ω. Then µ(A) :=
∑

ωj∈A pj defines a probability measure on (Ω,A).

Example 3.1.11. Let f : Rn → R be nonnegative and integrable with
∫
Rn f(x) dx = 1. Then

µ(A) :=

∫
A
f(x) dx (3.1.2)

defines a probability measure on (Rn,B).

The following theorem is often useful, as it allows to check for equality of two measures:

Theorem 3.1.12. Let (Ω,A, µ) be a σ-finite measure space. Let E ⊆ 2Ω satisfy A ∩B ∈ E for all
A, B ∈ E as well as σ(E) = A. If there exists a sequence (En)n∈N with Ω =

⋃
n∈NEn, En ⊆ En+1

and µ(En) <∞ for all n, then µ is uniquely defined through µ(E) for all E ∈ E.

3.1.3 Product measures

For measurable spaces (Ωj ,Aj)nj=1 the σ-algebra

⊗nj=1Aj := σ({×nj=1Aj : Aj ∈ Aj ∀j})

is called the product σ-algebra on the space ×nj=1Ωj .

Theorem 3.1.13. Let (Ωj ,Aj , µj) for j = 1, . . . , n be a family of σ-finite measure spaces. Then
there exists a unique measure µ on (×nj=1Ωj ,⊗nj=1Aj) such that

µ(×nj=1Aj) =
n∏
j=1

µj(Aj) ∀Aj ∈ Aj .

We call µ the product measure and use the notation µ = ⊗nj=1µj.

The product measure can also be constructed for n = ∞: Consider the σ-algebra A := σ(E)
generated by the cylindrical sets

E := {×j∈NAj : Aj ∈ B(R)}.

Suppose that (µj)j∈N is a family of probability measures on R. Then there is a unique measure µ
on (RN,A) satisfying

µ(×nj=1Aj××i∈NR) =

n∏
j=1

µj(Aj).
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One of the most important measures is the Lebesgue measure on the measurable space (R,B),
which satisfies

λ1((a, b]) = b− a ∀b > a. (3.1.3)

Note that since E = {(a, b] : a < b} generates B(R), i.e. σ(E) = B(R), Thm. 3.1.12 implies that the
Lebesgue measure is unique. Furthermore, by Thm. 3.1.13 there is a unique measure λd = ⊗dj=1λ

on (Rd,⊗dj=1B(R)) with the property

λd(×dj=1(aj , bj ]) =

d∏
j=1

(bj − aj) ∀aj < bj ,

which is again called the Lebesgue measure. Whenever d is clear from the context, we drop the
index and simply write λ instead of λd. We also mention that ⊗dj=1B(R) = B(Rd) (exercise).

3.2 Integration in Banach spaces

Let V denote a Banach space over the field R (most results are easily generalized to Banach spaces
over C). In this section, we discuss integrals of the type

∫
Ω f(ω) dµ(ω), where µ is a σ-finite measure

on the measurable space (Ω,A) and f maps from Ω to the Banach space V .
Throughout we adhere to the following notational conventions: The norm of elements x ∈ V is

denoted by ‖x‖V (or simply ‖x‖ in case there’s no confusion about V ) and we write V ′ := L(V ;R)
for the topological dual space of V (the space of continuous linear maps from V → R). For
v′ ∈ V ′, we denote by 〈v, v′〉V the dual pairing (or simply 〈v, v′〉 if there’s no confusion about V ).
We consider V as a measurable space equipped with the Borel σ-algebra B(V ). For a function
f : Ω→ V and a set B ⊆ V we use the shorthand f−1(B) := {ω ∈ Ω : f(ω) ∈ B}.

3.2.1 Measurability

Definition 3.2.1 (measurability). Let (Ω1,A1) and (Ω2,A2) be two measurable spaces. A function
f : Ω1 → Ω2 is called A1/A2-measurable iff f−1(A2) ∈ A1 for all A2 ∈ A2. If there’s no confusion
about A2 and/or A1 we also say that f is A1-measurable or simply measurable.

Remark 3.2.2. Note that measurability of a function depends only on the σ-algebras, but no measure
needs to be defined.

IfA1 andA2 are both the Borel-σ-algebras, then we say that f : Ω1 → Ω2 is Borel measurable.
To check for Borel measurability it suffices to consider preimages of open sets; more generally:

Proposition 3.2.3. Let (Ω1,A1) and (Ω2,A2) be two measurable spaces and assume that A2 = σ(E)
for some E ⊆ 2Ω2. A function f : Ω1 → Ω2 is A1/A2-measurable iff f−1(E) ∈ A1 for all E ∈ E.

Proof. Measurability implies that f−1(E) ∈ A1 for all E ∈ E ⊆ σ(E).
To show the other direction define

C := {B ⊆ Ω2 : f−1(B) ∈ A1}.

For any B ∈ C

f−1(Bc) = {ω ∈ Ω1 : f(ω) ∈ Bc} = {ω ∈ Ω1 : f(ω) /∈ B} = Ω1\f−1(B) = (f−1(B))c ∈ A1
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and thus Bc ∈ C. Similarly for all Bi ∈ C

f−1
( ⋃
i∈N

Bi

)
=
⋃
i∈N

f−1
(
Bi

)
,

and thus
⋃
i∈NBi ∈ C whenever Bi ∈ C for all i ∈ N. Hence C is a σ-algebra on Ω2. By assumption

every E ∈ E belongs to C. Since σ(E) is the smallest σ-algebra containing E it holds C ⊇ σ(E).
Thus f−1(B) ∈ A1 for all B ∈ σ(E) = A2.

Remark 3.2.4. The previous proposition implies in particular that continuous functions are always
Borel-measurable.

To give meaning to integrals over V -valued functions, we require a stronger notion of measura-
bility. A function f : Ω→ V is called A-simple iff

f(ω) =
N∑
j=1

vj1Aj (ω) (3.2.1)

for finite N ∈ N, measurable Aj ∈ A with Ai ∩ Aj = ∅ for all i 6= j and vj ∈ V . Here 1Aj (ω)
denotes the indicator function, that is 1Aj (ω) = 1 if ω ∈ Aj and 1Aj (ω) = 0 otherwise.

Definition 3.2.5 (strong measurability). A function f : Ω→ V is strongly measurable iff there
exists a sequence (fn)n∈N of A-simple functions such that limn→∞ fn = f pointwise.

As the name suggests, strong measurability is in general indeed stronger than measurability. In
case V is a separable Banach space, the two notions are in fact equivalent. This follows by Pettis
measurability theorem, which we show next.

Recall that V is called separable if there exists a countable dense subset of V . A function
f : Ω → V is called separably valued if it takes values in a separable subspace V0 ⊆ V . If V is
separable, then any f : Ω→ V is necessarily separably valued. To show Pettis theorem, we’ll need
the following result:

Proposition 3.2.6. Let (Ω,A) be a measurable space and let fn : Ω→ R for n ∈ N be a sequence
of A-measurable functions. Then

• if f(ω) := supn∈N fn(ω) ∈ R for all ω ∈ Ω, then f is A-measurable,

• if f(ω) := infn∈N fn(ω) ∈ R for all ω ∈ Ω, then f is A-measurable,

• if f(ω) := limn→∞ fn(ω) ∈ R for all ω ∈ Ω, then f is A-measurable.

The proof is left as an exercise (Hint: Use that E = {(a,∞) : a ∈ R} generates B(R) and write
limn fn = supn∈N infm≥n fm).

Theorem 3.2.7 (Pettis measurability theorem, first version). Let (Ω,A) be a measurable space.
For f : Ω→ V the following are equivalent:

(i) f is strongly measurable,

(ii) f is separably valued and 〈f, v′〉 is A-measurable for every v′ ∈ V ′.
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Proof. (i) ⇒ (ii): Let (fn)n∈N be a sequence of A-simple functions converging pointwise to f , and
let V0 be the closed subspace spanned by the countably many values taken by the functions (fn)n∈N.
Then V0 is separable and f : Ω → V0. Furthermore each 〈f, v′〉 : Ω → R is A-measurable as the
pointwise limit of the A-measurable functions 〈fn, v′〉 by Prop. 3.2.6.

(ii) ⇒ (i): Let V0 be a separable subspace of V such that f : Ω→ V0. First we show that there
exists a sequence (v′n)n∈N ⊆ V ′ such that for all v ∈ V0

‖v‖ = sup
n∈N
|
〈
v, v′n

〉
|. (3.2.2)

To this end let (vn)n∈N be dense sequence in V0. By the Hahn-Banach theorem there exist v′n ∈ V ′
such that ‖v′n‖ = 1 and ‖vn‖ = 〈vn, v′n〉. Now, for every v ∈ V0 and ε > 0 there exists n ∈ N so
large that ‖v − vn‖ < ε. Then〈

v, v′n
〉
≥
〈
vn, v

′
n

〉
− |
〈
vn − v, v′n

〉
| ≥ ‖vn‖ − ε ≥ ‖v‖ − ‖v − vn‖ − ε = ‖v‖ − 2ε.

Also note that for any n ∈ N | 〈v, vn〉 | ≤ ‖v‖‖vn‖ = ‖v‖. Since ε > 0 was arbitrary, the claim
follows. Now let v0 ∈ V0. By the A-measurability of ω 7→ 〈f(ω), v′n〉, for each v0 ∈ V0

ω 7→ ‖f(ω)− v0‖ = sup
n∈N

〈
f(ω)− v0, v

′
n

〉
is A-measurable. (3.2.3)

Next define sn : V0 → {v1, . . . , vn} as follows: for all w ∈ V0 let k(n,w) be the smallest integer
in {1, . . . , n} such that

‖w − vk‖ = min
1≤j≤n

‖w − vj‖,

and set sn(w) := vk(n,w). By density of (vn)n∈N in V0

lim
n→∞

‖w − sn(w)‖ = 0 ∀w ∈ V0.

Next, set
fn(ω) := sn(f(ω)) ∀ω ∈ Ω.

Then for 1 ≤ k ≤ n

{ω ∈ Ω : fn(ω) = vk} = {ω ∈ Ω : ‖f(ω)− vk‖ = min
1≤j≤n

‖f(ω)− vj‖}

∩ {ω ∈ Ω : ‖f(ω)− vl‖ > min
1≤j≤n

‖f(ω)− vj‖ ∀l = 1, . . . , k − 1}.

The set on the right-hand side is in A due to (3.2.3). Since fn takes values in {v1, . . . , vn}, we
conclude that fn is A-simple. The proof is finished since for every ω ∈ Ω

lim
n→∞

‖fn(ω)− f(ω)‖ = lim
n→∞

‖sn(f(ω))− f(ω)‖ = 0.

Corollary 3.2.8. The pointwise limit of a sequence of strongly A-measurable functions is strongly
A-measurable.

Proof. Let limn→∞ fn = f pointwise, where each fn is strongly A-measurable, and thus takes
values in a separable subspace Vn ⊆ V . The closure V0 of

⋃
n∈N Vn is separable, and thus f is

separably valued. Moreover, Pettis theorem implies 〈fn, v′〉 : Ω → R to be measurable for every
n and every v′ ∈ V ′. Now, limn→∞ 〈fn, v′〉 = 〈f, v′〉 for every v′ ∈ V ′, and since the limit of
R-valued A-measurable functions is A-measurable by Prop. 3.2.6, we conclude that 〈f, v′〉 : Ω→ R
is A-measurable for every v′ ∈ V ′ so that by Pettis theorem f is strongly measurable.
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Corollary 3.2.9. Let f : Ω → V be strongly A-measurable. Let W be another Banach space and
let φ : V →W be continuous. Then φ ◦ f : Ω→W is strongly A-measurable.

Proof. Let (fn)n∈N be a sequence of simple functions converging pointwise to f . Then φ ◦ fn is a
sequence of simple functions converging pointwise to φ ◦ f .

Corollary 3.2.10. If V is separable, then measurability implies strong measurability.

Proof. Since f : Ω → V is A-measurable, 〈f, v′〉 : Ω → R is A-measurable for all v′ ∈ V ′. Hence
Pettis measurability theorem implies the claim.

Remark 3.2.11. Cor. 3.2.10 shows that “A-measurability and separably valued” implies “strong
A-measurability”. In fact the two are equivalent (exercise).

3.2.2 Strong µ-measurability

In this section (Ω,A, µ) is a σ-finite measure space, that is, µ is a σ-finite measure on the measurable
space (Ω,A).

We say that f : Ω→ V is µ-simple if

f =
n∑
j=1

1Ajvj , (3.2.4)

where vj ∈ V and Aj ∈ A such that µ(Aj) <∞.
We say that a property holds µ-almost everywhere (a.e.) (or µ-almost surely) if there exists

a µ-null-set N ∈ A, that is, µ(N) = 0, and the property holds on Ω\N .

Definition 3.2.12 (strong µ-measurability). A function f : Ω → V is strongly µ-measurable
iff there exists a sequence (fn)n∈N of µ-simple functions converging to f µ-a.e.

We call f̃ a µ-version of f if f̃ = f µ-a.e. In case there is a µ-version of f that is A-measurable,
we say that f is µ-measurable.

Proposition 3.2.13. For f : Ω→ V the following are equivalent:

(i) f is strongly µ-measurable,

(ii) f has a µ-version that is strongly A-measurable.

Proof. (i)⇒ (ii): With (fn)n∈N as in Def. 3.2.12 let N ⊆ Ω be such that µ(N) = 0 and limn→∞ fn =
f pointwise on Ω\N . Then 1Ncfn → 1Ncf pointwise on Ω. Since 1Ncfn are A-simple functions,
this shows that f̃ := 1Ncf is strongly A-measurable, and this function coincides with f µ-a.e.

(ii) ⇒ (i): Let f̃ be a strongly A-measurable µ-version of f and let N be a µ-null set such
that f = f̃ on N c. If (f̃n)n∈N is a sequence of A-simple functions converging pointwise to f̃ , then
limn→∞ f̃n = f on N c, i.e. limn→∞ f̃n = f µ-a.e. Let Ω =

⋃
n∈NAj with µ(An) < ∞ for all n.

Then fn := 1An f̃n are µ-simple functions and limn→∞ fn = f µ-a.e.

We say that f : Ω → V is µ-separably valued iff there exists a closed separable subspace
V0 ⊆ V such that f(ω) ∈ V0 for µ-a.e. ω ∈ Ω.
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Theorem 3.2.14 (Pettis measurability theorem, second version). Let (Ω,A, µ) be a σ-finite mea-
sure space. For f : Ω→ V the following are equivalent:

(i) f is strongly µ-measurable,

(ii) f is µ-separably valued and 〈f, v′〉 is µ-measurable for every v′ ∈ V ′.

Sketch of proof. (i) ⇒ (ii): By Prop. 3.2.13 there exists f̃ such that f = f̃ µ-a.e. and f̃ : Ω→ V is
strongly A-measurable. The statement then follows by Thm. 3.2.7.

(ii) ⇒ (i): This direction can be shown analogous to Thm. 3.2.7, with the exception that this
time the functions fn are µ-a.e. equal to functions f̃n that are A-simple.

Prop. 3.2.13 and Corollaries 3.2.9 and 3.2.10 imply:

Corollary 3.2.15. Let fn : Ω → V be a sequence of strongly µ-measurable functions, and let
limn→∞ fn = f µ-a.e. Then f is strongly µ-measurable.

Corollary 3.2.16. Let f : Ω → V be strongly µ-measurable and let W be another Banach space.
If φ : V →W is continuous, then φ ◦ f : Ω→ V is strongly µ-measurable.

3.2.3 Bochner integrals

Definition 3.2.17. Let µ be a σ-finite measure on the measurable space (Ω,A). A function
f : Ω→ V is called µ-Bochner integrable iff the following two conditions are met:

(i) there exists a sequence of µ-simple functions fn =
∑n

j=1 1An,jvn,j such that limn→∞ fn = f
µ-a.e.,

(ii) limn→∞
∫

Ω ‖f(ω)− fn(ω)‖ dµ(ω) = 0.

For a µ-Bochner integrable function we define∫
Ω
f(ω) dµ(ω) := lim

n→∞

n∑
j=1

µ(An,j)vn,j ∈ V. (3.2.5)

Exercise 3.2.18. Show that (3.2.5) does not depend on the approximating sequence (fn)n∈N and
is well-defined (i.e. the limit exists in V ).

Lemma 3.2.19. Let v′ ∈ V ′ and let f : Ω→ V be Bochner-integrable. Then〈∫
Ω
f(ω) dµ(ω), v′

〉
=

∫
Ω

〈
f(ω), v′

〉
dµ(ω). (3.2.6)

Proof. For a µ-simple function fn =
∑n

j=1 1Ajvj due to the linearity of the dual product〈∫
Ω
fn(ω) dµ(ω), v′

〉
=

〈
n∑
j=1

vjµ(Aj), v
′

〉
=

n∑
j=1

〈
vj , v

′〉 µ(Aj) =

∫
Ω

〈
fn(ω), v′

〉
dµ(ω). (3.2.7)

Now let (fn)n∈N be as in Def. 3.2.17. Taking the limit n→∞ on both sides of (3.2.7) yields (3.2.6).
Here we use that v′ : V → R is continuous and that

∫
Ω fn dµ→

∫
Ω f dµ in V by assumption (which

shows that the left-hand side of (3.2.7) converges to the left-hand side of (3.2.6)), and (3.2.5) (which
shows that the right-hand side of (3.2.7) converges to the right-hand side of (3.2.6)).
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The next theorem is useful to check for Bochner-integrability of a function.

Theorem 3.2.20. A strongly µ-measurable function f : Ω→ V is µ-Bochner integrable iff∫
Ω
‖f(ω)‖ dµ(ω) <∞

(in the sense of the Lebesgue integral) and in this case∥∥∥∥∫
Ω
f(ω) dµ(ω)

∥∥∥∥ ≤ ∫
Ω
‖f(ω)‖ dµ(ω). (3.2.8)

Proof. If f is µ-Bochner integrable, then for the simple functions (fn)n∈N as in Def. 3.2.17 it holds∫
Ω
‖f(ω)‖ dµ(ω) ≤

∫
Ω
‖f(ω)− fn(ω)‖ dµ(ω) +

∫
Ω
‖fn(ω)‖ dµ(ω).

Due to assumption (i) of Def. 3.2.17 the first term is finite for n large enough. The second term is
finite since each fn is a µ-simple function.

To show the other implication let f be strongly µ-measurable such that
∫

Ω ‖f(ω)‖ dµ(ω) < ∞
and let gn be µ-simple functions satisfying limn→∞ gn = f µ-a.e. Set

fn := gn1‖gn‖≤2‖f‖ .

Then fn is µ-simple and limn→∞ fn = f µ-a.e. Since ‖fn‖ ≤ 2‖f‖ pointwise for every n, by the
dominated convergence theorem

lim
n→∞

∫
Ω
‖f − fn‖ dµ = 0.

The inequality claimed in the theorem is trivial for µ-simple functions, and follows by approxi-
mation in the general case.

3.2.4 Lp-spaces

Let (Ω,A, µ) be a σ-finite measure space. For 1 ≤ p <∞ we define Lp(Ω, µ;V ) to be the space of
all strongly µ-measurable functions f : Ω→ V for which

‖f‖Lp(Ω,µ;V ) :=

(∫
Ω
‖f(ω)‖p dµ(ω)

)1/p

<∞

and identifying µ-a.e. equal functions (i.e. elements of Lp(Ω, µ;V ) are equivalence classes of µ-a.e.
equal functions). In case we wish to emphasize the σ-algebra on Ω we write Lp(Ω,A, µ;V ) (note
that if F ⊆ A is a sub-σ-algebra, in general Lp(Ω,A, µ;V ) 6= Lp(Ω,F , µ;V )). If there’s no confusion
about µ or A we simply write Lp(Ω;V ).

Similarly, L∞(Ω;V ) consists of all equivalence classes of strongly measurable µ-a.e. equal func-
tions endowed with the norm

‖f‖L∞(Ω;V ) := inf {r ≥ 0 : µ({ω ∈ Ω : ‖f(ω)‖ ≥ r}) = 0} . (3.2.9)

Without proof we mention that Lp(Ω;V ) = Lp(Ω,A, µ;V ) is a Banach space for all 1 ≤ p ≤ ∞.
Note that L1(Ω;V ) consists of all equivalence classes of Bochner-integrable functions.
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3.2.5 Radon-Nikodym derivative

Definition 3.2.21. Given measures µ and ν on (Ω,A), we say that ν is absolutely continuous
wrt µ (ν � µ) if for all A ∈ A s.t. µ(A) = 0, we have ν(A) = 0. The two measures are called
equivalent iff µ� ν and ν � µ.

Suppose that µ, ν are two measures on (Ω,A). In case there exists an A-measurable f : Ω→ R
such that for all A ∈ A

ν(A) =

∫
Ω
f(ω)1A(ω) dµ(ω),

we call f a density of ν w.r.t. µ. If ν is σ-finite, such a density is µ-a.e. unique, and as such this
function is called the Radon-Nikodym derivative of ν w.r.t. µ. We denote it by dν

dµ := f .

Theorem 3.2.22 (Radon-Nikodym). Let µ, ν be two σ-finite measures on (Ω,A). Then

ν � µ ⇔ the Radon-Nikodym derivative
dν

dµ
exists.

In this case dν
dµ is A-measurable and µ-a.e. finite.

3.2.6 Transformation of measures

Let (Ω1,A1, µ) be a measure space and (Ω2,A2) a measurable space. Let T : Ω1 → Ω2 be measur-
able. Then

T]µ(A2) := µ({ω ∈ Ω1 : T (ω) ∈ A2}︸ ︷︷ ︸
=T−1(A2)

) ∀A2 ∈ A2

defines a measure on (Ω2,A2) (exercise).

Definition 3.2.23. We call T]µ the pushforward measure.

For real valued measurable functions, we have the usual change of variables formula (for the
Lebesgue integrals):

Theorem 3.2.24. Let T : Ω1 → Ω2 and f : Ω2 → R be measurable. Then
∫

Ω2
|f(ω2)| dT]µ(ω2) <∞

iff
∫

Ω1
|f ◦ T |dµ(ω1) <∞ and in this case∫

Ω1

f ◦ T (ω1) dµ(ω1) =

∫
Ω2

f(ω2) dT]µ(ω2).

Remark 3.2.25 (Transformation of densities). Assume that µ� λ is a measure on (Rd,B(Rd)) with
density f := dµ

dλ . In the important case that T : Rd → Rd is a C1-diffeomorphism, we have for all
A ∈ B(Rd)

T]µ(A) = µ(T−1(A)) =

∫
T−1(A)

f(x) dx =

∫
A
f(T−1(x)) det dT−1(x) dx.

Hence the density transforms under the pushforward as
dT]µ
dλ = dµ

dλ ◦ T
−1 det dT−1, where dT−1 :

Rd → Rd×d denotes the Jacobian matrix of T−1 : Rd → Rd.

37

[Draft of October 6, 2021. Not for dissemination.]



3.3 Random variables

Let (Ω,A,P) be a probability space.

Terminology 3.3.1. A set A ∈ A is called an event. P[A] is the probability of the event A.

Often it is not convenient or possible to work with events. Instead we consider observable
quantities of such events. This idea is formalized with the notion of random variables.

Definition 3.3.2 (Random variables). Let (Ω,A) be a measurable space and V a Banach space.
Then a measurable function X : Ω→ V is called a V -valued random variable (RV).

Terminology 3.3.3. (i) It is common practice in probability theory to write X instead of X(ω),
i.e. not to explicitly display the dependence of X on ω ∈ Ω.

(ii) For a probability space (Ω,A,P), a RV X : Ω→ V induces a probability measure PX := X]P
on (V,B(V )), i.e. PX [B] = P[{ω ∈ Ω : X(ω) ∈ B}]. For B ∈ B(V ) we usually write
P[X ∈ B] to denote PX [B], which is the probability of the event {ω ∈ Ω : X(ω) ∈ B}, i.e.
the probability that X takes a value in B.

Definition 3.3.4 (distribution). (i) The measure PX is the distribution of X.

(ii) We write X ∼ µ to express that X has distribution µ, i.e. PX = µ.

(iii) A family of V -valued RVs (Xj)j∈I is called equally distributed if PXi = PXj for all i, j ∈ I.

(iv) For a finite family of RVs Xj : Ω→ Vj , j = 1, . . . , n, the measure PX1,...,Xn := (X1, . . . , Xn)]P
on (×nj=1Vj ,B(×nj=1Vj)) is the joint distribution of the RVs (Xj)

n
j=1, and PXj is the

marginal distribution of Xj .

Definition 3.3.5 (distribution function and density). Suppose X : Ω→ R is a real valued RV.

(i) The function
FX(x) := PX [X ≤ x]

is the distribution function of X.

(ii) If there exists a nonnegative integrable function f : R→ R such that for all x ∈ R

F (x) =

∫ x

−∞
f(t) dt,

then f is called the density function for X. In this case we also write f = fX .

Note that f is simply the Radon-Nikodym derivative of PX w.r.t. the Lebesgue measure (the
“Lebesgue density”), i.e. f = dPX

dλ . For real valued RVs the last two notions are generalized to n
RVs Xj : Ω→ R as follows:

(i) we call
FX1,...,Xn(x1, . . . , xn) := PX1,...,Xn [X1 ≤ x1, . . . , Xn ≤ xn]

the joint distribution function,
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(ii) if there exists a nonnegative f : R→ R satisfying

FX1,...,Xn(x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(t1, . . . , tn) dt1 . . . dtn

then f is the density function of X = (X1, . . . , Xn). In this case we also write f(x) =
fX1,...,Xn(x).

Example 3.3.6 (Dice roll.). Let Ω = {1, . . . , 6} be equipped with the σ-algebra A = 2Ω. We
interpret each ω ∈ Ω as the outcome of a dice roll, and set

X(ω) =

{
0 if ω is even

1 if ω is odd.

Then X : {1, . . . , 6} → R is an R-valued RV. To model a fair dice, we can define a probability
measure P via P[ω] = 1

6 for each ω ∈ Ω.

It is easy to check that for a RV X : Ω→ V ,

σ(X) := {X−1(B) : B ∈ B(V )}

is a σ-algebra, called the σ-algebra generated by X. It is the smallest σ-algebra on Ω w.r.t.
which X is measurable, and it can be interpreted as containing all relevant information about the
RV X.

Example 3.3.7. Consider X : {1, . . . , 6} → {0, 1} from example 3.3.6. Then

σ(X) = {{1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}, ∅}.

This σ-algebra contains all relevant information about X, namely whether the dice shows an odd
or an even number.

3.4 Expectation and covariance

Let V be a separable Banach space and (Ω,A,P) a probability space.

Definition 3.4.1. We say that a RV X : Ω→ V has finite kth moment, iff
∫

Ω ‖X(ω)‖k dP(ω) <∞.

If X : Ω→ V has finite first moment, then

E[X] :=

∫
Ω
X(ω) dP(ω)

is the expectation of X.
For two separable Hilbert spaces (H1, 〈·, ·〉H1

), (H2, 〈·, ·〉H2
) and two random variables X : Ω→

H1, Y : Ω→ H2 with finite second moments, we define the covariance operator cov(X,Y ) = C :
H2 → H1 by

〈v, Cw〉H1
=

∫
Ω
〈X − E[X], v〉H1

〈Y − E[Y ], w〉H2
dP ∀v ∈ H1, w ∈ H2.
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We also set cov(X) := cov(X,X). One can show that cov(X) is a self-adjoint positive trace-class
operator.

In case H = R the variance of X : Ω→ R is defined as

V(X) := E[(X − E[X])2] =

∫
R
x2 − 2xE[X] + E[X]2 dPX(x)

=

∫
R
x2 dP− 2xE[X] + E[X]2 dPX(x)

= E[X2]− E[X]2.

Example 3.4.2. Let X : Ω → Rn and Y : Ω → Rm be two random variables. Then cov(X,Y ) is
represented by the covariance matrix C ∈ Rn×m with entries

Cij = E[(Xi − E[Xi])(Yj − E[Yj ])].

Under linear transformations the covariance matrix satisfies cov(AX,BY ) = Acov(X,Y )B>. In
case X = Y we have Cii = V(Xi).

Expectations can be computed using the following change of variables formula:

Theorem 3.4.3. Let (Ω,A,P) be a probability space, and (V, ‖·‖V ), (W, ‖·‖W ) two separable Banach
spaces. Let X : Ω→ V be a RV and ϕ : V →W a measurable function. Then ϕ(X) : Ω→W is a
RV. It holds ϕ ∈ L1(V,PX ;W ) iff ϕ(X) ∈ L1(Ω,P;W ) and in this case

E[ϕ(X)] =

∫
Ω
ϕ(X(ω)) dP(ω) =

∫
V
ϕ(v) dPX(v).

Proof. Both ϕ(X) : Ω→W and ϕ : V →W are measurable, and thus strongly measurable since V
and W are separable. P and PX are probability measures, and thus ϕ(X) is strongly P-measurable
and ϕ is strongly PX -measurable. By Thm. 3.2.24∫

Ω
‖ϕ(X(ω))‖W dP(ω) =

∫
V
‖ϕ(v)‖W dPX(v)

and hence Thm. 3.2.20 implies ϕ(X) ∈ L1(Ω,P;W ) iff ϕ ∈ L1(V,PX ;W ). In this case, Lemma
3.2.19 implies for all w′ ∈W ′〈∫

Ω
ϕ(X(ω)) dP(ω), w′

〉
=

∫
Ω

〈
ϕ(X(ω)), w′

〉
dP(ω) =

∫
V

〈
ϕ(v), w′

〉
dPX(v) =

〈∫
V
ϕ(v) dPX(v), w′

〉
,

where we used again Thm. 3.2.24 for the real-valued measurable function ω 7→ 〈ϕ(X(ω)), w′〉 (and
the fact that the Lebesgue and Bochner integrals coincide for the integral of real-valued measurable
functions w.r.t. σ-finite measures). Since this equality holds for all w′ ∈W ′, we conclude∫

Ω
ϕ(X(ω)) dP(ω) =

∫
V
ϕ(v) dPX(v).

Remark 3.4.4. With ϕ(v) = v

E[X] =

∫
V
v dPX(v).
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3.5 Independence and conditionals

3.5.1 Conditional probability and independence

Let (Ω,A,P) be a probability space and let A, B ∈ A be two events such that P[B] > 0. For
ω ∈ Ω, assuming that we already know ω ∈ B, we want to define the probability that ω ∈ A—the
probability of A given B. Since we know ω ∈ B, we can interpret B together with the σ-algebra
{C ∈ A : C ⊆ B} and the probability measure P̃ := P

P[B] as a new probability space. Then the

probability of ω belonging to A equals P̃[A ∩B] = P[A∩B]
P[B] .

Definition 3.5.1 (conditional probability I). The conditional probability of A given B is

P[A|B] :=
P[A ∩B]

P[B]
.

If the knowledge of B has no influence on the probability of A, i.e. P[A|B] = P[A], we say that
the events are independent. If P (B) > 0, this is equivalent to P[A]P[B] = P[A ∩B]. The latter
condition is symmetric in A and B, as it should be.

Definition 3.5.2 (independent events). Two events A and B are called independent iff

P[A ∩B] = P[A]P[B].

Exercise 3.5.3. Show that if A and B are independent, then Ac and B are also independent.

Next we generalize the notion of independence to σ-algebras and RVs.

Definition 3.5.4 (independent σ-algebras). Let Ai ⊆ A be σ-algebras on Ω for all i ∈ I. The
(Ai)i∈I are independent if for all finite subsets {k1, . . . , kn} ⊆ I and all events Ai ∈ Aki holds

P[A1 ∩ · · · ∩An] = P[A1] . . .P[An].

Definition 3.5.5. Let Xi : Ω → V for i ∈ I be a family of RVs for a Banach space V . We say
that the Xi are independent if for all finite subsets {k1, . . . , kn} ⊆ I the σ-algebras (σ(Xki))

n
i=1 are

independent or equivalently for all B1, . . . , Bn ∈ B(V )

P[Xk1 ∈ B1, . . . , Xkn ∈ Bn] = P[X1 ∈ B1] · · ·P[Xkn ∈ Bn].

Exercise 3.5.6. Consider the probability space ([0, 1],B([0, 1]), λ). Define for ω ∈ [0, 1]

Xn(ω) :=

{
1 if k

2n ≤ ω ≤
k+1
2n , k even

−1 if k
2n ≤ ω ≤

k+1
2n , k odd.

Show that the (Xn)n∈N are a family of independent random variables.

Exercise 3.5.7 (Bayes’ formula). Let A1, . . . , An be disjoint events of positive probability such
that Ω =

⋃n
j=1Aj . Let B be another event with P[B] > 0. Show that for k ∈ {1, . . . , n}

P[Ak|B] =
P[B|Ak]P[Ak]∑n
j=1 P[B|Aj ]P[Aj ]

.

41

[Draft of October 6, 2021. Not for dissemination.]



Proposition 3.5.8. Let (Ω,A,P) be a measure space and V a Banach space. Let Xi : Ω → V be
RVs for i = 1, . . . , n. Then the Xi are independent if and only if PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn.

Proof. Assume that the Xj are independent. Then for all Aj ∈ A

PX1,...,Xn [A1 × · · · ×An] = P[X1 ∈ A1, . . . , Xn ∈ An]

= P[X1 ∈ A1] · · ·P[Xn ∈ An]

= PX1(A1) · · ·PXn [An].

By Thm. 3.1.13 it holds PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn .
Conversely by definition of the product measure, PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn implies for all

Aj ∈ A that PX1,...,Xn [A1 × · · · ×An] = PX1 [A1] · · ·PXn [An].

For real valued RVs, independence is equivalent to saying that the distribution functions and
densities factor.

Theorem 3.5.9. Let Xi : Ω→ Rm be n RVs for i = 1, . . . , n.

(i) The RVs are independent iff for x = (x1, . . . , xn)

FX1,...,Xn(x) = FX1(x1) . . . FXn(xn).

(ii) If the RVs have densities, then they are independent iff

fX1,...,Xn(x) = fX1(x1) . . . fXn(xn).

Sketch of Proof. If the Xj are independent, then FX1,...,Xn(x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤
xn] = P[X1 ≤ x1] · · ·P[Xn ≤ xn] = FX1(x1) · · ·FXn(xn).

Conversely, let Ai = X−1
i (Bi) for Bi ∈ B(Rm). Then

P[A1 ∩ · · · ∩An] = P[X1 ∈ B1, . . . , Xn ∈ Bn]

=

∫
B1×···×Bn

fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=

n∏
j=1

∫
Bj

fXj (xj) dxj

=

n∏
j=1

P[Xj ∈ Bj ] =

n∏
j=1

P[Aj ].

Theorem 3.5.10. Let X1, . . . , Xn : Ω→ R be independent RVs and such that and E[|Xi|] <∞ for
all i = 1, . . . , n. Then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn] <∞.

Proof. By Thm. 3.4.3 with ϕ : Rn → R : (x1, . . . , xn) 7→ x1 · · ·xn (and Fubini’s theorem)

E[X1 · · ·Xn] =

∫
Ω
X1(ω) · · ·Xn(ω) dP(ω)

=

∫
Rn
x1 · · ·xn dPX1,...,Xn(x1, . . . , xn)

=

∫
R
x1 dPX1(x1) · · ·

∫
R
xn dPXn(xn).
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3.5.2 Conditional expectations

Let X be a random variable on (Ω,A) and let B ∈ A. In the previous section we defined P[A|B] =
P[A∩B]
P[B] in case P[B] > 0. Given an event B with P[B] > 0, due to E[X] =

∫
ΩX(ω) dP(ω), it is

natural to introduce the expectation of X given B as

E[X|B] :=

∫
B
X(ω) dP[ω|B] =

1

P[B]

∫
Ω
1B(ω)X(ω) dP(ω).

Now let X and Y be two random variables. In this section we want to answer the question: How can
we define the expectation of X given Y ? Since Y is a random variable, this conditional expectation
should also be a random variable.

To motivate the following discussion let us start with a simple example. Assume that X :
[0, 1]→ R and Y : [0, 1]→ R are two RVs. Additionally let

⋃n
j=1Aj = [0, 1] be a partition of [0, 1]

and suppose that Y (ω) =
∑n

j=1 1Aj (ω)yj is a simple function with yi 6= yj ∈ R for all i 6= j. Now,
if Y (ω) = yj , then we know ω ∈ Aj . Hence the expectation for X is the average of X over Aj , i.e.

E[X|Aj ] =
1

P[Aj ]

∫
Aj

X dP.

We thus set

E[X|Y ](ω) :=
1

P[Aj ]

∫
Aj

X dP if ω ∈ Aj .

We make the following observations:

(i) E[X|Y ] : [0, 1]→ R is a random variable that is constant on each Aj .

(ii) The actual values yj taken by Y are irrelevant for the definition of E[X|Y ], we merely require
the sets Aj , or in other words the σ-algebra σ(Y ) = {∅, [0, 1]} ∪ {

⋃
i∈I Ai : I ⊆ {1, . . . , n}}

generated by Y .

(iii) E[X|Y ] : [0, 1]→ R is σ(Y )-measurable.

(iv)
∫
1AX dP =

∫
1AE[X|Y ] dP for all A ∈ σ(Y ).

The second item motivates us to first introduce expectations of X conditioned on σ-algebras.

Definition 3.5.11 (conditional expectation I). Let (Ω,A,P) be a probability space, F ⊆ A a sub-σ-
algebra, V a separable Banach space and X : Ω→ V a random variable such that X ∈ L1(Ω, µ;V ).
A random variable Z : Ω→ V is called a conditional expectation of X given F , iff

(i) Z : Ω→ V is F-measurable,

(ii)
∫

Ω 1BZ dP =
∫

Ω 1BX dP ∈ V for all B ∈ F .

In this case we write E[X|F ] = Z.

We next show existence and uniqueness of E[X|F ] and start with the case V = R.

Theorem 3.5.12. Let V = R. Then E[X|F ] exists and is P-a.e. unique.
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Proof. Uniqueness: Assume Z and Z ′ both satisfy the conditions of Def. 3.5.11. Let A = {ω ∈ Ω :
Z(ω) > Z ′(ω)} ∈ F . Then ∫

Ω
1A(ω)(Z(ω)− Z ′(ω)) dP(ω) = 0

and since Z − Z ′ > 0 on A we have P[A] = 0. Similarly, with B = {ω ∈ Ω : Z(ω) < Z ′(ω)} we get
P[B] = 0 and thus Z = Z ′ P-a.e.

Existence: Set X+ := max{0, X} and X− := −min{0, X}. For ∗ ∈ {+,−} define

µ∗(A) := E[X∗1A] ∀A ∈ F .

Then µ± are two σ-finite measures on (Ω,F). By construction µ± � P and there exist F-
measurable Radon-Nikodym derivatives Z± : Ω→ R such that

µ±(A) =

∫
A
Z± dP ∀A ∈ F .

Then Z := Z+ − Z− is F-measurable (the difference of F-measurable R-valued functions is again
F-measurable), and for all A ∈ F∫

Ω
1A(ω)Z dP(ω) =

∫
Ω
1A(ω)Z+ dP(ω)−

∫
Ω
1A(ω)Z− dP(ω) =

∫
Ω
1A(ω)X(ω) dP(ω).

Remark 3.5.13. The spaces L2(Ω,A,P;R) and L2(Ω,F ,P;R) are Hilbert spaces with the L2(Ω,P)-
inner product. It can be shown that for X ∈ L2(Ω,A,P;R), E[X|F ] is the orthogonal projection
onto the closed subspace L2(Ω,F ,P;R), that is for any F-measurable Z : Ω→ R

E[(X − E[X|F ])2] ≤ E[(X − Z)2]

with equality iff Z = E[X|F ] P-a.e.

Exercise 3.5.14. For V = R show that

(i) E[E[X|F ]] = E[X],

(ii) E[X] = E[X|F ] in case F = {∅,Ω}.

Some further properties of the conditional probability are the following:

Theorem 3.5.15. Let (Ω,A,P) be a probability space, X and Y two real-valued RVs in L1(Ω,A,P;R),
and G ⊆ F ⊆ A sub-σ-algebras. Then

(i) (linearity) for α ∈ R, E[αX + Y |F ] = αE[X|F ] + E[Y |F ],

(ii) (montonicity) if X ≥ Y P-a.e., then E[X|F ] ≥ E[Y |F ] P-a.e.,

(iii) (tower property) E[E[X|F ]|G] = E[E[X|G]|F ] = E[X|G],

(iv) (triangle inequality) E[|X||F ] ≥ |E[X|F ]|,

(v) (independence) if σ(X) and F are independent, then E[X|F ] = E[X],
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(vi) (Lebesgue dominated convergence) if Y ≥ 0 and (Xn)n∈N is a sequence of RVs with |Xn| ≤ Y
for all n ∈ N and Xn → X P-a.e., then

lim
n→∞

E[Xn|F ] = E[X|F ] P− a.e. and in the sense of L1(Ω,F ,P;R).

Sketch of proof. (i) For α ∈ R, and X,Y ∈ L1(Ω,P;R) the function

E[X|F ] + αE[Y |F ]

is F-measurable and satisfies for every A ∈ F

E[1A(E[X|F ] + αE[Y |F ])] = E[1AE[X|F ]] + αE[1AE[Y |F ]]

= E[1AX] + αE[1AY ] = E[1A(X + αY )].

(ii) Let A = {E[X|F ] < E[Y |F ]} ∈ F . Due to X ≥ Y it holds E[1A(X − Y )] ≥ 0, and thus
P[A] = 0.

(iv) Set X+ = max{0, X} and X− = −min{0, X} so that X = X+ −X−. By (i) and (ii)

E[|X||F ] = E[X+|F ] + E[X−|F ] ≥ E[−X+|F ] + E[X−|F ] = −E[X|F ] P-a.e.

and similarly E[|X||F ] ≥ E[X|F ] P-a.e.

Lemma 3.5.16. In the setting of Thm. 3.5.12 denote T (X) = E[X|F ]. Then T : L1(Ω,A,P;R)→
L1(Ω,F ,P;R) is linear and ‖T‖L(L1;L1) ≤ 1.

Proof. According to Thm. 3.5.15 (i), T is linear. The bound on the norm of the operator follows
by Thm. 3.5.15 (iv) and Exercise 3.5.14:

‖E[X|F ]‖L1 = E[|E[X|F ]|] ≤ E[E[|X||F ]]

= E[|X|] = ‖|X|‖L1 .

Finally we mention without proof that also a version of Jensen’s inequality is satisfied:

Theorem 3.5.17. Let ϕ : R→ R be convex and let X be a real-valued random variable on (Ω,A,P).
If E[|X|] <∞ and F ⊆ A is a sub-σ-algebra, then

ϕ(E[X|F ]) ≤ E[ϕ(X)|F ] P− a.e.

Theorem 3.5.18. Let V be a separable Banach space. Then E[X|F ] exists and is P-a.e. unique.

Proof. For A-simple functions Y : Ω → V , Y =
∑n

j=1 1Ajvj with Ai ∩ Aj = ∅ for all i 6= j, define

T̃ (Y ) via

T (Y )(ω) =

n∑
j=1

E[1Aj |F ](ω)vj =

n∑
j=1

T (1Aj )(ω)vj ,

with T from Lemma 3.5.16. Then T̃ is a linear operator on the vector space of V -valued A-simple
functions, and we want to show that it can be extended to a bounded operator on all of L1(Ω,P;V ).
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Using linearity of T and the fact that T (1Aj ) = E[1Aj |F ] takes nonnegative values P-a.e. (why?),

‖T̃ (Y )‖L1(Ω,F ,P;V ) =

∫
Ω

∥∥∥∥∥∥
n∑
j=1

T (1Aj )(ω)vj

∥∥∥∥∥∥ dP(ω)

≤
∫

Ω

n∑
j=1

|T (1Aj )|(ω)‖vj‖ dP(ω)

=

∫
Ω

∣∣∣∣∣∣T
 n∑
j=1

1Aj‖vj‖

 (ω)

∣∣∣∣∣∣ dP(ω)

≤ ‖T‖L(L1;L1)

∥∥∥∥∥∥
n∑
j=1

1Aj‖vj‖

∥∥∥∥∥∥
L1(Ω,P;R)

= ‖T‖L(L1;L1)‖Y ‖L1(Ω,A,P;V ).

By density of the B(V )-simple functions in L1(Ω,P;V ), we conclude that T̃ can be extended to a
bounded linear operator T̃ : L1(Ω,A,P;V )→ L1(Ω,F ,P;V ) and ‖T̃‖L(L1;L1) ≤ ‖T‖L(L1;L1) = 1.

Now we show that T̃ (X) = E[X|F ] in the sense of Def. 3.5.11. By definition T̃ (X) is F-
measurable. Moreover for A ∈ F and A-simple random variables X : Ω → V one checks that
E[1AT̃ (X)] = E[1AX]. By density the equality holds for all X ∈ L1(Ω,A,P;V ), and therefore
T̃ (X) is a conditional expectation.

Finally we show that E[X|F ] is P-a.e. unique. Assume that Z and Z ′ are two conditional
expectations. For arbitrary ϕ ∈ V ′, 〈Z,ϕ〉 and 〈Z ′, ϕ〉 are (strongly) F-measurable (by Cor. 3.2.9)
and satisfy E[1A 〈Z,ϕ〉] = E[1A 〈Z ′, ϕ〉] = E[1A 〈X,ϕ〉] for all A ∈ F (see Lemma 3.2.19). This
shows that 〈Z,ϕ〉 and 〈Z ′, ϕ〉 are both conditional expectations of 〈X,ϕ〉, and by Thm. 3.5.12 there
exists a P-null set N ⊆ Ω such that 〈Z,ϕ〉 = 〈Z ′, ϕ〉 on N c. Since V is separable, (as shown earlier)
there exists a sequence ϕn ∈ V ′ with ‖ϕn‖V ′ = 1, and such that ‖v‖ = supn∈N 〈v, ϕn〉 for all v ∈ V .
Let Nn be a P-null set such that 〈Z, v′n〉 = 〈Z ′, v′n〉 on N c

n. Then N :=
⋃
n∈NNn is a null set and

Z = Z ′ on N c.

Now we can introduce the conditional expectation of X given Y .

Definition 3.5.19 (conditional expectation II). Let (Ω,A,P) be a probability space, V , W two
separable Banach spaces and X : Ω → V , Y : Ω → W two random variables such that X ∈
L1(Ω, µ;V ). Then E[X|Y ] := E[X|σ(Y )] is the conditional expectation of X given Y .

Example 3.5.20. Let X : Ω → {0, 1} be as in Example 3.3.6, i.e. X is 0 if the dice shows an
even number and X is 1 if the dice shows an odd number. Let Y : Ω → {0, 1} with Y (ω) = 0 for
ω ∈ {1, 2, 3} and Y (ω) = 1 for ω ∈ {4, 5, 6}. Then

E[X|Y ](ω) =

{
1/3 ω ∈ {1, 2, 3}
2/3 ω ∈ {4, 5, 6}.

3.5.3 Regular conditional distribution

So far we have defined P[A|B] = P[A∩B]
P[B] in case P[B] > 0. The goal of this section is to define the

conditional probability P[A|X = x] even if P[X = x] = 0.
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Example 3.5.21. Let p be a uniformly distributed RV on [0, 1] and let X be a Bernoulli RV,
i.e. X takes the value 1 with probability p and the value 0 with probability 1 − p. What is
P[X = 1|p = 1/2]? Our previous definition of conditional probabilities doesn’t lead to a meaningful
result here since [p = 1/2] is an event of probability 0.

Definition 3.5.22 (regular conditional distribution I). Let (Ω,A,P) be a probability space, and
X : Ω → V and Y : Ω → W two random variables for two separable Banach spaces V and W . A
map τX|Y : W × B(V )→ [0, 1] satisfying

(i) y 7→ τX|Y (y,B) is B(W )/B(R)-measurable for every B ∈ B(V ),

(ii) B 7→ τX|Y (y,B) is a probability measure on (V,B(V )) for every y ∈ {Y (ω) : ω ∈ Ω},

(iii) P[X ∈ B, Y ∈ A] =
∫
A τX|Y (y,B) dPY (y) for all A ∈ B(W ) and all B ∈ B(V ),

is called a regular (version of the) conditional distribution of X given Y . In this case we
denote

P[X ∈ B|Y = y] := τX|Y (y,B).

Assuming for the moment that there exists τX|Y as in the above definition, we have found a
meaningful way to define the probability distribution of X given that Y = y, namely the measure
B 7→ P[X ∈ B|Y = y]. This is well-defined even if [Y = y] is a (nonempty) P-null set. In this sense,
P[X ∈ ·|Y = y] can be interpreted as a well behaved conditional probability.

It remains to show that the conditional distribution exists and is unique (in a suitable sense), to
which the rest of this section is dedicated. We emphasize that the existence of regular conditional
distributions is not trivial, and indeed not always satisfied. However, in the present setting, where
V and W are separable Banach space, existence does hold. In fact, the assumptions that V and
W are separable Banach spaces could be significantly weakened, in particular it would suffice for
W equipped with some σ-algebra to be a measurable space. Such generalizations are beyond the
scope of these lecture notes.

Uniqueness

Uniqueness of the regular conditional distribution holds in the following PY -a.e. sense:

Lemma 3.5.23 (uniqueness of the regular conditional distribution). Assume that τ and τ̃ are two
functions satisfying the conditions of Def. 3.5.22. Then there exists a PY -null set N ∈ B(W ) such
that for all y ∈ N c ∩ {Y (ω) : ω ∈ Ω} holds τ(y, ·) = τ̃(y, ·), i.e. these probability measures coincide
on (V,B(V )) for all y ∈ N c ∩ {Y (ω) : ω ∈ Ω}.

Proof. Fix B ∈ B(V ) and let An := {y ∈W : τ(y,B)− τ̃(y,B) > 1
n}. Then An ∈ B(W ). Due to∫

An

τ(y,B) dPY (y) = P[X ∈ B, Y ∈ An] =

∫
An

τ̃(y,B) dPY (y),

we find 0 =
∫
An

(τ(y,B) − τ̃(y,B)) dPY (y) ≥ 1
nPY [An]. Hence {y ∈ Y : τ(y,B) > τ̃(y,B)} =⋃

n∈NAn is a PY -null set, and by symmetry we conclude that AB := {y ∈ W : τ(y,B) 6= τ(y,B)}
is a PY -null set.
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Now fix a dense sequence (xn)n∈N ⊆ V , such that with the open balls Br(x) := {v ∈ V :
‖v − x‖V < r},

C̃ := {B1/n(xm) : n,m ∈ N} = {C̃j : j ∈ N}

is a countable basis of the topology of B(V ) (i.e. (C̃j)j∈N is some fixed enumeration of the countable
set C̃). Then

C := {∩i∈IC̃i : I ⊆ N, |I| <∞} = {Cj : j ∈ N}

is a countable set of open sets (why is C countable?). Since C̃ is a basis of the topology on V , it
holds σ(C̃) = B(V ), and in particular σ(C) = B(V ). Furthermore, C has the property that for any
Ci, Cj ∈ C also Ci∩Cj ∈ C by definition of C. Now choose for every i ∈ N a PY -null set Ni ∈ B(W )
such that τ(y, Ci) = τ̃(y, Ci) for all y ∈ W\Ni. Then N :=

⋃
i∈NNi is a PY -null set and for all

y ∈ W\N and all i ∈ N holds τ(y, Ci) = τ̃(y, Ci). Thm. 3.1.12 implies τ(y,B) = τ̃(y,B) for all
y ∈ {Y (ω) : ω ∈ Ω}\N and all B ∈ B(W ).

Remark 3.5.24. Due to τ only being unique in the above sense, we speak of regular versions of the
conditional distribution. Often we will drop this term, and simply say that τ is a regular conditional
distribution, with the understanding that such a map is only unique PY -a.e.

Existence

Intuitively we expect P[X = 1|p = 1/2] in Example 3.5.21 to be 1/2. To make this precise, we now
turn to conditional probabilities given a σ-algebra. For a probability space (Ω,A,P) and an event
A ∈ A it holds P[A] = E[1A]. This motivates:

Definition 3.5.25 (conditional probability II). Let (Ω,A,P) be a probability space and F ⊆ A a
sub-σ-algebra. Then for all A ∈ A

P[A|F ] := E[1A|F ]

is the conditional probability of A given F , and if Y : Ω→W is a RV

P[A|Y ] := E[1A|σ(Y )]

is the conditional probability of A given Y .

Note that P[A|Y ] is again a RV, that is A 7→ P[A|Y ] is a mapping from events to RVs. Fur-
thermore, one can show that this mapping is σ-additive in the sense P[

⋃
j∈NAj |Y ] =

∑
j∈N P[Aj |Y ]

P-a.e. for pairwise disjoint Aj ∈ A. Next we define the second variant of regular conditional
distributions, where we condition on ω ∈ Ω.

Definition 3.5.26 (regular conditional distribution II). Let (Ω,A,P) be a probability space and
X : Ω→ V a random variable for a Banach space V . Let F ⊆ A be a sub-σ-algebra.

A map κX|F : Ω× B(V )→ [0,∞] satisfying

(i) ω 7→ κX|F (ω,B) is F-measurable for each B ∈ B(V ),

(ii) B 7→ κX|F (ω,B) is a probability measure on (V,B(V )) for each ω ∈ Ω,

(iii) for every B ∈ B(V ) holds κX|F (ω,B) = P[X ∈ B|F ](ω) P-a.e., or equivalently

P[A∩[X ∈ B]] =

∫
Ω
1B(X(ω))1A(ω) dP(ω) =

∫
Ω
κX|F (ω,B)1A(ω) dP(ω) ∀A ∈ F , B ∈ B(V ),
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is called a regular (version of the) conditional distribution of X given F .

The above notions could be introduced for more general spaces V (not necessarily separable
Banach spaces). However, as mentioned before, V being a separable Banach space is sufficient to
prove existence of regular conditional distributions. The next theorem shows existence in the case
(V,B(V )) = (R,B(R)). We will require the following proposition, which we state without proof. A
set D ⊆ 2Ω is called a Dynkin-system, iff

• Ω ∈ D,

• for A, B ∈ D with A ⊂ B it holds B\A ∈ D,

• for every countable disjoint pairwise sequence Aj ∈ D, j ∈ N, it holds
⋃
j∈NAj ∈ D.

Proposition 3.5.27. Let C ⊆ 2Ω satisfy that A ∩ B ∈ C for every A, B ∈ C. Then the smallest
Dynkin-system containing C exists and is equal to σ(C).

Theorem 3.5.28. Let X : (Ω,A,P) → (R,B(R)) be a real valued random variable and F ⊆ A
a sub-σ-algebra. Then there exists a regular version κX|F : Ω × B(R) → R of the conditional
distribution of X given F .

Proof. The proof proceeds as follows: We construct a measurable version of the distribution function
of the conditional distribution by first defining it on the countable set of rational numbers, and
then extending it to the real numbers. Throughout this proof we write κ instead of κX|F .

Step 1. We construct a function F̃ : Ω × R → [0, 1] such that q 7→ F̃ (ω, q) is the distribution
function of the measure κ(ω, ·). To this end, for every q ∈ Q let ω 7→ F (·, q) : (Ω,F) → (R,B(R))
be a fixed version of the conditional probability

P[X ∈ (−∞, q]|F ] = E[1X∈(−∞,q]|F ] : Ω→ R

(remember that the conditional probability is only unique P-a.e.). For any q ≤ r ∈ Q it holds
1X∈(−∞,q] ≤ 1X∈(−∞,r] and by the monotonicity of the conditional expectation (Thm. 3.5.15 (ii))
there is a null set Aq,r ∈ F such that

F (ω, q) ≤ F (ω, r) ∀ω ∈ Ω\Aq,r.

By Lebesgue dominated convergence (cp. Thm. 3.5.15 (v)), there are null sets Bq ∈ F for every
q ∈ Q such that

lim
n→∞

F

(
ω, q +

1

n

)
= lim

n→∞
E[1X∈(−∞,q+ 1

n
]|F ](ω) = E[1X∈(−∞,q]|F ](ω) = F (ω, q) ∀ω ∈ Ω\Bq,

and by the same argument there exists a null set C ∈ F such that

inf
n∈N

F (ω,−n) = lim
n→∞

F (ω,−n) = E[0|F ](ω) = 0

sup
n∈N

F (ω, n) = lim
n→∞

F (ω, n) = E[1|F ](ω) = 1
∀ω ∈ Ω\C.

Now set N :=
⋃
q,r∈QAq,r ∪

⋃
q∈QBq ∪ C. Then N ∈ F and P[N ] = 0. Define

F̃ (ω, z) := inf{F (ω, q) : z < q ∈ Q} z ∈ R, ω ∈ Ω\N.
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Then z 7→ F̃ (ω, z) is monotonically increasing, right-continuous and satisfies limz→∞ F (ω, z) = 1
and limz→∞ F (ω,−z) = 0. As such it is a distribution function, i.e. µω((a, b]) := F (ω, b)− F (ω, a)
defines a probability measure on (R,B(R)). For ω ∈ N set F (ω, z) := F0(z) where F0 is an arbitrary
fixed probability distribution function, and again µω((a, b]) := F0(b) − F0(a) defines a probability
measure on (R,B(R)).

Step 2. We define κ and show that it possesses the properties (i) and (ii) of Def. 3.5.26. For
B ∈ B(R) set

κ(ω,B) := µω(B).

By construction, for each ω ∈ Ω, κ(ω, ·) is a probability measure on (R,B(R)).
It remains to show that for each B ∈ B(R) the map ω 7→ κ(ω,B) is F-measurable. First let

q ∈ Q and set B := (−∞, q]. Then

κ(ω,B) = F (ω, q)1Nc(ω) + F0(q)1N (ω).

Since N ∈ F and ω 7→ F (ω, q) is F-measurable by construction, ω 7→ κ(ω,B) is F-measurable.
Next, note that with

C := {(−∞, q] : q ∈ Q} (3.5.1)

it holds σ(C) = B(R) (i.e. C generates the Borel-σ-algebra). We claim that

D := {B ∈ B(R) : ω 7→ κ(ω,B) is F-measurable}

is a σ-algebra. In this case D ⊇ σ(C) = B(R), which then shows that ω 7→ κ(ω,B) is F-measurable
for all B ∈ F .

To show the claim we first point out that D is a Dynkin-system:

• R ∈ D since ω 7→ κ(ω,R) = µω(R) = 1 is trivially F-measurable,

• for A, B ∈ D with A ⊆ B it holds A\B ∈ D due to

κ(ω,A\B) = κ(ω,A)− κ(ω,B), (3.5.2)

i.e. ω 7→ κ(ω,A\B) is F-measurable since it is the sum of two F-measurable functions (we
have used that A 7→ κ(ω,A) is a probability measure in (3.5.2)),

• for disjoint sets (Aj)j∈N in D we have
⋃
j∈NAj ∈ D since

κ

ω,⋃
j∈N

Aj

 =
∑
j∈N

κ(ω,Aj),

and this sum converges pointwise for every ω ∈ Ω to a number in [0, 1] since κ(ω, ·) is a
probability measure. Thus ω 7→ κ(ω,

⋃
j∈NAj) ∈ R is F-measurable as the pointwise limit of

F-measurable functions (cp. Prop. 3.2.6).

By Prop. 3.5.27 (and because C satisfies A, B ∈ C ⇒ A ∩B ∈ C) we conclude B(R) = σ(C) ⊆ D.
Step 3. Finally we verify that κ satisfies (iii) of Def. 3.5.26 and thus is a regular conditional

distribution of P[X|F ].
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By definition of κ, for every A ∈ F , q ∈ Q and B = (−∞, q]∫
Ω
1A(ω)κ(ω,B) dP(ω) =

∫
Ω
1A(ω)P[X ∈ B|F ](ω) dP(ω)

=

∫
Ω
1A(ω)E[1X∈B|F ](ω) dP(ω)

=

∫
Ω
1A∩{X∈B}(ω) dP(ω)

= P[A ∩ {X ∈ B}]. (3.5.3)

Since C in (3.5.1) generates B(R), and because of Thm. 3.1.12 the left and the right-hand side of
(3.5.3) coincide in the sense of finite measures on (R,B(R)). Thus they are equal for all B ∈ B(R).

Now fix B ∈ B(R) and assume that there exists A ∈ F with P[A] > 0 and such that κ(ω,B) 6=
P[X ∈ B|F ] for all ω ∈ A. Without loss of generality we can assume that κ(ω,B)−P[X ∈ B|F ] > ε
for some ε > 0. But then

∫
Ω 1A(ω)κ(ω,B) dP(ω) −

∫
Ω 1A(ω)P[X ∈ B|F ](ω) dP(ω) ≥ εP[A] 6= 0.

Thus such A cannot exist and we conclude that κ(·, B) = P[X ∈ B|F ] P-a.e. for every B ∈ B(R).

To obtain a version of the above theorem for separabel Banach spaces V , we need the following
notion:

Definition 3.5.29. Two measurable spaces (Ω,A) and (Ω̃,A) are isomorphic if there exists a
bijection ϕ : Ω→ Ω̃ such that ϕ is A/Ã-measurable and ϕ−1 is Ã/A-measurable. We call (Ω,A) a
Borel space if there exists B ∈ B(R) such that (B,B(B)) and (Ω,A) are isomorphic.

We state without proof:

Theorem 3.5.30. Let V be a separable Banach space. Then (V,B(V )) is a Borel space.

Exercise 3.5.31. Let d ∈ N. Show that ([−1, 1]d,B([−1, 1]d) is a Borel space. Hint: Use binary
representations.

Corollary 3.5.32. Let X : (Ω,A,P)→ V be a RV, V a separable Banach space and F ⊆ A a sub-
σ-algebra. Then there exists a regular version κX|F : Ω×B(V )→ R of the conditional distribution
of X given F .

Proof. Let A ∈ B(R) and ϕ : V → A an isomorphism as in Def. 3.5.29, which exists by Thm. 3.5.30.
Then X̃ := ϕ◦X : Ω→ R is a real-valued RV, and by Thm. 3.5.28 there exists a regular version κX̃|F
of the conditional distribution of X̃ given F . Set κX|F (ω,B) := κX̃|F (ω, ϕ(B)) for all B ∈ B(V ).
Then κX|F is a regular version of the conditional distribution of X given F .

Finally, rather than conditioning on ω ∈ Ω, we wish to condition on Y = y (i.e. on the event
[Y = y] ⊆ Ω). In order to so we need the Doob-Dynkin lemma:

Lemma 3.5.33 (Doob-Dynkin Lemma). Let Ω be a set and (Ω̃, Ã) a measurable space. Consider
the following situation:

(Ω, σ(Y )) (Ω̃, Ã)

(R,B(R))

Y

κ τ
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Then κ : Ω → R is σ(Y )/B(R)-measurable iff there exists τ : Ω̃ → R which is Ã/B(R)-measurable
such that κ = τ ◦ Y .

Proof. “⇐”: If such τ exists then τ ◦Y = κ is measurable as a composition of measurable functions.
The other direction is left as an exercise.

Exercise 3.5.34. Prove (the other direction of) the Doob-Dynkin Lemma. Proceed as follows:
First assume κ : Ω→ [0,∞) (i.e. κ is nonnegative) and κ is σ(Y )/B(R)-measurable.

• Define κn := min{n, 2−nb2nκc} and show that κn is a simple function and κn ↗ κ.

• Use the κn to construct sets Aj ∈ A and numbers αj ≥ 0 such that κ =
∑

j∈N αj1Aj .

• By definition of σ(Y ) there exist sets Bn ∈ Ã such that Y −1(Bn) = An. Use the Bn to define
τ such that τ ◦ Y = κ.

• Conclude that τ also exists under the assumption that κ : Ω → R is σ(Y )/B(R)-measurable
(i.e. is not necessarily nonnegative).

Now we can put everything together:

Theorem 3.5.35. Let (Ω,A,P) be a probability space, and X : Ω → V , Y : Ω → W two RVs
for two separable Banach spaces V and W . Then there exists a regular version of the conditional
distribution P[X ∈ ·|Y = y] (in the sense of Def. 3.5.22). It is unique in the sense of Lemma
3.5.23.

Proof. By Cor. 3.5.32 there exists a regular version κX|σ(Y )(ω,B) of the conditional distribution.

By the Doob-Dynkin Lemma (with (Ω̃, Ã) = (W,B(W ))), for every B ∈ B(V ), there exists τ(·, B) :
W → R such that

κ(ω,B) = τ(Y (ω), B) ∀ω ∈ Ω, ∀B ∈ B(V ).

Then τ satisfies

(i) y 7→ τ(y,B) is B(W )/B(R)-measurable for every B ∈ B(V ) by definition of τ (i.e. by Lemma
3.5.33),

(ii) B 7→ τ(y,B) is a probability measure on (V,B(V )) for every y ∈ {Y (ω) : ω ∈ Ω}, since this
is true for B 7→ κ(ω,B) = τ(Y (ω), B) = τ(y,B) and ω ∈ Y −1(y),

(iii) for any B ∈ B(V ) and any A ∈ B(W ) by Thm. 3.2.24 and Def. 3.5.26 (iii) (since here
“F = σ(Y )” and [Y ∈ A] ∈ σ(Y ))∫

V
1A(y)τ(y,B) dPY =

∫
Ω
1A(Y (ω))τ(Y (ω), B) dP(ω)

=

∫
Ω
1A(Y (ω))κ(ω,B) dP(ω)

=

∫
Ω
1A(Y (ω))1B(X(ω)) dP(ω)

= P[X ∈ B, Y ∈ A].

Hence we have shown the existence of a regular version of the conditional distribution as in
Def. 3.5.22.
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Conditional densities

Suppose that X : Ω→ Rm and Y : Ω→ Rn are two RVs on the probability space (Ω,A,P). Assume
that (X,Y ) : Ω→ Rm+n has the joint (measurable) density fX,Y : Rm+n → [0,∞).

Then for any A ∈ B(Rn), by Fubini’s theorem

P[Y ∈ A] = P[X ∈ Rn, Y ∈ A] =

∫
Rn×A

fX,Y (x, y) d(x, y) =

∫
A

∫
Rn
fX,Y (x, y) dx dy.

Hence the marginal Y : Ω→ Rn has a density, which is given by

fY (y) :=

∫
R
fX,Y (x, y) dx.

We also say fY is the marginal density of Y . We point out that we use here the fact that
y 7→

∫
Rn fX,Y (x, y) dx is measurable, which is also a consequence of Fubini’s theorem. Next, let us

consider a regular version of the conditional distribution P[X ∈ ·|Y = y] of X given Y = y. It turns
out that in the present setting (a version of the) measure P[X ∈ ·|Y = y] has a density, which we
call the conditional density, and denote by

fX|Y (·|y) :=
dP[X ∈ ·|Y = y]

dλm
.

Proposition 3.5.36. It holds that

fX|Y (x|y) =

{
fX,Y (x,y)
fY (y) if fY (y) ∈ (0,∞)

f0(x) if fY (y) ∈ {0,∞}
(3.5.4)

for some fixed probability density f0 on Rn, is a density of (a version of) P[X ∈ ·|Y = y].

Remark 3.5.37. The set {y ∈ Rn : fY (y) = 0} is a PY -null set, and also {y ∈ Rn : fY (y) =∞} is
a λ-null set (and thus a PY -null set) since otherwise

∫
R2 fX,Y (x, y) dx dy =

∫
R fY (y) dy would not

be finite. By Lemma 3.5.23, the conditional distribution is only unique PY -a.e., hence in (3.5.4) it
doesn’t matter how we define fX|Y (x, y) for y with fY (y) ∈ {0,∞}. Hence (3.5.4) is in agreement
with our definition of conditional probabilities. In practice, fX|Y (·|y) is only defined for y with
fY (y) > 0.

Proof of Prop. 3.5.36. By Thm. 3.5.35 the measure P[X ∈ ·|Y = y] on (Rm,B(Rm)) exists.
For y ∈ Rn and B ∈ B(Rm) set

τ(y,B) :=

∫
B
fX|Y (x, y) dx.

Then

(i) y 7→ τ(y,B) is measurable for every B ∈ B(R) (this is a consequence of Fubini’s theorem),

(ii) B 7→ τ(y,B) is a probability measure for every y ∈ Rn since
∫
Rm fX|Y (x, y) dx = 1 for every

y ∈ Rn,
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(iii) for every B ∈ B(Rm) and every A ∈ B(Rn), with the PY -null set N := {y : fY (y) ∈ {0,∞}},∫
A
τ(y,B) dPY (y) =

∫
A\N

∫
B
fY (y)fX|Y (x, y) dx dy

=

∫
A\N

∫
B
fX,Y (x, y) dx dy

=

∫
A×B

fX,Y (x, y) dx dy +

∫
N

∫
B
fX,Y (x, y) dx dy

= P[X ∈ A, Y ∈ B],

where we used
∫
N

∫
B fX,Y (x, y) dx dy ≤

∫
N fY (y) dy = PY [N ] = 0.

3.6 Some common distributions

3.6.1 Bernoulli

Given a parameter 0 ≤ p ≤ 1, the Bernoulli RV X ∼ Ber(p) is defined such that P[X = 1] = p and
P[X = 0] = 1− p. This RV can be thought of as representing a coin flip with probability of heads
equal to p. It is a special case of the binomial distribution with n = 1.

3.6.2 Binomial

For 0 ≤ p ≤ 1 and n ∈ N, we define the binomial RV X ∼ Bin(n, p) with probability mass function

P[X = k] =

(
n

k

)
pk(1− p)n−k, k = 0 . . . n.

This mass function can be thought of as the probability of k heads in n independent trials of a
Bernoulli RV.

3.6.3 Uniform

For a < b, the uniform RV X ∼ uniform(a, b) has probability density function

fX(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise.

A uniform distribution assigns the same probability mass to all sub-intervals of the same length
within its support.

3.6.4 Exponential

For λ > 0, the exponential RV X ∼ Exp(λ) has probability density function

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise.

The exponential RV is memoryless: for 0 ≤ s < t,

P[X > s+ t | X > s] =
e−λ(s+t)

e−λs
= e−λt = P[X > t].
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3.6.5 Univariate Gaussian

For µ ∈ R and σ ∈ (0,∞), the Gaussian RV X ∼ N (µ, σ2) can be defined by the probability
density function

fX(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

3.6.6 Multivariate Gaussian

First, let X = (X1, . . . , Xn) be a vector of real-valued RVs. We say that X1, . . . , Xn are “jointly
normal” iff a>X is Gaussian for every a ∈ Rn. Equivalently, we say that X has a multivariate
Gaussian distribution, X ∼ N(µ,Σ). µ ∈ Rn is the mean of X and Σ ∈ Rn×n is the covariance of
X. If Σ is positive definite, then the probability density of X is

fX(x) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Jointly normal RVs X1, . . . , Xn are independent iff they are uncorrelated. All marginal and condi-
tional distributions of the multivariate Gaussian are (multivariate) Gaussian.

Note that if Σ is not positive definite (in which case it will be positive semi-definite), X can
still be multivariate Gaussian. In this case, it is customary to describe X through its characteristic
function. For any RV X, the characteristic function φX is:

φX(λ) = E[eiλ>X ], λ ∈ Rn.

It is thus a function from the real numbers to the complex numbers; it always exists and com-
pletely characterizes the distribution. For a multivariate Gaussian, X ∼ N(µ,Σ), we have φX(λ) =

eiλ>µe−λ
>Σλ/2. See a more advanced probability text (e.g., Grimmett & Stirzaker) for more infor-

mation about characteristic functions and how they are useful.

3.6.7 Chi-squared

A chi-squared distributed RV with k degrees of freedom, X ∼ χ2(k), is the distribution of a sum
of the squares of k independent standard normal RVs. Its probability density function (pdf) is

fX(x) =
1

2k/2Γ (k/2)
x
k
2
−1e−

x
2 ,

where Γ (·) is the gamma function.
A chi-squared RV X ∼ χ2(k) has mean k and variance 2k. Also note that the sum of chi-squared

distributed RVs is also chi-squared distributed. Specifically, if {Xi}ni=1 are independent chi-squared
variables with {ki}ni=1 degrees of freedom, respectively, then the RV Y =

∑n
i=1Xi is chi-squared

distributed with
∑n

i=1 ki degrees of freedom.

3.7 Distances and divergences

Here we consider how to quantify the “difference” between probability measures. Some of these
measures of “difference” are distance functions in the proper mathematical sense. Others do not
satisfy the triangle inequality and are thus only so-called divergences.

Let (Ω,A) be a measurable space. The first distance we consider is the total variation distance:
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Definition 3.7.1. The total variation distance between two probability measures P and Q on
(Ω,A) is defined as:

DTV(P,Q) = sup
A∈A
|P[A]−Q[A]|.

This is the largest possible difference between the probabilities that the two distributions can assign
to the same event.

Exercise 3.7.2. If P� µ and Q� µ, show that DTV(P,Q) = 1
2(
∫

Ω |
dP
dµ −

dQ
dµ | dµ).

Another common distance is the Hellinger distance.

Definition 3.7.3. Consider two probability measures P and Q that are absolutely continuous with
respect to a third measure µ (such a measure always exists, for example 1

2(P+Q)). The Hellinger
distance between P and Q is defined as:

DH(P,Q) =

1

2

∫
Ω

(√
dP
dµ
−

√
dQ
dµ

)2

dµ

 1
2

. (3.7.1)

If µ� ν, then

DH(P,Q) =

1

2

∫
Ω

(√
dP
dµ
−

√
dQ
dµ

)2

dµ

dν
dν

 1
2

=

1

2

∫
Ω

(√
dP
dν
−
√

dQ
dν

)2

dν

 1
2

, (3.7.2)

and thus (3.7.1) does not depend on which measure µ was chosen. In particular, if Ω = Rd and P
and Q are absolutely continuous with respect to the Lebesgue measure λd, then Hellinger distance
in (3.7.2) can be expressed through the probability densities dP

dλd
and dQ

dλd
.

Remark 3.7.4. In case P� Q, DH(P,Q) = (1
2

∫
Ω(1−

√
dQ
dP )2 dP)1/2, and the normalization constant

1
2 guarantees DH(P,Q) ∈ [0, 1]. A similar remark can be made about DTV, cp. Exercise 3.7.2.

The Kullback-Leibler (KL) divergence (also called relative entropy) is a measure of how one
probability distribution diverges from a second.

Definition 3.7.5. The Kullback-Leibler divergence between two probability measures Q and
P is defined as:

DKL(P‖Q) =

{∫
Ω log

(
dP
dQ

)
dP if P� Q

∞ otherwise.

If P and Q are equivalent,

DKL(P‖Q) = −
∫

Ω
log

(
dQ
dP

)
dP.

If Ω = Rd and P and Q have densities p = dP
dλd

and q = dQ
dλd

, the KL divergence can be written as

DKL(P‖Q) =

∫
Ω

log

(
p(x)

q(x)

)
p(x)dx.
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We note that the KL divergence is not a distance metric, as it is not symmetric. In contrast, the
total variation distance and the Hellinger distance are distance metrics. However, the KL divergence
is non-negative and takes the value 0 iff P = Q. This result is known as Gibb’s inequality.

Compared to the total variation distance and the Hellinger distance, the KL divergence has
computational advantages in certain situations. We can write the KL divergence as

DKL(P‖Q) =

∫
log p(x)p(x)dx−

∫
log q(x)p(x)dx,

where the second part of the right hand side is called the cross entropy,

H(P‖Q) = −
∫

log q(x)p(x)dx.

Given a set of samples drawn from P, it is possible to compute the cross entropy for a given Q with
known density function without knowing the density function of P. This is particularly useful for
many tasks in computational statistics such as importance sampling and density estimation.

The next proposition summarizes the most important relations between the above divergences.
The proof is left as an exercise.

Proposition 3.7.6. It holds

(i) DH(P,Q)2 ≤ DTV(P,Q) ≤
√

2DH(P,Q).

Moreover, if P and Q are equivalent

(ii) DH(P,Q)2 ≤ 1
2DKL(P‖Q),

(iii) DTV(P,Q)2 ≤ 1
2DKL(P‖Q).

Finally, we show how a bound on the Hellinger distance implies a bound on the difference of
expectations taken with respect to two different probability measures. To this end in the following
we denote EP[f ] :=

∫
f dP, i.e. the index indicates the probability measure.

Lemma 3.7.7. Let P and Q be two probability measures on a measurable space (Ω,A). Let f :
Ω→ V be a RV for a separable Banach space V , such that f has finite second moments with respect
to both P and Q. Then

‖EP[f ]− EQ[f ]‖ ≤ 2(EP[‖f‖2] + EQ[‖f‖2])1/2DH(P,Q).

Proof. Let P� µ and Q� µ. Then

‖EP[f ]− EQ[f ]‖ ≤
∫

Ω
‖f‖

∣∣∣∣ dP
dµ
− dQ

dµ

∣∣∣∣ dµ

=

∫
Ω

(
1√
2

∣∣∣∣∣
√

dP
dµ
−

√
dQ
dµ

∣∣∣∣∣
)(
√

2‖f‖

∣∣∣∣∣
√

dP
dµ

+

√
dQ
dµ

∣∣∣∣∣
)

dµ

≤

1

2

∫
Ω

(√
dP
dµ
−

√
dQ
dµ

)2

dµ

1/22

∫
Ω
‖f‖2

(√
dP
dµ

+

√
dQ
dµ

)2

dµ

1/2

≤

1

2

∫
Ω

(√
dP
dµ
−

√
dQ
dµ

)2

dµ

1/2(
4

∫
Ω
‖f‖2

(
dP
dµ

+
dQ
dµ

)
dµ

)1/2

= 2(EP[‖f‖2] + EQ[‖f‖2])1/2DH(P,Q).
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Chapter 4

Bayesian Inversion

In this chapter we discuss the Bayesian approach towards inverse problems. In contrast to the
methods of Chapter 2, in the Bayesian setting all involved quantities are modelled as random
variables. As such, the question to be answered is not what is the value of the unknown variable?,
but rather what is the distribution of the unknown variable? It turns out that this is a very
powerful viewpoint, leading to a host of numerical methods with broad applications in statistics,
applied mathematics and machine learning. Additionally, it has the mathematical advantage of
yielding a well-posed inverse problem, as will be discussed in this chapter.

4.1 The Bayesian inverse problem

As in the previous chapter, we will use capital letters to denote RVs. We denote by X the unknown
of primary interest which we wish to identify, by Y an observable quantity, and by E a noise term.
In the most general form, the model is described by a possibly nonlinear operator Φ such that

Y = Φ(X,E).

Thus Φ ties together the three RVs X, Y and E, and their probability distributions are interde-
pendent. The RV X will also be referred to as the parameter that we wish to infer. The RV Y
is often called the measurement, observation or data, and E can be interpreted as a measurement
error. The most common model for the measurement error is that of additive noise, i.e.

Y = Φ(X) + E (4.1.1)

and we will concentrate on this situation in the following. The interpretation is that we make an
observation of Φ(X) that is polluted by the noise E.

For an underlying probability space (Ω,A,P), the following assumptions are made throughout
this chapter:

(i) X : Ω → V is a RV for some separable Banach space V . As such it has a distribution PX ,
which is called the prior distribution (or simply the prior). The prior is interpreted as the
information available on X, before observing Y .

(ii) E : Ω→W is a RV onto a second separable Banach space W , and E and X are independent.

(iii) Φ : V →W is a Borel-measurable function. We will refer to it as the forward operator.
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From (4.1.1) we observe that Y : Ω → W is also a RV. Assuming that we observe Y (i.e. we are
given a realization Y (ω) = Φ(X(ω)) + E(ω) ∈ W for some ω ∈ Ω), the Bayesian inverse problem
is then to determine the distribution of X conditioned on the event [Y = y]. Under the present
assumptions, this distribution can be interpreted as pooling all available information that we (can)
have on X.

Terminology 4.1.1. Given a realization y ∈W of Y , the solution to the Bayesian inverse problem
is the conditional distribution P[X ∈ ·|Y = y]. We call P[X ∈ ·|Y = y] the posterior distribution
(or simply the posterior).

The algorithms discussed in Chapter 2 returned a point estimate x for a given value y, for
instance assuming the model y = Ax for some matrix A. One advantage of Bayesian methods is,
that they do not merely deliver point estimates, but acknowledge the fact, that we cannot know
the exact value of x, for instance because there may exist multiple xj with Axj = y due to A being
non-regular. This is reflected in the posterior being a distribution, and thus assigning probabilities
to events of the type [X ∈ B], B ∈ B(V ). The posterior represents our knowledge and uncertainty
about X.

Apart from computing point estimates, which we discuss in the next section, the Bayesian
approach additionally allows to compute quantities like the variance to investigate uncertainty—a
large variance of the parameter w.r.t. the posterior may for instance indicate that the data is not
very informative about the parameter. In this chapter we investigate how to determine and explore
the posterior.

4.2 Estimators

Even though the posterior contains all available information about X, it is still desirable to have a
point estimate, i.e. a concrete value x ∈ V which can be interpreted as the “most probable” value
of X (in a suitable sense) given that we observed some value y for Y . Part of the reason is that
the posterior distribution is a measure on V—a possibly high- or even infinite-dimensional Banach
space. This precludes visualization of the posterior density and its properties.

Before continuing, we first introduce some shorter notation for the occurring distributions.
Furthermore, we will assume in the following that real valued RVs are absolutely continuous w.r.t.
the Lebesgue measures, and thus have densities.

• The prior distribution PX on (V,B(V )) will be denoted by µX . If V = Rn, we write πX(x)
for its density.

• The posterior distribution P[X ∈ ·|Y = y] on (V,B(V )) is denoted by µX|y. If V = Rn, we
write πX|Y (x|y) for its density.

• The conditional distribution P[Y ∈ ·|X = x] is denoted by µY |x. If W = Rm we write
πY |X(y|x) for its density.

• The noise distribution PE on (W,B(W )) is denoted by µE . If W = Rm we write πE(e) for its
density.

Similarly, we will denote the joint density of X and Y by πX,Y (x, y), and the joint density of
X and E by πX,E(x, e). Note that the standing assumption of X and E being independent implies
πX,E(x, e) = πX(x)πE(e).
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CM CMMAP MAP

Figure 4.1: MAP and CM for two posterior distributions.

The density πY |X(y|x) is called the likelihood. For a fixed x ∈ V , it describes the probability
distribution of the observed quantity Y , and thus expresses the likelihood of different measurement
outcomes for fixed parameter x. We can also see it as a function of x, in which case the x-value
maximizing π(y|x) can be interpreted as “best explaining” the observed data y. Let us assume for
the moment that all densities exist. Then we consider the following three point estimates:

(i) Maximum likelihood (ML): The maximum likelihood estimate is a popular estimate in statis-
tics. It is defined as a point

xML ∈ argmaxx πY |X(y|x).

(ii) Maximum a posteriori (MAP): A MAP point, is a point maximizing the posterior density

xMAP ∈ argmaxx πX|Y (x|y).

(iii) Conditional mean (CM): The conditional mean is the posterior expectation of X, i.e.

xCM := E[X|Y = y] =

∫
V
x dµX|y(x) =

∫
V
xπX|Y (x|y) dx.

We point out that computing xML and xMAP requires solving an optimization problem, while
the computation of xCM requires computing (a high-dimensional) integral. For this reason the
computational techniques can differ significantly. However, modern Bayesian techniques are often
rooted in a combination of optimization, sampling and integration methods. Moreover, while xML

and xMAP need not be unique, xCM is (in case the expectation exists). The advantage of xCM is
that it is not strongly affected by small changes in the posterior measure, and this will be discussed
in more detail in the following sections. Such a statement is not true for xMAP. On the other hand,
xCM has the disadvantage that it does not necessarily correspond to a point with high posterior
density. Such a case is often accompanied by the variance of the posterior being high, indicating
that we should not be too confident in our point estimate either way. Figure 4.1 visualizes these
statements.

In this lecture we concentrate on the CM estimator.
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4.3 Bayes’ theorem

We start with the finite dimensional case where V = Rn and W = Rm and X : Ω → V and
Y : Ω→W are RVs with joint density πX,Y .

Theorem 4.3.1 (Bayes’ theorem). Let (Ω,A,P) be a probability space and X : Ω → Rn, Y :
Ω → Rm two RVs with joint density πX,Y and marginal densities πX(x) =

∫
Rm πX,Y (x, y) dy and

πY (y) =
∫
Rn πX,Y (x, y) dx. Let πY |X(y|x) be a conditional density of Y given X. Then µY -a.e.

πX|Y (x|y) =
πY |X(y|x)πX(x)

πY (y)
. (4.3.1)

Proof. By Prop. 3.5.36 and Rmk. 3.5.37 there exists a PX -null set NX ⊆ Rn such that for all
x ∈ N c

X

πY |X(y|x) =
πX,Y (x, y)

πX(x)
for λm-a.e. y ∈ Rm, (4.3.2)

with the denominator being a positive number. With the PY -null set NY := {y : πY (y) ∈ {0,∞}},
set for y ∈ N c

Y and B ∈ B(Rn) with πX|Y (x|y) as in (4.3.1)

τ(y,B) :=

∫
B
πX|Y (x|y) dx.

Then for any A ∈ B(Rm) and any B ∈ B(Rn), using Fubini’s theorem, (4.3.1) as a definition of
πX|Y , and (4.3.2),∫

A
τ(y,B) dPY (y) =

∫
A\NY

τ(y,B) dPY (y)

=

∫
A\NY

∫
B
πX|Y (x|y)πY (y) dx dy

=

∫
A\NY

∫
B\NX

πY |X(y|x)πX(x) dx dy +

∫
NX

∫
A\NY

πY |X(y|x) dy πX(x) dx

=

∫
A\NY

∫
B\NX

πX,Y (x, y) dx dy

= P[Y ∈ A,X ∈ B].

Here we have used that PX [NX ] = PY [NY ] = 0.

Bayes’ theorem is often referred to in the form

posterior ∝ likelihood · prior (4.3.3)

where ∝ signifies equality of two functions up to a constant (independent of the function argument).
In our notation the posterior is πX|Y (x|y), the likelihood πY |X(y|x) and the prior πX(x). Equality
holds up the multiplicative factor πY (y)−1, which does not depend on x—the argument of the
conditional density x 7→ πX|Y (x|y). Hence the posterior is proportional to the prior multiplied with
the likelihood. The likelihood represents the information obtained through the data and can be
interpreted as updating our prior belief (πX) on the parameter.
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Next we deduce explicit expressions of the posterior for the additive noise model (4.1.1). To this
end, we first compute the likelihood. With Φ : V →W , introduce the shift operator SΦ(x) : W →W
via

SΦ(x)(y) := y + Φ(x).

This function is measurable, and hence for the probability measure µE on (W,B(W )), the pushfor-

ward S
Φ(x)
] µE also is a probability measure on (W,B(W )).

Lemma 4.3.2. Let (Ω,A,P) be a probability space, V , W two separable Banach spaces, Φ : V →
W measurable, and X : Ω → V as well as E : Ω → W two independent RVs. Assume that

x 7→ S
Φ(x)
] µE(A) is measurable for every A ∈ B(W ).

Then with the RV Y := Φ(X) + E : Ω→W it holds µX-a.e.

µY |x = S
Φ(x)
] µE .

Proof. Define for A ∈ B(W ) and x ∈ V

τ(x,A) := (S
Φ(x)
] µE)(A).

Since µE and consequently S
Φ(x)
] µE are probability measures, A 7→ τ(x,A) = S

Φ(x)
] µE(A) defines

a probability measure on W for every x. Measurability of x 7→ τ(x,A) holds by assumption. Next,
let B ∈ B(V ). Then

P[Y ∈ A,X ∈ B] =

∫
Ω
1A(Y (ω))1B(X(ω)) dP(ω)

=

∫
Ω
1A(Φ(X(ω)) + E(ω))1B(X(ω)) dP(ω).

Set ϕ : V ×W → R via ϕ(x, e) = 1A(Φ(x) + e)1B(x). Then ϕ is measurable as a composition of
measurable functions, and the integrand equals ϕ(Z) with Z denoting the RV (X,E) : Ω→ V ×W .
By Thm. 3.2.24, since Z]P = PZ = PX,E = µX ⊗ µE due to the independence of X and E,

P[Y ∈ A,X ∈ B] =

∫
Ω
ϕ(Z(ω)) dP(ω)

=

∫
V×W

1A(Φ(x) + e)1B(x) d(PX ⊗ PE)(x, e)

=

∫
V
1B(x)

∫
W
1A(Φ(x) + e) dµE(e) dµX(x).

By a change of variables (again Thm. 3.2.24)

P[Y ∈ A,X ∈ B] =

∫
V
1B(x)

∫
W
1A(SΦ(x)(e)) dµE(e) dµX(x)

=

∫
V
1B(x)

∫
W
1A(e) dS

Φ(x)
] µE(e) dµX(x)

=

∫
V
1B(x)τ(x,A) dPX(x).

Thus τ(x,A) is a conditional distribution of Y given X.
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Let’s again consider the finite dimensional case first.

Corollary 4.3.3. Let Y = Φ(X) + E where X : Ω→ Rn, E : Ω→ Rm are independent RVs with
densities πX and πE and Φ : Rn → Rm is measurable. Then µY -a.e.

πX|Y (x|y) =
πE (y − Φ(x))πX(x)

Z(y)
,

where

Z(y) =

∫
Rn
πE (y − Φ(x))πX(x) dx.

Proof. By definition of SΦ(x)(y) = y + Φ(x), we have for any A ∈ B(Rm)

S
Φ(x)
] µE(A) = µE({y ∈ Rm : y + Φ(x) ∈ A})

=

∫
Rm

1A(y + Φ(x))πE(y) dy

=

∫
Rm

1A(y)πE(y − Φ(x)) dy,

and thus S
Φ(x)
] µE has density y 7→ πE(y − Φ(x)). Hence by Lemma 4.3.2 the conditional density

πY |X(y|x) is equal to πE(y − Φ(x)) for µX -a.e. x ∈ V . The statement then follows by Thm. 4.3.1
and the observation that by definition of the conditional density for every A ∈ B(Rm)

P[Y ∈ A,X ∈ Rn] =

∫
Rn

∫
A
πY |X(y|x) dy πX(x) dx =

∫
A

∫
Rn
πE(y − Φ(x))πX(x) dx dy,

so that Z(y) is equal to the marginal density πY (y) of Y .

Remark 4.3.4. In particular the µY null set {y ∈ Rm : Z(y) = πY (y) = 0} must be excluded in
Cor. 4.3.3.

Let Σ ∈ Rm×m be a symmetric positive definite (SPD) matrix. In the following ‖x‖2Σ :=
x>Σ−1x.

Example 4.3.5 (additive Gaussian noise I). Let E ∼ N (0,Σ) (which is the most common setting
for Bayesian inference problems), then the posterior in Cor. 4.3.3 reads

πX|Y (x|y) ∝ exp

(
−1

2
‖y − Φ(x)‖2Σ

)
πX(x). (4.3.4)

Example 4.3.6. Let A ∈ Rm×n and suppose that for a given y ∈ Rm we wish to find x ∈ Rn
such Ax = y ∈ Rm. Assume that y is a realization of Y = AX + E with E ∼ N (0, Im) where
Im ∈ Rm×m denotes the identity matrix. As a prior we choose µX ∼ N (0, 1

αIn) for some fixed

α > 0, i.e. πX(x) = αn/2

(2π)n/2
exp(−α‖x‖2

2 ), where ‖x‖2 = x>x denotes the squared Euclidean norm.

Then

(i) ML: We have

πY |X(y|x) =
1√

(2π)m
exp

(
−‖Ax− y‖

2

2

)
.

Maximizing the likelihood is thus equivalent to finding x in argminx ‖Ax− y‖.
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(ii) MAP: By Example 4.3.5, πX|Y (x|y) is up to a y-dependent constant equal to

exp

(
−‖Ax− y‖

2 + α‖x‖2

2

)
.

Therefore a MAP point is a point in argminx(‖Ax− y‖2 + α‖x‖2).

(iii) CM: The conditional mean is given by

∫
Rn
xπX|Y (x|y) dx =

∫
Rn xπY |X(y|x)πX(x) dx∫
Rn πY |X(y|x)πX(x) dx

=

∫
Rn x exp

(
−‖Ax−y‖

2+α‖x‖2
2

)
dx∫

Rn exp
(
−‖Ax−y‖

2+α‖x‖2
2

)
dx

.

We make the following observations:

• The ML estimate is not Bayesian: The joint distribution can be written as πX,Y (x, y) =
πY |X(y|x)πX(x) (cp. Prop. 3.5.36). Hence πY |X(y|x) and as a consequence xML are inde-
pendent of the (choice of) prior πX(·). In the above example determining xML amounts to
minimizing ‖Ax−y‖ in x, i.e. to solving the inverse problem without regularization. Therefore
the ML estimator is not really interesting in the context of ill-posed inverse problems.

• The MAP estimate in Example 4.3.6 corresponds to the Tikhonov regularized solution. Thus,
using prior information can be interpreted as adding a form of regularization.

Example 4.3.7. We consider a logistic differential equation modeling the growth of a population
N(t) over time t ≥ 0, with growth rate r > 0 and carrying capacity k:

dN

dt
(t) = rN(t)(k −N(t)), N(0) = N0.

The solution is given by

N(t) =
k

1 + exp(−rkt)( k
N0
− 1)

.

Assume we are given the values r = 0.25 and N0 = 2, and wish to infer k. Suppose that we apriorily
know k ∈ [10, 20], motivating the prior K ∼ uniform(10, 20) for k. At time t = 0.5 we observe
N(t), however the observation is polluted by a noise term E ∼ N (0, 0.5) (independent of K). The
forward operator is

Φ(k) =
k

1 + exp(−0.125k)(k2 − 1)
, k ∈ [10, 20],

the observation is described by

Y = Φ(K) + E, µK,E ∼ uniform(10, 20)⊗N (0, 0.5).

The joint and posterior density for Y = 8 are depicted in Figure 4.2.

Next we show a version of Bayes’ theorem in the infinite dimensional setting. Our goal is to
obtain a statement with a computable density function. In infinite dimensional spaces, there is
no Lebesgue measure. Hence we have to consider a Radon-Nikodym derivative of the posterior
w.r.t. another measure—the prior. Note that it is very natural to assume that the posterior µX|y
is absolutely continuous w.r.t. the prior µX (otherwise the posterior would assign positive measure
to an event to which we have apriorily assigned measure 0).
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Figure 4.2: Joint and posterior density in Example 4.3.7.

Theorem 4.3.8 (Bayes’ theorem). Let (Ω,A,P) be a probability space, V , W two separable Banach
spaces, X : Ω→ V , E : Ω→ W two RVs and Φ : V → W a measurable function. Suppose further
that for some σ-finite measure ν on (W,B(W ))

(i) S
Φ(x)
] µE � ν for all x ∈ V ,

(ii) (x, y) 7→ dS
Φ(x)
] µE
dν (y) is measurable for (x, y) ∈ V ×W .

Then with the RV Y = Φ(X) +E : Ω→W it holds µX|y � µX for µY -a.e. y ∈W and in this case
(in particular excluding the µY -null set where Z(y) = 0)

dµX|y

dµX
(y) =

1

Z(y)

dS
Φ(x)
] µE

dν
(y),

where

Z(y) =

∫
V

dS
Φ(x)
] µE

dν
(y) dµX(x). (4.3.5)

Proof. By definition of a conditional density and due to Lemma 4.3.2, for every A ∈ B(W )

P[Y ∈ A,X ∈ V ] =

∫
V
µY |x(A) dµX(x)

=

∫
V

(S
Φ(x)
] µE)(A) dµX(x)

=

∫
V

∫
W
1A(e) d(S

Φ(x)
] µE)(e) dµX(x)

=

∫
V

∫
W
1A(e)

dS
Φ(x)
] µE

dν
(e) dν(e) dµX(x)

=

∫
W
1A(e)

∫
V

dS
Φ(x)
] µE

dν
(e) dµX(x) dν(e).
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Here we used that
dS

Φ(x)
] µE
dν (e) is jointly measurable in (x, e) which allowed to use Fubini’s theorem.

This calculation shows that Z(y) is equal to the Radon-Nikodym derivative dµY
dν (y) of µY w.r.t. ν.

In particular N := {y ∈W : Z(y) = 0} is a µY -null set since µY [N ] =
∫

[Z(y)=0] Z(y) dν(y) = 0.
Define

r(x, y) :=

 1
Z(y)

dS
Φ(x)
] µE
dν (y) if y ∈ N c

1 if y ∈ N.

By (ii) and the fact that y 7→ ZY (y) is measurable as a consequence of the Fubini-Tonelli theorem,
we find that r is measurable. Set for B ∈ B(V )

τ(y,B) :=

∫
V
1B(x)r(x, y) dµX(x).

By definition of r the map B 7→ τ(y,B) is a probability measure for every y ∈ W (trivially if
y ∈ N , and due to the definition of the normalizing factor Z(y) otherwise). Moreover, y 7→ τ(y,B)
is measurable as a consequence of the Fubini-Tonelli theorem. For each B ∈ B(V ), A ∈ B(W ) since
Z(y) = dµY

dν∫
W
1A(y)τ(y,B) dµY (y) =

∫
W\N

∫
V
1B(x)1A(y)r(x, y) dµX(x) dµY (y)

=

∫
V
1B(x)

∫
W\N

1A(y)
1

Z(y)

dS
Φ(x)
] µE

dν
(y) dµY (y) dµX(x)

=

∫
V
1B(x)

∫
W\N

1A(y)
1

Z(y)

dS
Φ(x)
] µE

dν
(y)Z(y) dν(y) dµX(x)

=

∫
V
1B(x)

∫
W\N

1A(y) d(S
Φ(x)
] µE)(y) dµX(x)

=

∫
V
1B(x)

∫
W
1A\N (y) dµY |x(y) dµX(x)

= P[X ∈ B, Y ∈ A\N ] = P[X ∈ B, Y ∈ A],

where we have used Lemma 4.3.2 and that P[Y ∈ N ] = 0.

Example 4.3.9 (additive Gaussian noise II). Let V be a separable Banach space and X : Ω→ V
a RV. Let W = Rm, Φ : V → Rm measurable, and assume E : Ω→ Rm is a RV independent of X
and distributed according to N (0,Σ) for an SPD covariance matrix Σ ∈ Rm×m. Then

πE(e) =
dµE
dλm

(e) =
1√

(2π)m det(Σ)
exp

(
−1

2
‖e‖2Σ

)
and

dS
Φ(x)
] µE

dλm
(e) =

1√
(2π)m det(Σ)

exp

(
−1

2
‖e− Φ(x)‖2Σ

)
= πE(e− Φ(x)).

Note that measurability of Φ implies that the last expression is measurable in (e, x). Hence by
Thm. 4.3.8

dµX|y

dµX
(x) ∝ exp

(
−1

2
‖y − Φ(x)‖2Σ

)
,
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which (up to a constant) corresponds to the likelihood. This is to be expected, since we took the
Radon-Nikodym derivative of the posterior w.r.t. the prior. Thus we have established a form of
(4.3.3) in this setting. Up to a constant, the negative log-likelihood

1

2
‖y − Φ(x)‖2Σ

is the so-called data misfit potential. It tells us how well a parameter x fits the observed value
y.

4.4 Stability

In the previous section we have seen that (under certain assumptions), the posterior distribution
exists and is unique (µY -a.e.). Thus the Bayesian inverse problem (BIP) possesses a unique solution.
To further pursue our investigation of well-posedness, in this section we discuss continuity of the
posterior w.r.t. the data.

To this end we focus on the situation where

(i) the noise is finite dimensional: W = Rm, i.e. E : Ω→ Rm,

(ii) the noise has a density: µE � λm.

This covers for example Gaussian noise as discussed in Example 4.3.9. In this case, as we have
shown in the proof of Cor. 4.3.3,

dS
Φ(x)
] µE

dλm
(y) = πE(y − Φ(x)).

We point out that this function is measurable as a composition of Borel measurable functions.
Therefore Thm. 4.3.8 implies that for µY -a.e. y and for every A ∈ B(V )

µX|y(A) =
1

Z(y)

∫
V
1A(x)πE(y − Φ(x)) dµX(x) (4.4.1a)

with normalization constant

Z(y) =

∫
V
πE(y − Φ(x)) dµX(x). (4.4.1b)

We now consider the Hellinger distance between measures of the type (4.4.1a). Under the above
assumptions we have:

Theorem 4.4.1. Let
√
πE : Rm → [0, L) be Lipschitz continuous with Lipschitz constant L ≥ 1.

Let for i ∈ {1, 2}
νi(A) :=

1

Zi(yi)

∫
A
1A(x)πE(yi − Φi(x)) dµX(x)

with yi ∈ Rm, Φi ∈ L2(V, µX ;Rm) and Zi as in (4.4.1b), and where µX is a probability measure on
(V,B(V )). Then if min{Z1, Z2} > 0

DH(ν1, ν2) ≤
√

20L3

min{Z1, Z2}
(‖y1 − y2‖ + ‖Φ1 − Φ2‖L2(V,µX ;Rm)).
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Proof. Set ϕi(x) := yi − Φi(x). We have

DH(ν1, ν2)2 =

∫
V

(√
dν1

dµX
(x)−

√
dν2

dµX
(x)

)2

dµX(x)

=

∫
V

(√
1

Z1
πE(ϕ1(x))−

√
1

Z2
πE(ϕ2(x))

)2

dµX(x)

≤ 2

∫
V

(√
1

Z1
πE(ϕ1(x))−

√
1

Z1
πE(ϕ2(x))

)2

+

(√
1

Z1
πE(ϕ2(x))−

√
1

Z2
πE(ϕ2(x))

)2

dµX(x).

Denote the integral over the first term by I1 and the integral over the second term by I2. Using
Lipschitz continuity of

√
πE

I1 ≤
L

Z1

∫
V
|ϕ1(x)− ϕ2(x)|2 dµX(x)

≤ 2L

Z1

∫
V
‖y1 − y2‖2 + (Φ1(x)− Φ2(x))2 dµX(x)

≤ 2L

Z1

(
‖y1 − y2‖2 + ‖Φ1 − Φ2‖2L2(V,µX ;Rm)

)
. (4.4.2)

Moreover, due to t 7→
√
t : t0 → R being Lipschitz constant with Lipschitz constant 1/(2

√
t0) for

any t0 > 0,

I2 = Z2

(
1√
Z1
− 1√

Z2

)2

=
1

Z1
(
√
Z2 −

√
Z1)2 ≤ 1

4Z1 min{Z1, Z2}
(Z1 − Z2)2.

We note that πE is also Lipschitz continuous with Lipschitz constant 2L2 due to

|πE(a)− πE(b)| = |
√
πE(a)−

√
πE(b)||

√
πE(a) +

√
πE(b)| ≤ 2L2|a− b|.

Next, similar as in (4.4.2),

|Z1 − Z2|2 =

(∫
V
|πE(ϕ1(x))− πE(ϕ2(x))|dµX(x)

)2

≤ 4L4

(∫
V
|ϕ1(x)− ϕ2(x)| dµX(x)

)2

≤ 8L4
(
‖y1 − y2‖2 + ‖Φ1 − Φ2‖2L2(V,µX ;Rm)

)
.

Now, due to Zi =
∫
V πE(yi − Φi(x)) dµX(x) ≤ L2,

1

Z1
+

1

Z1 min{Z1, Z2}
≤ L2

min{Z1, Z2}2
.

Putting everything together

DH(ν1, ν2)2 ≤ 2(I1 + I2) ≤ 2L2(2L+ 8L4)

min{Z1, Z2}2
(
‖y1 − y2‖2 + ‖Φ1 − Φ2‖2L2(V,µX ;Rm)

)
.
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Assume that Z(y) > 0 for all y ∈ Rm in (4.4.1b). Then the previous proposition tells us that
for fixed forward operator Φ = Φ1 = Φ2, the posterior density depends continuously on the data
y; in fact the dependence is locally Lipschitz continuous. As a consequence, also the conditional
mean estimate depends continuously on the data, cp. Lemma 3.7.7.

Similarly, for fixed data y = y1 = y2, the posterior depends continuously on the forward operator.
Such results are of interest, as in practice, the forward operator needs to be replaced by a numerical
approximation Φ̃ to Φ.

Example 4.4.2 (additive Gaussian noise III). Let E ∼ N (0,Σ) for an SPD matrix Σ ∈ Rm×m
then √

πE(y) =
1√

2π det(Σ)
exp

(
−1

4
‖y‖2Σ

)
is Lipschitz continuous (because the derivative is uniformly bounded for all y ∈ Rm) and

√
πE :

Rm → [0, (2π det(Σ))−1/2]. Thus Thm. 4.4.1 shows continuous dependence of the posterior on the
forward operator and the data in this case.

To conclude this discussion, we investigate continuity of the posterior w.r.t. the prior.

Theorem 4.4.3. Let µX , µ̃X be two probability measures on the separable Banach space V , y ∈ Rm
and Φ : V → Rm measurable. Let the noise density πE : Rm → [0, L] for some L < ∞. For
A ∈ B(V ) set

ν(A) :=
1

Z

∫
V
1A(x)πE(y − Φ(x)) dµX(x)

as well as

Z :=

∫
V
πE(y − Φ(x)) dµX(x)

and define ν̃, Z̃ analogous, but with µX replaced by µ̃X .
Then if min{Z, Z̃} > 0

DH(ν, ν̃) ≤ 2L

min{Z, Z̃}
DH(µX , µ̃X).

Proof. Let η be a probability measure on V such that µX � η and µ̃X � η (e.g. η = µX+µ̃X
2 ).

Then, using πE ≤ L,

DH(ν, ν̃)2 =
1

2

∫
V

(√
dν

dη
(x)−

√
dν̃

dη
(x)

)2

dη(x)

=
1

2

∫
V
πE(y − Φ(x))

(√
1

Z

dµX
dη

(x)−

√
1

Z̃

dµ̃X
dη

(x)

)2

dη(x)

≤
∫
V
L

(√
1

Z

dµX
dη

(x)−

√
1

Z

dµ̃X
dη

(x)

)2

dη(x)

+

∫
V
πE(y − Φ(x))

(√
1

Z

dµ̃X
dη

(x)−

√
1

Z̃

dµ̃X
dη

(x)

)2

dη(x). (4.4.3)
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As in the proof of Thm. 4.4.1, the second part of the integral can be bounded by

Z̃

(√
1

Z
−
√

1

Z̃

)2

=
1

Z
(
√
Z̃ −
√
Z)2 ≤ 1

4Z min{Z, Z̃}
(Z − Z̃)2

and with Prop. 3.7.6

|Z − Z̃| ≤ L
∫
V

∣∣∣∣ dµX
dη
− dµ̃X

dη

∣∣∣∣ dη ≤ 2LDTV(µX , µ̃X) ≤ 2LDH(µX , µ̃X).

Hence by (4.4.3)

DH(ν, ν̃)2 ≤ 2L

Z
DH(µX , µ̃X)2 +

L2

2Z min{Z, Z̃}
DH(µX , µ̃X)2.

In all, we have seen that under the stated assumptions (in particular
√
πE is Lipschitz and

bounded, and the normalization constant Z is positive for all y) the posterior density defined in
(4.4.1) depends w.r.t. the Hellinger distance continuously on

• the forward operator Φ ∈ L2
µX

,

• the data y ∈ Rm,

• the prior µX .

In this sense the inverse problem is well-posed.

4.5 Prior measures

The choice of prior plays an important role in Bayesian inference, and is what distinguishes it from
the frequentist approach. In the (finite dim.) Gaussian setting, see Ex. 4.3.4, the prior and the
posterior are equivalent measures. In particular, if the prior assigns the value 0 to an event, then
the same holds for the posterior. Hence, as a general rule of thumb, apart from excluding physically
impossible events, the prior should not be too restrictive.

In this section we discuss a few techniques to construct suitable measures in separable Banach
spaces. As a motivation, we first we look at a PDE driven inverse problem.

Example 4.5.1. Let D ⊆ Rd be a bounded Lipschitz domain and consider the elliptic PDE

−div(a∇u) = f, u|∂D = 0. (4.5.1)

Here we assume f ∈ H−1(D) and a ∈ L∞(D) with essinfx∈Da(x) > 0. Then there exists a unique
weak solution u ∈ H1

0 (D) of (4.5.1). For a bounded linear operator B : H1
0 (D) → Rm define the

forward operator Φ(a) := Bu ∈ Rm; note that the solution u ∈ H1
0 (D) of (4.5.1) depends on a, so

that Φ(a) is well-defined. One can show that Φ is a continuous function from

{a ∈ L∞(D) : essinfx∈Da(x) > 0} → Rm

and thus Φ is also measurable.
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The inverse problem is to find the diffusion coefficient a ∈ L∞ from a noisy measurement

Y = Φ(a) + E, (4.5.2)

with E ∼ N (0,Γ) for an SPD matrix Γ ∈ Rm×m. In order to so, we proceed as outlined in Sec. 4.1:
a : Ω→ L∞(D) is modelled as a RV for a probability space (Ω,A,P), i.e.

a(ω, x) ∈ R, ω ∈ Ω, x ∈ D.

Once we have constructed a prior measure µa on L∞ (µa is the distribution of the RV a), the
posterior can be determined with Thm. 4.3.8.

4.5.1 Karhunen-Loève expansion

Let in this section D ⊆ Rd be a bounded (closed) Lipschitz domain and (Ω,A,P) a probability
space.

The map a : Ω × D → R in Example 4.5.1, which models a random diffusion coefficient in
(4.5.1), allows for two interpretations:

• ω 7→ a(ω, ·) ∈ L∞ is an L∞-valued RV,

• (a(·, x))x∈D is a stochastic process, that is, a family of real-valued RVs indexed over x ∈ D.

For now we adopt the second viewpoint, and use the notation ax : Ω→ R instead of a(·, x). Hence
(ax)x∈D is a collection of RVs. Assuming that each ax : Ω→ R has finite first and second moments,
set for x ∈ D

mx := E[ax] ∈ R

and for x, y ∈ D
c(x, y) := cov(ax, ay) = E[(ax −mx)(ay −my)] ∈ R.

We call c the covariance function. It is symmetric, i.e. c(x, y) = c(y, x), and satisfies for all
n ∈ N

n∑
i,j=1

sisjc(xi, xj) ≥ 0 ∀xj ∈ D, ∀xj ∈ R (4.5.3)

since
∑n

i,j=1 sisjc(xi, xj) = E[(
∑n

j=1 sj(axj−mxj ))
2]. In other words, the matrix c(xi, xj) is positive

semi-definite. Therefore, we say that a function c : D × D → R is positive semi-definite if it
satisfies (4.5.3). Moreover, a stochastic process is called centered if mx = 0 for all x ∈ D. In the
following it will be convenient to work with centered processes, but we emphasize that the following
discussion also applies to non-centered processes (ax)x∈D by considering ãx := ax −mx.

Let us begin our discussion by relating continuity of the covariance function to a form of
continuity of the stochastic process.

Definition 4.5.2. We say that (ax)x∈D is mean-square continuous, if for all x ∈ D holds
ax ∈ L2(Ω,P;R) and

lim
y→x

E[(ax − ay)2] = 0.

This condition can equivalently be stated as limy→x ‖ax − ay‖L2(Ω,P) = 0.
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Lemma 4.5.3. Assume that ax has finite second moment and E[ax] = 0 for all x ∈ D.
Then the covariance function c : D ×D → R is continuous iff the stochastic process (ax)x∈D is

mean-square continuous.

Proof. We have

E[(ax − ay)2] = E[a2
x]− 2E[axay] + E[a2

y] = c(x, x)− 2c(x, y) + c(y, y).

Hence continuity of c implies mean-square continuity of the stochastic process.
Conversely, let (ax)x∈D be mean-square continuous. Then

|c(x+ s, y + t)− c(x, y)| = |E[ax+say+t]− E[axay]|
= |E[(ax+s − ax)(ay+t − ay)] + E[(ax+s − ax)ay] + E[ax(ay+t − ay)]|
≤ ‖ax+s − ax‖L2(Ω,P)‖ay+t − ay‖L2(Ω,P) + ‖ax+s − ax‖L2(Ω,P)‖ay‖L2(Ω,P)

+ ‖ax‖L2(Ω,P)‖ay+t − ay‖L2(Ω,P).

This term tends to 0 as s, t→ 0 due to the mean-square continuity of (ax)x∈D.

Remark 4.5.4. More generally, the smoothness of the covariance function can be related to the
smoothness of paths of the random process; a path is a function a(ω, ·) : D → R for fixed ω ∈ Ω.
This will be further discussed in the exercises.

For a function c ∈ L2(D×D) in the following we consider the Hilbert-Schmidt integral operator
defined as

Tcf(x) =

∫
D
c(x, y)f(y) dy x ∈ D.

Lemma 4.5.5 (Hilbert-Schmidt integral operator). Let c ∈ L2(D × D,R) be symmetric. Then
Tc : L2(D)→ L2(D) is a compact, self-adjoint operator.

Proof. For every f ∈ L2(D)∫
D
Tcf(x)2 dx =

∫
D

(∫
D
c(x, y)f(y) dy

)2

dx

≤
∫
D

∫
D
c(x, y)2 dy

∫
D
f(y)2 dy dx

= ‖c‖2L2(D×D)‖f‖
2
L2(D),

which shows ‖Tc‖L(L2,L2) ≤ ‖c‖L2(D×D).
If additionally g ∈ L2(D), then due to the symmetry of c

〈Tcf, g〉L2(D) =

∫
D

∫
D
c(x, y)f(y)f(x) dy dx = 〈f, Tcg〉L2(D) ,

so that Tc is self-adjoint.
Finally we show compactness. Let (ϕj)j∈N be an orthonormal basis of the separable Hilbert

space L2(D). The functionsD×D 3 (x, y) 7→ ϕi(x)ϕj(y) yield an orthonormal basis (ϕi(x)ϕi(y))i,j∈N
of L2(D×D) (exercise; hint: use Fubini’s theorem). Hence with ci,j =

∫
D

∫
D c(x, y)ϕi(x)ϕj(y) dx dy

it holds
c(x, y) =

∑
i,j∈N

ci,jϕi(x)ϕj(y)
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with convergence in L2(D ×D). Set

cn(x, y) =
n∑

i,j=1

ϕi(x)
∑
j∈N

ci,jϕj(y) ∈ L2(D ×D).

Then Tc − Tcn = Tc−cn and thus by Parseval’s identity

‖Tc − Tcn‖2L(L2,L2) ≤ ‖c− cn‖
2
L2(D×D) =

∑
i>n

∑
j∈N

c2
i,j → 0

as n→∞ since
∑

i,j c
2
i,j <∞. Moreover, for all f ∈ L2(D)

Tcnf(x) =
n∑
i=1

ϕi(x)

∫
D
f(y)

∑
j∈N

ci,jϕj(y) dy ∈ span{ϕ1, . . . , ϕn},

so that Tcn has finite range and is therefore compact. Hence Tc = limn→∞ Tcn is compact.

Exercise 4.5.6. For a symmetric positive semi-definite c ∈ L2(D×D;R) show that Tc : L2(D)→
L2(D) is a positive operator, i.e. 〈Tcf, f〉 ≥ 0 for all f ∈ L2(D).

Since Tc : L2(D)→ L2(D) is a compact, self-adjoint, positive operator, there’s an orthonormal
system (ϕj)j∈N of eigenvectors of Tc with corresponding positive eigenvalues (`j)j∈N and such that
Tcf =

∑
j∈N `j 〈f, ϕj〉L2(D) ϕj (or Tcf =

∑n
j=1 `j 〈f, ϕj〉L2(D) ϕj in case Tc has n ∈ N dimensional

range) is the spectral decomposition of Tc; to avoid distinguishing two cases, for simplicity we
assume in the following that c is such that the range of Tc is infinite dimensional.

Definition 4.5.7. Let H be a separable Hilbert space and A ∈ L(H,H) a bounded positive linear
operator. We say that A is a trace-class operator (or A is of trace class) if for an ONB (ϕj)j∈N
of H holds

tr(A) :=
∑
j∈N
〈Aϕj , ϕj〉H <∞.

One can show that the definition trace tr(A) does not depend on the choice of ONB (ϕj)j∈N
(exercise).

Theorem 4.5.8 (Mercer’s theorem). Let c : D ×D → R be continuous, positive semi-definite and
symmetric. Then there exists an orthonormal system (ϕj)j∈N in L2(D) such that ϕj ∈ C0(D),
Tcϕj = `jϕj for a sequence of nonnegative numbers satisfying `j → 0 as j →∞, and

c(x, y) =
∑
j∈N

`jϕj(x)ϕj(y)

in the sense of absolute and uniform convergence for all x, y ∈ D. Moreover Tc is a trace-class
operator and

tr(Tc) =

∫
D
c(x, x) dx <∞.
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Sketch of proof. Let (ϕj)j∈N be an orthonormal basis of L2(D) such that Tcϕj = `jϕj for some
`j ≥ 0; this is possible by Lemma 4.5.5, and by extending an orthonormal system of eigenvectors
forming a basis of the range of Tc to an orthonormal basis of L2(D).

As pointed out earlier, the functions (ϕi(x)ϕj(y))i,j∈N yield an orthonormal basis of L2(D×D).
Hence

c(x, y) =
∑
i,j∈N

`i,jϕi(x)ϕj(y) ∈ L2(D ×D),

with coefficients `i,j =
∫
D

∫
D c(x, y)ϕi(x)ϕj(y) dx dy. For all i, j, using that Tcϕj = `jϕj ,

`i,j =

∫
D

∫
D
c(x, y)ϕi(x)ϕj(y) dx dy = `i

∫
D
ϕi(y)ϕj(y) dy = `iδij .

Thus
c(x, y) =

∑
j∈N

`jϕj(x)ϕj(y) ∈ L2(D ×D).

Wlog we assume in the following `j > 0 for all j ∈ N since the other terms do not contribute to the
series. Then due to `jϕj(x) =

∫
D c(x, y)ϕj(y) dy and because c is continuous (and thus uniformly

continuous) on the compact set D ×D, it follows that ϕj : D → R is continuous.
Set

cn(x, y) :=
n∑
j=1

`jϕj(x)ϕj(y).

The orthonormality of the ϕj implies that Tcn : L2(D) → L2(D) has the spectral decomposition
Tcnf =

∑n
j=1 `j 〈f, ϕj〉L2(D) ϕj . We conclude that for all f ∈ L2(D)

(Tc − Tcn)f =
∑
j>n

`j 〈f, ϕj〉L2(D) ϕj

and thus 〈(Tc − Tcn)f, f〉L2(D) =
∑

j>n `j 〈f, ϕj〉
2
L2(D) ≥ 0. As a consequence the continuous func-

tion c(x, x)− cn(x, x) : D → R is nonnegative (why?), and thus cn(x, x) is bounded from above by
c(x, x) for all n ∈ N. By definition x 7→ cn(x, x) is monotonically increasing in n, and therefore
cn(x, x)→ g(x) ≤ c(x) for some g : D → R as n→∞.

It can be shown that the convergence cn(x, x)→ g(x) is uniform on D, i.e.

lim
n→∞

sup
x∈D

∣∣∣∣∣∣
∑
j>n

`jϕj(x)2

∣∣∣∣∣∣→ 0. (4.5.4)

We don’t provide the argument here; see for example p. 245 in [F. Riesz and B. Sz.-Nagy, Functional
Analysis, 1955] or Theorem 3.a.1 in [H. König, Eigenvalue Distribution of Compact Operators, 1986]
for a complete proof. For all m ≥ n, by the Cauchy-Schwarz inequality

sup
x,y∈D

|cm(x, y)−cn(x, y)| = sup
x,y∈D

∣∣∣∣∣∣
m∑

j=n+1

`jϕj(x)ϕj(y)

∣∣∣∣∣∣ ≤ sup
x,y∈D

 m∑
j=n+1

`jϕj(x)2
m∑

j=n+1

`jϕj(y)2

1/2

,
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which implies due to (4.5.4) that (cn)n∈N is a Cauchy sequence in C0(D ×D). Therefore its limit
belongs to C0(D × D) as well, and since limn→∞ cn = c in the sense of L2(D × D), we obtain
uniform convergence limn→∞ cn(x, y) = c(x, y) for all x, y ∈ D. Finally,∫

D
c(x, x) dx =

∫
D

∑
j∈N

`jϕj(x)2 dx =
∑
j∈N

`j = tr(Tc) <∞

because c : D ×D → R is continuous and thus bounded.

For every ω, we can formally expand ax(ω) = a(ω, x) as a function of x in the L2(D) orthonormal
basis (ϕj)j∈N:

ax(ω) = a(ω, x) =
∑
j∈N

aj(ω)ϕj(x) (4.5.5)

with the coefficients defined as

aj(ω) =

∫
D
a(ω, x)ϕj(x) dx

being real-valued RVs. Such an expansion is called a Karhunen-Loève expansion. We next show
its convergence.

Theorem 4.5.9 (Karhunen-Loève expansion). Let a : Ω×D → R be a measurable centered mean-
square continuous stochastic process with a ∈ L2(Ω ×D,P ⊗ λd;R). There exists an orthonormal
basis (ϕj)j∈N ⊆ L2(D) and nonnegative numbers (`j)j∈N (we allow for `j = 0) such that with
aj(ω) =

∫
D a(ω, x)ϕj(x) dx and ax(ω) = a(ω, x)

lim
n→∞

sup
x∈D

E

ax − n∑
j=1

ajϕj(x)

2 = 0. (4.5.6)

The coefficients aj satisfy for all j with `j > 0

(i) E[aj ] = 0,

(ii) E[aiaj ] = δij`j and hence V[aj ] = `j.

Proof. In the following (ϕj)j∈N is an orthonormal basis of L2(D) that is obtained by extending an
orthonormal sequence of eigenvectors ϕj of Tc with eigenvalues `j > 0 to an ONB. We extend the
sequence of eigenvalues by zeros, i.e. `j = 0 for all j for which ϕj belongs to the kernel of Tc.

Joint measurability and Fubini’s theorem imply that aj : Ω → R is measurable and aj ∈
L2(Ω,P;R) since ∫

Ω
|aj(ω)|2 dP(ω) =

∫
Ω

∣∣∣∣∫
D
a(ω, x)ϕj(x) dx

∣∣∣∣2 dP(ω)

≤
∫

Ω

∫
D
a(ω, x)2 dx dP(ω) = ‖a‖2L2(Ω×D),

where we used
∫
D ϕj(x)2 dx = 1. Hence aj : Ω → R is a RV with finite first and second moment

for each j.
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Since (ax)x∈D is centered

E[aj ] =

∫
Ω
aj(ω) dP(ω) =

∫
D
ϕj(x)

∫
Ω
a(ω, x) dP(ω) dx = 0.

Moreover since c(x, y) =
∫

Ω a(ω, x)a(ω, y) dP(ω)

E[aiaj ] =

∫
Ω
ai(ω)aj(ω) dP(ω) =

∫
Ω

∫
D
a(ω, x)ϕi(x) dx

∫
D
a(ω, y)ϕj(y) dy dP(ω)

=

∫
D

∫
D
ϕi(x)ϕj(y)c(x, y) dx dy

=

∫
D
`iϕi(y)ϕj(y) dy

= δij`i,

where we used that ϕi is an eigenvector of Tc with eigenvalue `i, and the (ϕj)j∈N are orthonormal
in L2(D).

Next we show (4.5.6). For x ∈ D define

εn(x) := E

ax − n∑
j=1

ajϕj(x)

2 .
We need to prove supx∈D εn(x)→ 0. It holds

εn(x) = E
[
a2
x

]
− 2E

ax n∑
j=1

ajϕj(x)

+ E

 n∑
i,j=1

aiajϕi(x)ϕj(x)

 (4.5.7)

Now

E

ax n∑
j=1

ajϕj(x)

 =

∫
Ω
ax(ω)

n∑
j=1

∫
D
ay(ω)ϕj(y) dyϕj(x) dP(ω)

=
n∑
j=1

∫
D
ϕj(x)ϕj(y)

∫
Ω
ax(ω)ay(ω) dP(ω)︸ ︷︷ ︸

=c(x,y)

dy

=
n∑
j=1

`jϕj(x)2.

Furthermore by (ii)

E

 n∑
i,j=1

aiajϕi(x)ϕj(x)

 =

n∑
i,j=1

ϕi(x)ϕj(x)E[aiaj ] =

n∑
j=1

`jϕj(x)2.

Since E[a2
x] = c(x, x) by (4.5.7) we find

εn(x) = c(x, x)−
n∑
j=1

`jϕj(x)2

and an application of Mercer’s theorem concludes the proof.
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4.5.2 Uniform measures

We let again D ⊆ Rd be a bounded compact Lipschitz domain. The Karhunen-Loève expansion
provides a method to construct measures on function spaces such as L2(D), respectively to sample
from a L2(D)-valued RV: We adopt now again the viewpoint that ω 7→ a(ω, ·) is an L2(D) valued
RV. A sample from this RV can be drawn by first sampling from the RVs (aj)j∈N, and then
computing ∑

j∈N
ajϕj(x).

In practice, the sum is truncated after s terms and
∑s

j=1 ajϕj(x) is obtained as an approximation.
To continue the discussion of Example 4.5.1, we construct an L∞(D) random field through an

expansion with real-valued RVs.

Remark 4.5.10. Let V be a separable Banach space and let Xj : (Ω,A) → (V,B(V )), j ∈ N,
be a sequence of RVs converging pointwise to X : Ω → V . Then for any closed C ⊆ V , with
Cε :=

⋃
v∈C Bε(v) where Bε(v) denotes the open ball of radius ε > 0 and center v, we have

X−1(C) =
⋂
k∈N

⋃
s∈N

⋂
j≥s

X−1
j (C1/k).

This set belongs to A since each Xj is measurable. Thus X−1(Cc) = (X−1(C))c ∈ A, which shows
that the pre-image of open sets are measurable, and thus X is measurable.

Proposition 4.5.11. Let (ϕj)j∈N ⊆ L∞(D) such that ‖ϕj‖L∞(D) = 1 for all j, m ∈ L∞(D) and
(`j)j∈N ∈ `1(N). Furthermore, let (ξj)j∈N be a sequence of iid RVs ξj : Ω → [−1, 1] such that
ξj ∼ uniform(−1, 1).

Then
a(ω, x) := m(x) +

∑
j∈N

`jξj(ω)ϕj(x)

defines a RV ω 7→ a(ω, ·) ∈ L∞(D) satisfying E[a] = m and for all ω ∈ Ω

‖a(ω, ·)‖L∞(D) ≤ ‖m‖L∞(D) +
∑
j∈N

`j , ess inf
x∈D

a(ω, x) ≥ ess inf
x∈D

m(x)−
∑
j∈N

`j . (4.5.8)

Proof. Since each ξj : Ω → R is measurable, also an :=
∑n

j=1 `jξjϕj : Ω → L∞(D) is measurable
as a sum of measurable functions.

Moreover by the triangle inequality ‖an(ω, ·)‖L∞(D) ≤ ‖m‖L∞(D) +
∑

j∈N `j < ∞ for every n,
and thus an converges pointwise to a measurable function a : Ω → L∞(D) by Rmk. 4.5.10. This
also implies the first bound in (4.5.8), and the second bound follows similarly.

Example 4.5.12 (Continuation of Example 4.5.1). Assume that the sequence (`j)j∈N ∈ `1(N) and
m ∈ L∞(D) are chosen such that

ess inf
x∈D

m(x) >
∑
j∈N

`j .

Let ϕj ∈ L∞(D) with ‖ϕj‖L∞(D) = 1 for all j ∈ N and set a(ω, x) = m(x) +
∑

j∈N `jξj(ω)ϕj(x).
Then for every ω ∈ Ω

ess inf
x∈D

a(ω, x) ≥ ess inf
x∈D

m(x)−
∑
j∈N

`j =: a− > 0 (4.5.9)
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and
‖a(ω, ·)‖L∞(D) ≤ ‖m‖L∞(D) +

∑
j∈N

`j <∞. (4.5.10)

Fix ω ∈ Ω. The weak formulation of (4.5.1) is: Find u ∈ H1
0 (D) such that∫

D
a∇u(x)>∇v(x) dx = H−1 〈f, v〉H1

0
∀v ∈ H1

0 (D), (4.5.11)

where the last bracket denotes the application of f ∈ H−1 = H1
0 (D)′ to v ∈ H1

0 (D). Equation
(4.5.9) implies coercivity of the bilinear form on the left-hand side, and (4.5.10) implies its bound-
edness. Therefore, by the Lax-Milgram Lemma, for each ω ∈ Ω there is a unique weak solution to
(4.5.11) for the diffusion coefficient a(ω, ·) ∈ L∞(D). Since the solution depends on a(ω, ·) we also
write u(a(ω), ·) (or simply u(ω, ·)) to emphasize this dependence.

Recall that the inverse problem (4.5.2) is to determine a(ω, ·) ∈ L∞(D) from the measurement
Φ(a(ω, ·)) +E ∈ Rm. The prior measure is in this case the distribution of the RV a : Ω→ L∞(D).
Let

T :=

{
[−1, 1]N → L∞(D)

(ζj)j∈N 7→ m+
∑

j∈N ζj`jϕj(x),
(4.5.12)

with the ϕj ∈ L∞(D) as in Prop. 4.5.11. With the ξj ∼ uniform(−1, 1) iid as in Prop. 4.5.11,
the RV (ξj)j∈N : Ω → [−1, 1]N is distributed according to the probability measure µ := ⊗j∈N λ2
on [−1, 1]N, where λ

2 is the uniform probability measure on [−1, 1] (i.e. 1/2 times the Lebesgue
measure). Therefore the RV

ω 7→ a(ω, ·) = T ((ξj)j∈N)(ω, ·)
is distributed according to T]µ, which is a measure on L∞(D). This is the prior.

For computational purposes, it is much more convenient, to formulate the inverse problem in
terms of the RV (ξj)j∈N : Ω→ [−1, 1]N: With the uniform prior µ on [−1, 1]N, and the measurement
Φ(u(ω, ·))+E ∈ Rm, the goal is to determine (ξj)j∈N. The diffusion coefficient can then be obtained
as a(ω, x) = T ((ξj(ω))j∈N).

So far we have constructed a uniform RV on L∞(D). In practice, one sometimes assumes
knowledge of E[a] and cov(a), and wishes to have a random field with the given expectation and
covariance. Note that such a random field is not unique, since the expectation and covariance do
not uniquely determine a RV. We next give one possible construction. To begin with we show that
Tc from the previous section corresponds to the covariance operator, so that the functions ϕj are
the eigenvectors of the covariance operator.

Lemma 4.5.13. Let a : Ω→ L2(D) be a RV with finite second moment and such that E[a] = m ∈
L2(D). Then cov(a) : L2(D) → L2(D) is given by Tc where c(x, y) = E[(a(·, x) −m(x))(a(·, y) −
m(y))] and c ∈ L2(D ×D).

Proof. By definition of the covariance we have for all f , g ∈ L2(D) with C := cov(a)

〈g, Cf〉L2(D) =

∫
Ω
〈a(ω, ·)−m(·), f(·)〉L2(D) 〈a(ω, ·)−m(·), g(·)〉L2(D) dP(ω)

=

∫
D

∫
D
E[(a(·, x)−m(x))(a(·, y)−m(y))]f(x) dxg(y) dy

= 〈g, Tcf〉L2(D) .
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Furthermore since
∫

Ω

∫
D(a(ω, x)−m(x))2 dx dP(ω) = E[‖a−m‖2L2 ] <∞∫

D

∫
D
c(x, y)2 dx dy =

∫
D

∫
D
E[(a(·, x)−m(x))(a(·, y)−m(y))]2 dx dy

≤
∫
D

∫
Ω

(a(ω, x)−m(x))2 dP(ω) dx

∫
D

∫
Ω

(a(ω, y)−m(y))2 dP(ω) dy

<∞.

Theorem 4.5.9 and Lemma 4.5.13 show that a RV can be expanded in terms the eigenfunctions
of the covariance operator (under the assumptions of Thm. 4.5.9). This also works the other way
around in the following sense:

Proposition 4.5.14. Let (ϕj)j∈N be an orthonormal system in L2(D). Let ξj : Ω → [−1, 1] be a
sequence of iid RVs with ξj ∼ uniform(−1, 1). Then for a sequence (`j)j∈N ∈ `2(N) and m ∈ L2(D)

a(ω, x) := m(x) +
∑
j∈N

`jξj(ω)ϕj(x)

defines a RV a : Ω→ L2(D) where E[a] = m and Cov(a) = Tc with c(x, y) = 1
3

∑
j∈N `

2
jϕj(x)ϕj(y) ∈

L2(D ×D).

Proof. With as(ω, x) := m(x)+
∑s

j=1 `jξj(ω)ϕj(x) it holds for every ω ∈ Ω that as(ω, ·)→ a(ω, ·) ∈
L2(D) as s→∞. Measurability of each ξj : Ω→ R implies measurability of as : Ω→ L2(D). Thus
a : Ω→ L2(D) is measurable by Rmk. 4.5.10.

Note that as → a in the topology of L2(Ω,P;L2(D)):

lim
s→∞

E
[
‖a− as‖2L2(D)

]
= E

∑
j>s

`2jξj(ω)2

 ≤ E

∑
j>s

`2j

 = 0. (4.5.13)

The Cauchy-Schwarz inequality implies in particular as → a in the topology of L1(Ω,P;L2(D)).
Therefore E[a] = lims→∞ E[as] = m.

Next

cs(x, y) := E[(as(·, x)−m(x))(as(·, y)−m(y))]

=
s∑

i,j=1

`i`jϕi(x)ϕj(x)E[ξiξj ]

=
1

3

s∑
i=1

`2iϕi(x)ϕi(y),

where we used that ξi, ξj are independent if i 6= j so that in this case E[ξiξj ] = 0, and additionally

E[ξ2
i ] = 1

2

∫ 1
−1 x

2 dx = 1
3 . From (4.5.13) it follows that cs → c = E[(a(·, x)−m(x))(a(·, y)−m(y))]

in L2(D ×D) as s→∞. An application of Lemma 4.5.13 concludes the proof.
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4.5.3 Gaussian measures

Definition 4.5.15. Let V be a separable Banach space. A Borel measure µ on (V,B(V )) (i.e.
a locally finite measure) is called a Gaussian probability measure iff for every f ∈ V ′ the
measure f]µ is Gaussian; here Dirac measures are considered to be Gaussian with zero variance.
The measure is said to be centered if

∫
R x df]µ(x) = 0 for all f ∈ V ′.

Remark 4.5.16. It can be shown (“Fernique’s theorem”) that for every Gaussian measure µ there
exists α > 0 such that

∫
V exp(α‖x‖2V ) dµ(x) <∞. Thus a RV with Gaussian distribution has finite

moments of all orders.

We concentrate on the case of separable Hilbert spaces H. The expectation and covariance of a
probability measure µ are understood as the expectation and covariance of a RV with distribution
µ: Assuming they exists, the expectation of µ is m :=

∫
H x dµ(x) ∈ H and the covariance operator

C : H → H of µ is the operator satisfying

〈x,Cy〉H =

∫
H
〈h−m,x〉H 〈h−m, y〉H dµ(h) ∀x, y ∈ H.

We state the next result without proof.

Theorem 4.5.17. Let H be a separable Hilbert space. Every Gaussian measure µ on (H,B(H))
has a positive covariance operator Cµ : H → H which is of trace-class and satisfies

tr(Cµ) =

∫
H
‖x‖2H dµ(x) <∞.

Conversely, for every positive trace-class symmetric operator K : H → H there exists a Gaussian
measure µ on H with covariance operator K.

Definition 4.5.18. A RV X : Ω→ H is called Gaussian, if its distribution is a Gaussian measure
on H with expectation m ∈ H and covariance operator C ∈ CL(H,H). In this case we write
X ∼ N (m,C).

Exercise 4.5.19. Check that if X ∼ N (m,C) and h ∈ H, then 〈X,h〉 ∼ N (〈m,h〉 , 〈h,Ch, )〉H .

We mention that, as in the finite dimensional case, Gaussian measures are uniquely determined
through their expectation and covariance operator.

There holds the following Karhunen-Loève expansion for Gaussian measures:

Theorem 4.5.20 (Karhunen-Loève expansion). Let (Ω,A,P) be a probability space. Let D ⊆ Rd
be a compact set and let a : Ω→ L2(D) be a RV with distribution N (m,C). Let (ϕj)j∈N ⊆ L2(D)
be an orthonormal system of eigenvectors of C with positive eigenvalues (`j)j∈N such that Cf =∑

j∈N `j 〈f, ϕj〉L2(D) ϕj.
Then

a(ω, x) = m(x) +
∑
j∈N

aj(ω) ϕj(x), aj ∼ N (0, `j),

in the sense of L2(Ω,P;L2(D)) convergence, where the (aj)j∈N are independent real-valued RVs.
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Proof. We first show that a(ω) − m is P-a.e. in H := span{ϕj : j ∈ N} ⊆ L2(D). Fix h ∈ H⊥.
Then

Ch =
∑
j∈N

`j 〈h, ϕj〉L2(D)︸ ︷︷ ︸
=0

ϕj = 0.

By Exercise 4.5.19

〈a−m,h〉L2(D) ∼ N (0, 〈h,Ch〉L2(D))) = N (0, 0) = δ0,

where δ0 denotes the Dirac measure at 0 ∈ R. Hence 〈a−m,h〉L2(D) = 0 P-a.e. Therefore P-a.e.

(a(ω)−m) ⊥ H⊥ ⇔ a(ω)−m ∈ H.

We conclude that P-a.e. in the sense of L2(D)

a(ω) = m+
∑
j∈N

aj(ω)ϕj aj(ω) = 〈a(ω)−m,ϕj〉L2(D) . (4.5.14)

Again by Exercise 4.5.19 holds aj ∼ N (0, `j), where we used 〈ϕj , Cϕj〉L2(D) = `j . Independence

of the (aj)j∈N follows by the fact that they are uncorrelated:

cov(ai, aj) = E[〈a−m,ϕi〉L2(D) 〈a−m,ϕj〉L2(D)]

= 〈ϕi, Cϕj〉L2(D)

= `iδij .

Convergence in L2(Ω,P;L2(D)) follows by (4.5.14) and Parseval’s identity, which gives∥∥∥∥∥∥a−
m+

s∑
j=1

ajϕj

∥∥∥∥∥∥
2

L2(Ω;L2(D))

=

∫
Ω

∥∥∥∥∥∥a(ω)−

m+
s∑
j=1

aj(ω)ϕj

∥∥∥∥∥∥
2

L2(D)

dP(ω)

=
∑
j>s

E[a2
j ]

=
∑
j>s

`j → 0

since C is of trace class by Thm. 4.5.17, which implies
∑

j∈N `j <∞.

There holds the following converse of the previous theorem, which provides a method to con-
struct Gaussian RVs. The proof is left as an exercise.

Theorem 4.5.21. Let D ⊆ Rd be compact. Let a : Ω×D → R via

a(ω, x) = m(x) +
∑
j∈N

aj(ω)ϕj(x)

where m ∈ L2(D), (ϕj)j∈N is an ONS of L2(D), (`j)j∈N ∈ `1(N) and the aj ∼ N (0, `j) are
independent.

Then a ∼ N (m,Tc) with covariance function c ∈ L2(D ×D) given by

c(x, y) :=
∑
j∈N

`jϕj(x)ϕj(y) ∀x, y ∈ D.
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4.5.4 Uninformative priors

Suppose again that we wish to determine X from the measurement Y . If we have no prior infor-
mation about X, it is tempting to choose a uniform distribution as a prior. However, for example
in case X : Ω → R, this leads to an improper prior with density πX ≡ 1, i.e. πX does not
satisfy

∫
R πX(x) dx = 1. Improper priors may still be used, but are not in line with the theory

discussed in this lecture. Furthermore, a uniform distribution should not be interpreted as being
“uninformative”:

Example 4.5.22. Suppose that we wish to find a parameterX. Assume that we know (apriori) that
X belongs to [0, 1], but we know nothing else about X. We may choose the prior X ∼ uniform(0, 1).
Finding X ∈ [0, 1] is equivalent to finding X2 ∈ [0, 1]. Note that the RV X2 is not uniformly
distributed on [0, 1]: P[X2 ≤ a] = P[X ≤

√
a] =

√
a and thus X2 has density πX2(x) = 1

2
1√
x
.

Hence this prior “favours” smaller values of X2 over larger values of X2. This is counterintuitive:
If we have no information about X ∈ [0, 1], then we also shouldn’t have any information about
X2 ∈ [0, 1].

Definition 4.5.23 (Jeffreys prior). Given a likelihood function L(y, x) := πY |X(y|x) with y ∈ Rm,
x ∈ Rn, Jeffreys prior is defined as

πX(x) ∝
√

det(IX(x)),

where IX(x) ∈ Rn×n is the expected Fisher information of X

IX(x) :=

∫
Rm
∇x`(y, x) · ∇x`(y, x)> πY |X(y|x) dy, `(y, x) := logL(y, x).

Jeffreys prior satisfies the following form of “invariance”: Suppose that X is a Rn valued RV and
g : Rn → Rn is a diffeomorphism with nonnegative Jacobian determinant detDg : Rn → (0,∞).
Then X̃ := g(X) is a RV representing another parametrization of X. To obtain a prior for the
reparametrization X̃, we could now proceed in two ways: (i) given the prior πX(x) ∝

√
det(IX(x)),

the density of X̃ is obtained after a change of variables as πX(g−1(x̃)) detDg−1(x̃) (ii) we may set
πX̃(x̃) =

√
det(IX̃(x̃)) obtained with the reparametrized likelihood πY |X̃(y|x̃) = πY |X(y|g−1(x̃)).

It can be shown that both constructions lead to the same prior.
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Chapter 5

Numerical Methods

After having carefully defined and analysed the well-posedness and stability of Bayesian inverse
problems in a very general setting, we can now address the core task of the course, namely to
consider some specific problems and solve them numerically.

We will start by looking at some typical examples of inverse problems in applications that we
want to consider, which all have an infinite-dimensional state space and often also an infinite-
dimensional (or at least high-dimensional) parameter space. Recall from Chapter 2 that finite
dimensional inverse problems, while still possibly leading to non-existence and non-uniqueness
problems, do typically not violate Hadamard’s third condition of stability in Definition 1.0.1 and –
while still interesting – are fundamentally not as challenging.

We then analyse the effect of numerical approximation on the posterior distribution, such as
the finite element discretisation of the elliptic PDE problem (4.5.1), before considering the Gaus-
sian case (for prior and additive noise) with a linear forward operator, which can be solved in
closed form. In general however, the conditional mean and other statistically interesting quantites
need to be estimated via quadrature. In Section 5.4, we recall some classical and more advanced
sampling-based quadrature methods for high dimensions and in a first attempt apply them directly
to compute the conditional mean with respect to the posterior distribution in Bayesian inverse
problems.

However, finally in Sections 5.6.2-5.8 we present the main numerical methods applied in general
to solve Bayesian inverse problems in practice: the prevalent Markov chain Monte Carlo (MCMC)
method (Sect. 5.6.2-5.6.4), variational methods (Sect. 5.7) and sequential Monte Carlo (Sect. 5.8).

5.1 Examples

Our main focus will be on PDE-constrained Bayesian inverse problems, but more classical examples
are typically in the context of integral equations, such as the problem of X-ray tomography, or
from spatial statistics. We will first briefly discuss those before returning to the two PDE-
constrained model problems that we have already seen in earlier chapters.

X-ray tomography. Given a bounded domain D, for simplicity D ⊂ R2, representing a cross-
sectional slice of the object to be studied. Assume that a pointlike X-ray source is placed on one
side of the object. The radiation passes through the object and is detected on the other side by
an X-ray film or a digital sensor (see Fig. 5.1). It is common to assume that the scattering of the
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Figure 5.1: X-ray measurement setting.

X-rays by the traversed material is insignificant, i.e., only absorption occurs, and that rays are not
deflected through interaction with the material. If we further assume that the mass absorption
coefficient is proportional to the density of the material, the attenuation dI of the intensity I(x)
along a line segment ds at a point x ∈ D is given by

dI = −I(x)θ(x)ds

where θ(x) ≥ 0 is the mass absorption coefficient of the material. We assume that θ is compactly
supported in D and bounded. If an X-ray is transmitted with intensity I`0 along a straight line `
towards a receiver, the received intensity I`r can be obtained from the equation

log I`r − log I`0 =

∫ I`r

I`0

dI

I
= −

∫
`
θ(x) ds . (5.1.1)

The inverse problem of X-ray tomography can thus be stated as a problem of integral geometry:
Estimate the function θ : D → R+ from the values of its integrals along a set of straight lines
{`(n, s) : n ∈ R2, ‖n‖2 = 1, s ∈ R} passing through D, parametrised by their normal vector n and

their distance s > 0 from the origin. Denoting the data by y(n, s) := log
(
I
`(n,s)
r

/
I
`(n,s)
0

)
, equation

(5.1.1) leads to the linear operator equation

y = Rθ

with compact integral operator R, the so-called Radon transform.
The nature of the X-ray tomography problem depends on how many lines of integration are

available. In the ideal case, we have data along all possible lines passing through the object. The
classical results are based on the availability of this complete data. The problem can then be
solved explicitly using the inverse Radon transform. However, it involves differentiating the
data, which is an ill-posed problem in the sense of Hadamard, such that small errors in the data
lead to large errors in the solution.

In practice, often only limited-angle data is available and the data is polluted by electronic
noise that can be assumed to be additive Gaussian noise E ∼ N (0,Σ) to a good approximation.
Upon putting a prior measure µΘ on the parameter Θ ∈ L∞(D), this can be formulated as an
infinite-dimensional (linear) Bayesian inverse problem of the form (4.1.1),

Y = RΘ + E,
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and a typical computational task would be to estimate the conditional mean of the mass absorption
coefficient, i.e.

θCM = E[Θ|Y = y].

Pointwise data for a random field - Gaussian process regression or kriging. Many
problems in spatial statistics are of the form that a functional quantity is to be estimated from a
few point evaluations, a form of statistical interpolation also called kriging.

Let D ⊂ Rd be a bounded open set. Consider a field u ∈ H = L2(D;Rn). Assume that we are
given noisy observations {yk}qk=1 of a function g : Rn → R` of the field u at a set of points {xk}qk=1.
Thus

yk = g(u(xk)) + ηk,

where the {ηk}qk=1 describe the observational noise. Concatenating data, we have

y = G(u) + η,

where y =
(
y>1 , . . . , y

>
q

)> ∈ R`q and η =
(
η>1 , . . . , η

>
q

)> ∈ R`q. The observation operator G maps

V =
(
C(D)

)n ⊂ H to W = R`q. The inverse problem is to reconstruct the field u from the data y.
We further assume that the observational noise η is Gaussian N (0,Σ) and specify a prior

measure µU on the random field U , which is Gaussian N (m0, C0) and determine the posterior
measure µU |y for U given y. This is exactly the problem considered in Example 4.3.9. We recall
that, provided g and thus G are measurable, we get

dµU |y

dµU
(u) ∝ exp

(
−1

2
‖y − G(u)‖2Σ

)
which (up to a constant) corresponds to the likelihood. The negative log-likelihood

1

2
‖y − G(u)‖2Σ

is the so-called data misfit potential (up to the factor 1
2 , which tells us how well function u fits

the observed data y.
If g : Rn → R` is linear, so that G(u) = Au for some linear operator A : V → W , then

the posterior measure µU |y is also Gaussian with a mean and covariance operator that can be
computed explicitly, as we will do in Section 5.3. This is called a Gaussian process and the data
fitting approach is called Gaussian process regression. It has many interesting and favourable
properties and is very popular in computational statistics.

Inverse heat equation. Let us return to the motivating example in Section 1.1, the inverse heat
equation. Recall the one-dimensional heat equation

∂u

∂t
= α

∂2u

∂x2
, for 0 < x < 1, t > 0,

with thermal diffusivity α > 0 and boundary/inital conditions

u(0, t) = u(1, t) = 0, for t > 0, and u(x, 0) = u0(x) , for 0 < x < 1.

85

[Draft of October 6, 2021. Not for dissemination.]



The inverse problem we considered in Section 1.1 was to find the initial temperature profile u0

given the profile u(·, T ) at some time T > 0. As shown, the forward problem admitted the explicit
solution

u(x, t) =
∞∑
n=1

θne
−(nπ)2αt sin(nπx) ,

where θn = 〈u0, sin(nπ·)〉L2(0,1) are the Fourier-sine-coefficients of the initial condition u0.
Denoting by yn the Fourier-sine coefficients of the measured data at time T > 0, assuming an

additive measurement noise, we obtain the following infinite-dimensional (linear) Bayesian inverse
problem: to find posterior distribution µΘ|y for the Fourier coefficients Θ of u0 (understood as a
random sequence in `1) such that

Y = ΛΘ + E

with the linear operator Λ : `1 → `1 that can be represented as an infinite diagonal matrix with
diagonal entries Λnn := e−(nπ)2αT .

This viewpoint shows very clearly how the inversion leads to an exponential amplification of
any errors in the higher frequencies. In the case of a Gaussian prior and a Gaussian measurement
error the posterior distribution is again Gaussian and the problem can be solved explicitly. We will
come back to this example in Section 5.3.

Subsurface flow, heat conduction, impedance tomography. However, the main model
problem we will consider in the rest of this chapter, is the problem to identify the diffusion coefficient
a in a stationary diffusion problem, the elliptic PDE defined in Example 4.5.1.

This model problem is ubiquitous in many fields of mathematics due to the many important
applications it appears in centrally. Whether we are interested in heat conduction, electrostatics,
magnetostatics, porous media flow or even radiation shielding, the central mechanism in all those
physical processes (in practically relevant regimes) is diffusion and a central question in practice
is often how to estimate the diffusion coefficient non-destructively (or with minimal “destruction”)
from indirect measurements.

The Bayesian inverse problem associated with this problem has already been extensively de-
scribed and analysed in Section 4.5. The only important point we want to add here is that even
when the forward operator Φ in (4.5.2) is linear as a map of u, i.e., Φ(a) = Bu as defined in
Example 4.5.1, since u depends nonlinearly on a the forward operator Φ will always be nonlinear
making it the pre-eminent infinite-dimensional non-linear (Bayesian) inverse problems.

There are many more examples of important inverse problems in applications – some of them also
studied in our groups in Heidelberg – such as inverse scattering (geophysics, MRT), inverse
source problems (Tsunami prediction, subsurface pollution), data assimilation (weather pre-
diction), parameter estimation (pattern formation in developmental biology) or epidemiology
(COVID-19 modelling and prediction).

For more examples see [Stuart, 2010, Chap. 3] and [Kaipio & Somersalo, 2004, Chap. 6].

5.2 Discretisation

To numerically solve such an infinite-dimensional inverse problem it is of course necessary to discre-
tise the problem. The approximation error then leads to a bias in the posterior distribution and in
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any derived quantities, such as the conditional mean, that needs to be estimated. Let us consider
the model problems from Section 5.1

For the X-ray tomography problem, the domain D is commonly subdivided using a uniform
Cartesian grid into pixels (or voxels in three dimensions) and the absorption coefficient θ is then
approximated by a piecewise constant approximation θh, where h denotes the mesh size, see [Kaipio
& Somersalo, 2004, Sect. 6.1]. The data is typically already given in discrete form. The same holds
for Gaussian process regression.

In the inverse heat equation problem, also described Section 5.1, the forward problem was
already represented in an orthonormal system. In that case the discretisation is very naturally
(and in some sense optimally) achieved by truncating the infinite series expansions after a suitable
number of terms N . In general, however, finding the initial condition of an evolution equation,
e.g. in the context of the Navier-Stokes, Euler or shallow water equations in data assimilation for
weather forecasting or for tsunami prediction, the forward problem can not be solved explicitly and
the forward operator needs to be discretised, e.g. via finite elements.

Thus, let us now discuss the final and main model problem from Section 5.1, the elliptic PDE
with an unknown diffusion coefficient.

5.2.1 Finite element analysis of the elliptic model problem

The references for the theoretical results quoted in this section are:

• J. Charrier, R. Scheichl, A.L. Teckentrup, Finite element error analysis of elliptic PDEs with
random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Num.
Anal. 51:322–352, 2013.

• I.G. Graham, F.Y. Kuo, J. Nichols, R. Scheichl, C. Schwab, I.H. Sloan, Quasi-Monte Carlo
finite element methods for elliptic PDEs with lognormal random coefficients, Numer. Math.
131:329–368, 2015.

• V.H. Hoang, C. Schwab, A.M. Stuart, Complexity analysis of accelerated MCMC methods
for Bayesian inversion, Inverse Probl. 29:085010, 2013.

• R. Scheichl, A.M. Stuart, A.L. Teckentrup, Quasi-Monte Carlo and multilevel Monte Carlo
methods for computing posterior expectations in elliptic inverse problems, SIAM J. Uncertain.
Quantif. 5:493–518, 2017.

• A.L. Teckentrup, R. Scheichl, M.B. Giles, E. Ullmann, Further analysis of multilevel Monte
Carlo methods for elliptic PDEs with random coefficients, Numer. Math. 125:569–600, 2013.

For completeness we recall the definition of the model problem from Examples 4.5.1 and 4.5.12:
Let D ⊆ Rd be a bounded Lipschitz domain and consider the weak formulation of the elliptic

PDE (4.5.1): Find u ∈ H1
0 (D) such that∫

D
a∇u(x)>∇v(x) dx =

∫
D
f(x)v(x) dx ∀v ∈ H1

0 (D), (5.2.1)

where for simplicity we assume that f ∈ L2(D) and that it is known and not random. Furthermore,
as above a ∈ L∞(D) with essinfx∈D a(x) > 0} and the forward (observation) operator Φ(a) := Bu ∈
Rm for some bounded linear operator B : H1

0 (D) → Rm – although for some of the results below
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the uniform ellipticity is not needed and we could also consider nonlinear functionals. It is also
possible to extend the analysis to a random or less regular source term f . The inverse problem is
to find the diffusion coefficient a ∈ L∞(D) from noisy measurements

Y = Φ(a) + E, (5.2.2)

with E ∼ N (0,Σ) for an SPD matrix Σ ∈ Rm×m. To solve this inverse problem we model a as
a RV from Ω to L∞(D), for a probability space (Ω,A,P) and associated prior measure µa. The
posterior can then be defined via Thm. 4.3.8.

However, to solve this problem numerically, we need to discretise (5.2.1). Let us recall without
proofs some of the results from Chapter II.7 of the lecture “High-Dimensional Approximation and
Applications in Uncertainty Quantification” (HDAUQ), taught in SS20 at Heidelberg. (For more
details and proofs see the notes on Moodle.): We assume that for almost all ω ∈ Ω (P-a.s.),
realizations a(·, ω) of the coefficient function a are strictly positive, lie in L∞(D) and satisfy

0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) <∞ for a.e. x ∈ D, (5.2.3)

where
amin(ω) := ess inf

x∈D
a(x, ω), amax(ω) := ess sup

x∈D
a(x, ω). (5.2.4)

The following theorem is a simple consequence of the Lax-Milgram Lemma [HDAUQ, Lem. B.5].

Theorem 5.2.1. P-a.s. problem (5.2.1) has a unique solution u(·, ω) ∈ H1
0 (D) and

|u(·, ω)|H1(D) ≤ Ca−1
min(ω)‖f‖L2(D) .

If a−1
min ∈ Lp(Ω), for some p ∈ [1,∞], then

‖u‖Lp(Ω;H1
0 (D)) ≤ C‖a−1

min‖Lp(Ω;R)‖f‖L2(D) .

Let Uh ⊂ H1
0 (D) denote a closed subspace, e.g., the finite element (FE) space of piecewise

polynomial functions with respect to a triangulation Th of D with mesh width h > 0 [HDAUQ,
App. B]. Suppose uh : Ω→ Uh satisfies P-a.s.∫

D
a(x, ω)∇uh(x, ω)>∇vh(x) dx =

∫
D
f(x)vh(x) dx ∀vh ∈ Uh . (5.2.5)

Since Uh is a closed subspace of H1
0 (D) with norm | · |H1(D) all the above results hold in an identical

form also for uh; in particular:

Theorem 5.2.2. The results and the bounds in Theorem 5.2.1 hold under the same assumptions
on a and f also for the FE system (5.2.5) and its solution uh.

To bound the FE error we also need a regularity assumption.

Assumption 5.2.3. P-a.s. for all ω ∈ Ω, u(·, ω) ∈ H2(D) and there exists a q ∈ [1,∞] such that

‖u‖Lq(Ω;H2(D)) ≤ C‖f‖L2(D) .
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Remark 5.2.4. Sufficient conditions for u(·, ω) ∈ H2(D) are that D is convex, that a(·, ω) is Lips-
chitz continuous and that (5.2.3) holds (see, e.g., P. Bastian, “Scientific Computing with PDEs”,
Lecture Notes, U. Heidelberg, 2019, Sect. 8.3). For a uniform distribution, as in Section 4.5.2,
Assumption 5.2.3 holds with q = ∞. However, a more commonly used type of prior distribution,
especially in subsurface flow, is a lognormal distribution for a with Matérn covariance. In
that case, log a is a Gaussian field that admits a Karhunen-Loève expansion as in Theorem 4.5.20,
and it can be shown [Charrier et al, 2013] that Assumption 5.2.3 holds for all q <∞.

Theorem 5.2.5 (FE error bounds [Charrier et al, 2013], [Teckentrup et al, 2013]). Let Assumption
5.2.3 hold and let

√
amax/amin ∈ Lr(Ω) with q, r ∈ [1,∞]. Suppose Uh ⊂ H1

0 (D) is the piecewise
linear FE space associated with a triangulation Th of D. Then, for any p ∈ [1,∞] with 1

p ≥
1
q + 1

r ,

‖u− uh‖Lp(Ω;H1
0 (D)) ≤ Ch‖f‖L2(D) .

Moreover, for any bounded linear operator B : H1
0 (D)→ Rm,

‖Bu−Buh‖Lp(Ω;Rm) ≤ Ch2 . (5.2.6)

We are now in a position to extend these results to bound the bias in the posterior measure
and in the conditional mean of any derived quantities of interest due to the FE approximation.

Theorem 5.2.6. Let us assume that a−1
min ∈ L2(Ω) and the assumptions of Theorem 5.2.5 hold for

p = 2. Suppose B : H1
0 (D)→ Rm is a bounded linear operator and let the (exact) forward operator

Φ : L∞(D) → Rm be defined by Φ(a) := Bu. Under the noise model (5.2.2) this induces the
posterior measure ν := µa|y on the diffusion coefficient a ∈ L∞(D), as described in Chapter 4. In
the same way, the discretised observation operator Φh(a) := Buh induces an approximate posterior
measure νh on a and

DH(ν, νh) ≤ Ch2 . (5.2.7)

Moreover, for any bounded linear operator G : H1
0 (D)→ R, the approximation error in the posterior

expectation of the functional Ψ(a) := Gu, which is approximated by Ψh(a) := Guh can be bounded
as ∣∣∣Eν [Ψ(a)]− Eνh [Ψh(a)]

∣∣∣ ≤ Ch2 . (5.2.8)

Proof. The two measures ν and νh satisfy the assumptions of Theorem 4.4.1. Thus, the bound on
the Hellinger distance follows directly by applying the bound (5.2.6) in Theorem 4.4.1.

For the bound on the posterior expectations, we note first that due to the additive Gaussian
noise assumption, for any measurable function f : L∞(D)→ Rm and for q ∈ N,∣∣Eν [f(a)q]

∣∣ ≤ Eν [|f(a)|q] ≤ 1

Zν
Eµa [|f(a)|q], (5.2.9)

which follows immediately by taking the supremum of the Radon-Nikodym derivative out of the
integral and bounding it by 1

Zν
, where Zν is the normalization constant for ν (as in (4.4.1b)). The

analogous bound holds for νh.
Now we use triangle inequality to separate the error into the FE error in the posterior measure

and the FE error in approximating the target functional, i.e.∣∣Eν [Ψ(a)]− Eνh [Ψh(a)]
∣∣ ≤ ∣∣Eνh [Ψ(a)−Ψh(a)]

∣∣+
∣∣Eν [Ψ(a)]− Eνh [Ψ(a)]

∣∣ (5.2.10)
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The bound on the first term follows from (5.2.9) and (5.2.6) (with G instead of B). For the second
term, we proceed as in the proof of Lemma 3.7.7, i.e.

∣∣Eν [Ψ(a)]− Eνh [Ψ(a)]
∣∣ ≤ 2DH(ν, νh)

(∫
Ω
|Ψ(a)|2

(
dν

dµa
+

dνh
dµa

)
dµa

)1/2

≤ Ch2‖G‖H−1(D)‖u‖L2(Ω;H1
0 (D))

where in the last step we have used (5.2.7), (5.2.9) and the boundedness of G. The result then
follows from Theorem 5.2.1.

Remark 5.2.7. (a) Similar results can be proved for Fréchet-differentiable nonlinear functionals
G : H1

0 (D) → R of the PDE solution with Ψ(a) := G(u) or for other Fréchet-differentiable
nonlinear functionals Ψ : L∞ → R (with measurable Fréchet derivative). For the former see
[Scheichl et al, 2017]; the latter can be proved in a similar way.

(b) Another approximation error that we have not discussed so far concerns the numerical ap-
proximation of the prior distribution.

In case of the Karhunen-Loève expansion (cf. Sect. 4.5.1), a natural way to discretise the prior
is truncation of the series expansion (4.5.5) at a suitably large index s ∈ N. For the case of
Matérn covariances, both in the uniform and in the lognormal case it can be shown, e.g., in
[Graham et al, 2015] that there exists a χ > 0 such that

‖Buh −Bus,h‖Lp(Ω) ≤ Cs−χ .

where us,h is the solution to a FE system like (5.2.5) but with truncated coefficient function
as instead of a and the value of χ depends on the smoothness parameter in the Matérn
covariance. From this it can again be deduced [Hoang et al, 2013] that

DH(νh, νs,h) ≤ Cs−χ .

5.3 Linear problems and the Laplace approximation

The key references for this section are:

• S. Ghosal, A. van der Vaart, Fundamentals of Nonparametric Bayesian Inference, Cambridge
University Press, 2017.

• C. Schillings, B. Sprungk, P. Wacker, On the convergence of the Laplace approximation and
noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse problems,
Numer. Math. 145:915–971, 2020.

• R. Wong, Asymptotic Approximations of Integrals, SIAM, Philadelphia, 2001.

If the observational noise is additive and Gaussian, the prior µX is Gaussian and the forward
operator Φ is linear, then the posterior measure µX|y is also Gaussian and can be given explicitly.
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Theorem 5.3.1. Let H be a separable Hilbert space and X : Ω→ H a RV with prior distribution
N (x,C) with positive covariance operator C. Let W = Rm and assume E : Ω→ Rm is a Gaussian
RV independent of X that is distributed according to N (0,Σ) with SPD covariance matrix Σ ∈
Rm×m. Suppose furthermore that the forward operator Φ : H → Rm is linear, i.e. Φ(x) = Ax and
Y = AX + E. Then the posterior measure µX|y is Gaussian N (xCM, CX|y) with

xCM := x+ CA∗(Σ +ACA∗)−1(y −Ax) (5.3.1)

CX|y := C − CA∗(Σ +ACA∗)−1AC (5.3.2)

Proof. For the proof we restirct ourselves to H = Rs, but most steps extend straightforwardly also
to infinite dimensions. The proof of this extension is left as an exercise.

Given the additive model (4.1.1) for the observable RV Y , the RV Z :=
(
X
Y

)
is jointly Gaussian

Z =

(
I 0
A I

)(
X
E

)
∼ N

((
x
Ax

)
,

(
C CA∗

AC Σ +ACA∗

))
=: N (mZ , CZ) (5.3.3)

This follows directly from the fact that for any random variables X1 and X2 under linear transfor-
mations A1 and A2 the covariance operator satisfies

cov(A1X1, A2X2) = A1cov(X1, X2)A∗2 ,

as pointed out in finite dimensions already in Example 3.4.2.
Since Σ and C are SPD, the bottom-right-block CY := Σ + ACA∗ is also SPD and we can

block-LDLT factorise the covariance matrix of (X,Y ) to give(
C CA∗

AC CY

)−1

=

(
I 0

−C−1
Y AC I

)( (
C − CA∗C−1

Y AC
)−1

0

0 C−1
Y

)(
I −CA∗C−1

Y

0 I

)
and thus, since (

I −CA∗C−1
Y

0 I

)(
x− x
y −Ax

)
=

(
x− xCM

Y −Ax

)
with xCM as defined in (5.3.1) and with CX|y := C − CA∗C−1

Y AC, it follows that

(z −mZ)∗C−1
Z (z −mZ) =

(
x− x
y −Ax

)∗(
C CA∗

AC CY

)−1(
x− x
y −Ax

)
=

(
x− xCM

y −Ax

)∗( C−1
X|y 0

0 C−1
Y

)(
x− xCM

y −Ax

)
Due to the diagonal structure of the covariance and the formula for conditional densities, πX,Y (x, y) =
πX|Y (x|y)π(y), this completes the proof. The employed technique – although often presented in a
very complicated way – is sometimes called “completing the square”.

In principle, this solves the problem in the linear Gaussian case and for low- to intermediate-
dimensional problems. In that case, it is possible to assemble and factorise CX|y and to perform
inference from this posterior distribution. In high dimensions, factorisation might be prohibitive
and it is necessary to consider alternatives – this will be the focus of the next three sections.
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However, due to its importance and explicit tractability, there is a large body of literature on
efficient numerical methods specifically for the Gaussian case.

Note that in the linear Gaussian case, the conditional mean xCM is in fact identical to the MAP
point, which for H = Rs can be computed as

xMAP = argmaxx∈Rs πX|Y (x|y) = argminx∈H
1

2
‖y −Ax‖2Σ +

1

2
‖x− x‖2C

and is in fact also identical to the solution of a generalised Tikhonov-regularised system as discussed
in Section 2.6 (with suitable norms on the parameter space X and on the observation space Y , in
the notation there).

As in numerical optimisation for general, nonlinear deterministic problems, and in particular
for the solution of Tikhonov-regularised, nonlinear inverse problems, such as (2.6.3), a powerful
way to accelerate numerical methods is a change of metric, also referred to as preconditioning.
For simplicity, let us restrict ourselves to a finite dimensional parameter space H = Rs and to
additive Gaussian noise E independent of X and distributed according to N (0,Σ) again. A simple
and popular preconditioning technique that is easy to understand and to apply to general Bayesian
inverse problems is the so-called Laplace approximation of the posterior distribution µX|y.

Definition 5.3.2 (Laplace, 1774). Suppose the forward operator Φ : Rs → Rm and the prior
distribution µX( dx) = πX( dx) are such that Φ, π0 ∈ C2(SX), for SX := {x ∈ Rs : πX(x) > 0}.
Let Ψ : SX → R be given by Ψ(x) := 1

2‖y − Φ(x)‖2Σ − log πX(x) and assume that Ψ has a unique
minimiser xMAP ∈ SX satisfying

∇Ψ(xMAP) = 0 and ∇2Ψ(xMAP) is SPD.

Then, the Laplace approximation of µX|y is given by the Gaussian measure

LµX|y := N (xMAP, CMAP) with C−1
MAP := ∇2Ψ(xMAP) . (5.3.4)

Finding the minimiser xMAP can be achieved with classical unconstrained, nonlinear minimi-
sation methods, e.g. quasi-Newton methods with low rank updates (such as SR1 or BFGS) and a
globalisation strategy (such as a line search or trust region method).

A common and desirable situation in Bayesian inverse problems is concentration of the posterior
around the true parameter, especially in the small noise or large data limit. However, often the
posterior concentrates more or less strongly in different directions. Optimisation works well in
that context and can thus be used to efficiently construct the Laplace approximation as a suitable
reference measure to remove the degeneracy and to precondition sampling or quadrature algorithms,
such as importance sampling or Markov chain Monte Carlo (see Sect. 5.4 and 5.6.4 below).

To see why the Laplace approximation is useful in this limit, let us first consider a scaled version
nΨn of the posterior log-likelihood Ψ with

Ψn(x) :=
1

2
‖y − Φ(x)‖2Σ −

1

n
log πX(x) , (5.3.5)

e.g. if the measurement error En is assumed to decrease as n increases, such that En ∼ N (0, 1
nΣ).

The scaled posterior measure is then

νn( dx) =
1

Zn
exp

(
−n
(

1
2‖y − Φ(x)‖2Σ

))
µx( dx), Zn :=

∫
Rs

exp
(
−n
(

1
2‖y − Φ(x)‖2Σ

))
µx( dx).
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We can see that the weight function concentrates more and more around the MAP point xMAP,n

as n→∞. It is a classical result [Wong, 2001] that integrals with respect to such a measure νn can
be well approximated via integrals with respect to the Laplace approximation, but even a stronger
convergence result can be proved. We will only state the result informally and refer to the original
paper for a complete statement and for the proof.

Theorem 5.3.3 (Schillings et al, 2020). Suppose Ψn ∈ C3(SX) and satisfies further technical
conditions. Suppose further that limn→∞ xMAP,n ∈ SX and limn→∞∇2Ψn(xMAP,n) exist. Then

DH(νn,Lνn) ≤ Cn−1/2.

Remark 5.3.4. To finish let us draw another link to generalised Tikhonov regularisation. The scaled
posterior log-likelihood in (5.3.5) is the same as the generalised Tikhonov functional (cf. Sect. 2.6)

Ψα,δ(x) :=
1

2
‖y − Φ(x)‖Σ − α log πX(x) (5.3.6)

with penalisation functional log πX : Rs → R, with noise level δ = 1
n and with regularisation

parameter α = 1
n . In the Bayesian setting, adding the regularisation parameter α corresponds to

“flattening” the prior distribution πX to π
1/n
X as n→∞, thus reducing its influence.

Note also that the choice α = 1/n for a Gaussian prior in (5.3.6) and for δ = 1/n leads to a
convergent regularisation method in the sense of Sect. 2.4, since δ/

√
α→ 0 as δ → 0.

There is more rigorous mathematical theory on the topic of posterior consistency [Ghosal, van
der Vaart, 2017], but we will not discuss this any further. The explicit form of the posterior measure
in the linear Gaussian case and the Laplace approximation play a central role in filtering, in the
(extended) Kalman filter and we will come back to this point in Section 5.8.

5.4 High-dimensional quadrature

Even though mathematically speaking the solution to a Bayesian inverse problem is the posterior
distribution µX|y, it is of little practical value (especially in high dimensions). As highlighted al-
ready, the central task in Bayesian inference is the computation of expectations of certain functionals
of the parameter with respect to the posterior, so called statistics or quantities of interest.

Care is required, when designing quadrature algorithms in high dimensions; the computational
cost of simple tensor product rules of standard 1D quadrature rules (as presented for example in
Numerik 0) explodes as the dimension s → ∞. The workhorses in high dimensions are sampling
based methods that do not suffer from this so-called “curse of dimensionality”, and in particular
Monte Carlo type methods.

Let us recall some of the main methods for high dimensional quadrature. For details we refer
again to the notes of the HDAUQ course that was taught in the SS 2020 at Heidelberg.

5.4.1 Monte Carlo quadrature

Consider again the general setting of a probability space (Ω,A,P) and a RV X : Ω→ V mapping to
a seperable Banach space V with measure µX , for the moment assumed to be available explicitly.
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For any measurable F : V → R (for simplicity one-dimensional), givenN realisations x(1), . . . , x(N)

of independent RVs X(i) ∼ µX , a practical method to compute the high-dimensional integral

E[F (X)] =

∫
V
F (x) dµ(x), with E := EµX

is the Monte Carlo (MC) method

1

N

N∑
i=1

F (x(i)) ≈ E[F (X)]

For the associated estimator F̂ (X)N :=
1

N

N∑
i=1

F (X(i)) we have the following result.

Proposition 5.4.1. Let X ∈ L2(Ω;V ) and iid X(i) ∼ µX , i ∈ N. Then

F̂ (X)N =
1

N

N∑
i=1

F (X(i))
P-a.s.−−−−→
N→∞

E[F (X)], (5.4.1)

as well as √
N
(
F̂ (X)N − E[F (X)]

)
d−−−−→

N→∞
N
(

0,V(F (X))
)

(5.4.2)

and

E
[∣∣∣F̂ (X)N − E[F (X)]

∣∣∣2] =
V(F (X))

N
. (5.4.3)

Proof. The convergence results (5.4.1) and (5.4.2) follow directly from the Law of Large Numbers
and the Central Limit Theorem. To see (5.4.3), note that due to the independence of the X(i),

E

[∣∣∣∣ 1

N

N∑
i=1

F (X(i))− E [F (X)]

∣∣∣∣2
]

=
1

N2
E

[( N∑
i=1

(
F (X(i))− E [F (X)]

))2
]

=
1

N2

N∑
i=1

N∑
j=1

E
[(
F (X(i))− E [F (X)]

] [
F (X(j))− E [F (X)]

)]

=
1

N2

N∑
i=1

E
[(
F (X(i))− E [F (X)]

)2
]

+
1

N2

N∑
i 6=j

E
[(
F (X(i))− E [F (X)]

)]
︸ ︷︷ ︸

=0

E
[(
F (X(j))− E [F (X)]

)]
︸ ︷︷ ︸

=0

=
1

N2

N∑
i=1

Var(F (X(i))) =
1

N
Var(F (X)).
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As discussed in Section 5.2, if V is infinite dimensional or F is given as F (X) = Ψ(G(X)),
for some operator G : V → W and an infinite dimensional latent space W with Ψ : W → R, it
is necessary in practice to discretise the problem. The operator G could be the Radon transform
and Ψ the restriction operator to the measurement along a single line, or G could be the solution
operator for the ellitic PDE that takes the diffusion coefficient a to the solution u and Ψ could be
a point evaluation of u at some point in the domain.

The general setting is then that Xs : Ω → Vs := Rs and Fh : Vs → R are approximations of X
and F with µXs � µX , parametrised by some parameters h > 0 and s ∈ N, e.g. the FE mesh width
and the truncation dimension for the Karhunen-Loève expansion. Thus, we need to analyse not
only the Monte Carlo sampling error but also the bias in the estimator due to the discretisation.

For simplicity, let us consider only the case Xs = X and denote by Q := F (X) and Qh := Fh(X)
the quantity of interest and its approximation.

Lemma 5.4.2 (Bias-Variance Decomposition). Let X ∈ L2(Ω;V ) and iid X(i) ∼ µX , i ∈ N. Then

E
[∣∣Q̂MC

h,N − E[Q]
∣∣2] =

(
E [Qh −Q]

)2
+

V(Qh)

N
with Q̂MC

h,N :=
1

N

N∑
i=1

Fh(X(i)) . (5.4.4)

In fact, we also have

√
N
(
Q̂MC
h,N − E[Q]

)
d−−−−→

N→∞
N
(
E [Qh −Q] ,V(Qh)

)
. (5.4.5)

Proof. This is a classical result in statistics and left as an exercise (cf. [HDAUQ, Lemma II.4.1]).

An important concept in the analysis of the computational complexity of various numerical
methods is the so-called ε-cost, the cost (measured in CPU time or arithmetic operations) to
achieve an error less than some tolerance ε > 0.

Definition 5.4.3 (ε-cost). The ε-cost Cε(Q̂) for any estimator Q̂ of E[Q] is defined to be the total
number of arithmetic operations to achieve

‖Q̂− E[Q]‖2L2(Ω) = E
[∣∣Q̂− E[Q]

∣∣2] ≤ ε2.

Theorem 5.4.4 (Complexity Theorem for MC). Suppose there are constants α, γ > 0, such that

|E [Qh −Q] | ≤ Chα, (5.4.6)

C(Qh) ≤ Ch−γ , (5.4.7)

as h → 0, where C(Y ) denotes the cost to compute one sample of a RV Y .Then, for any ε > 0,
there exists h = h(ε) > 0 and NMC := NMC(ε) ∈ N such that

Cε(Q̂MC
h,NMC

) ≤ Cε−2−γ/α.

Proof. See [HDAUQ, Thm. II.5.1].

Using (5.4.5), a similar result follows also for ε-cost defined with respect to convergence in prob-
ability (cf. [HDAUQ, Thm. II.5.1]). We can deduce the following corollary [HDAUQ, Cor. II.7.6].
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Corollary 5.4.5. Let us consider the elliptic PDE in Section 5.2.1 under the assumptions of
Theorem 5.2.5 with p = 2 and with a−1

min ∈ L2(Ω). Let Q := Bu and Qh := Buh. Suppose the FE
solution is computed with an optimal multigrid method, such that C(Qh) ≤ Ch−d. Then, for any
ε > 0, there exists h = h(ε) > 0 and NMC := NMC(ε) ∈ N such that

Cε(Q̂MC
h,NMC

) ≤ Cε−2−d/2.

5.4.2 Multilevel Monte Carlo

The key idea in multilevel Monte Carlo is to use samples of Q on a hierarchy of different discreti-
sation levels, i.e., for different values h0 > h1 > . . . hL =: h > 0 of the discretization parameter
with L ∈ N, and to decompose

E [Qh] = E [Qh0 ] +
L∑
`=1

E
[
Qh` −Qh`−1

]
=:

L∑
`=0

E [Y`] . (5.4.8)

For simplicity, we will choose

h`−1 = mh`, ` = 1, . . . , L, for some m ∈ N \ {1} and h0 > 0, (5.4.9)

i.e. uniform grid refinement for the elliptic PDE. With iid X
(i)
` ∼ µX , `, i ∈ N, we define the

multilevel Monte Carlo (MLMC) estimator for E [Q] as

Q̂ML
L,{N`} :=

L∑
`=0

Ŷ MC
`,N`

=
1

N0

N0∑
i=1

Fh0(X
(i)
0 ) +

L∑
`=0

1

N`

N∑̀
i=1

(
Fh`(X

(i)
` )− Fh`−1

(X
(i)
` )
)

(5.4.10)

As in Lemma 5.4.2 for standard MC, the following bias-variance decomposition is a simple conse-

quence of (5.4.8) and the independence of the RVs X
(i)
` :

E
[(
Q̂ML
L,{N`} − E [Q]

)2
]

=
(
E [Qh −Q]

)2
+

L∑
`=0

V(Y`)

N`
. (5.4.11)

If ‖Qh − Q‖L2(Ω) → 0 as h → 0, i.e., if the RV Qh converges strongly (samplewise) to Q, then
V(Y`) → 0 as ` → ∞, leading to a huge variance reduction in the MLMC estimator compared to
standard MC. In particular, a significantly smaller number NL � NMC of expensive samples on
the finest level L with h = hL are sufficient to achieve a prescribed tolerance ε and the slightly
larger number of samples N0 > NMC necessary on the coarsest level 0 are significantly cheaper than
samples on level L under assumption (5.4.7).

It is possible to prove the following general complexity theorem [HDAUQ, Thm. II.5.2].

Theorem 5.4.6 (MLMC Complexity). Let ε < e−1 and let α, β, γ > 0 be such that α ≥ 1
2 min{β, γ}

and such that for all ` ∈ N0

(M1) |E [Qh` ]− E [Q] | ≤ Chα` , (M2) Var[Y`] ≤ Chβ` , (M3) C(Y`) ≤ Ch−γ` .

Then there are L ∈ N and {N`}L`=0 ⊂ N such that

Cε
(
Q̂ML
L,{N`}

)
≤ C


ε−2, if β > γ,

ε−2 | log ε|2, if β = γ,

ε−2−(γ−β)/α, if β < γ.
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A sufficient condition to achieve this asymptotic ε-cost is that

N` ∝
(
m

β+γ
2

)−`
(5.4.12)

with L and N0 chosen such that both of the two terms on the right hand side of (5.4.11) are equal
to ε2/2. For the elliptic PDE, we can again deduce the following corollary [HDAUQ, Cor. II.7.7]

Corollary 5.4.7. Consider again the elliptic PDE in Section 5.2.1 under the assumptions of Theo-
rem 5.2.5 with d = 1, 2, 3, p = 2 and a−1

min ∈ L2(Ω). Let Q := Bu and, for ` ∈ N0, let Qh` := Buh`.
Suppose the FE solution on each level is computed with an optimal multigrid method, such that
C(Qh`) ≤ Ch

−d
` . Then, for any 0 < ε < e−1, there exists L ∈ N and {N`}L`=0 ⊂ N such that

Cε
(
Q̂ML
L,{N`}

)
≤ Cε−2.

In the case of uniform mesh refinement in two spatial dimensions with d = 2 and m = 2, since
the variance of Y` decreases with a rate β = 4, it follows from (5.4.12) that the number of samples
can be reduced by a factor of 2(4+2)/2 = 8 from level to level.

5.4.3 Quasi-Monte Carlo

We only consider quasi-Monte Carlo (QMC) methods in the context of the elliptic PDE in Section
5.2.1 with uniform diffusion coefficient a, as described in Example 4.5.12. For more details and
rigorous proofs we refer to [HDAUQ, Chapter III] and

• J. Dick, F.Y. Kuo, I.H. Sloan, High-dimensional integration: The quasi-Monte Carlo way,
Acta Numer. 22:133–288, 2013.

• J. Dick, F.Y. Kuo, Q.T. Le Gia, D. Nuyens, C. Schwab, Higher order QMCPetrov–Galerkin
discretization for affine parametric operator equations with random field inputs, SIAM J.
Numer. Anal. 52:2676–2702, 2014.

• I.G. Graham, F.Y. Kuo, J. Nichols, R. Scheichl, C. Schwab, I.H. Sloan, Quasi-Monte Carlo
finite element methods for elliptic PDEs with lognormal random coefficients, Numer. Math.
131:329–368, 2015.

• F.Y. Kuo, C. Schwab, I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of
elliptic PDEs with random coefficients, SIAM J. Numer. Anal. 50:3351-3374, 2012.

• F.Y. Kuo, C. Schwab, I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a
class of elliptic PDEs with random coefficients, Found. Comput. Math. 15:411-449, 2015.

• F.Y. Kuo, R. Scheichl, C. Schwab, I.H. Sloan, E. Ullmann, Multilevel quasi-Monte Carlo
methods for lognormal diffusion problems, Math. Comp. 86:2827-2860, 2017.

The Karhunen-Loève expansion is truncated after s terms, and we set Ξ := (ξj)
s
j=1 with iid ξj ∼

uniform(−1, 1), such that µΞ is the product uniform measure on V = [−1, 1]s. As quantity of
interest, we consider a linear functional B : H1

0 (D) → R of the PDE solution u, which, as a
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functional of the parameter vector Ξ we denote by Q := F (Ξ). The functional F : V → R can then
be written as the composition

F := B ◦ G ◦ T, such that Ξ
T−→ a

G−→ u
B−→ Q,

where T : V → L∞(D) is the operator defined in (4.5.12) and G : L∞(D)→ H1
0 (D) is the solution

operator, mapping the coefficient a to the PDE solution u. Similarly, we denote by Qh := Fh(Ξ)
with Fh = B ◦ Gh ◦ T the FE approximation of Q, where Gh : L∞(D) → Uh is the FE solution
operator, mapping the coefficient a to the FE solution uh.

Quasi-Monte Carlo methods are formulated as quadrature rules over the unit cube [0, 1]s. Treat-
ing Ξ as a deterministic parameter vector ξ distributed according to product uniform measure,

E[Q] ≈
∫

[−1,1]s
Fh(x) dµΞ(x) =

∫
[0,1]s

Fh(2v − 1) dv, (5.4.13)

where we used the simple change of variables x = 2v − 1 from [0, 1] to [−1, 1]. We will use a
randomly shifted rank-1 lattice rule to approximate (5.4.13). This takes the form

Q̂QMC
h,N =

1

N

N∑
i=1

Fh
(
Ξ̃(i)
)
, where Ξ̃(i) := 2 frac

(
iz

N
+ ∆

)
− 1, (5.4.14)

z ∈ {1, . . . , N − 1}J is a so-called generating vector, ∆ is a uniformly distributed random shift on
[0, 1]s, and ”frac” denotes the fractional part function, applied componentwise [Dick et al, 2013]. To
ensure that every one-dimensional projection of the lattice rule has N distinct values we furthermore
assume that each component zj of z satisfies gcd(zj , N) = 1. See Figure 5.2 for an example of a
lattice rule in two dimensions.

Figure 5.2: Two dimensional lattice rule with N = 55, z = (1, 34)>, ∆ = (0, 0)>.

Due to the random shift, (5.4.14) is an unbiased estimator of EµΞ [Fh(Ξ)] an thus we have – as
for MC and MLMC - again

E
[(
Q̂QMC
h,N − E[Q]

)2
]

=
(
E [Qh −Q]

)2
+ V

(
Q̂QMC
h,N

)
, (5.4.15)

where the variance of the QMC estimator is given by

V
(
Q̂QMC
h,N

)
= E∆

[(
Q̂QMC
h,N − EµΞ [Fh(Ξ)]

)2]
. (5.4.16)

To bound it, we make the following assumption on the integrand Fh(Ξ).
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Assumption 5.4.8. Let C > 0 be a constant independent of s and let (`j)j∈N ∈ `1(N) be as
defined in Example 4.5.12. We assume that, for any multi-index ν ∈ {0, 1}s with |ν| =

∑
j≤s νj ,∣∣∣∣∣∂|ν|F (ξ)

∂ξν

∣∣∣∣∣ ≤ C |ν|!
(ln 2)|ν|

J∏
j=1

`
νj
j .

For linear functionals B on H1
0 (D), this assumption has been proved in the uniform case.

However, it can also be shown for nonlinear functionals.

Lemma 5.4.9 (Kuo et al, 2012). Suppose Assumption 5.4.8 holds and (`j)j∈N ∈ `r(N), for some
r ∈ (0, 1). Then, a randomly shifted lattice rule can be constructed via a component-by-component
algorithm in O(sN logN) cost, such that

V
(
Q̂QMC
h,N

)
≤ C

{
N−1/δ, if r ∈ (0, 2/3],

N−(1/r−1/2), if r ∈ (2/3, 1),

for any δ ∈ (1/2, 1], independently of s.

This estimate can again be combined with (5.4.15) to bound the computational complexity of
QMC estimators for the elliptic PDE.

Corollary 5.4.10. Suppose Assumption 5.4.8 holds and (`j)j∈N ∈ `r(N), for some r ∈ (0, 2/3],
and let z be the generating vector for the randomly shifted lattice rule that achieves the optimal rate
in Lemma 5.4.9. Suppose further that the piecewise linear FE solution is computed with an optimal
multigrid method, such that C(Qh) ≤ Ch−d. Then, for any ε > 0, there exists h > 0 and N ∈ N
such that

Cε(Q̂QMC
h,N ) ≤ Cε−2δ−d/2, for any δ ∈ (1/2, 1].

Remark 5.4.11. (a) It is even possible to combine quasi-Monte Carlo sampling and multilevel
estimation and the gains are complementary [Kuo et al, 2015; Kuo et al, 2017], but we will
not include these estimators or their analysis here.

(b) For smooth random fields, e.g. fast decay of the `j in Example 4.5.12, even faster convergence
rates are possible with higher-order QMC rules [Dick et al, 2014] or with stochastic collocation
and sparse grid quadrature rules [HDAUQ, Chapter IV].

(c) Note that due to Remark 5.2.7 and the comments before Lemma 5.4.9, the statements of
Corollaries 5.4.5, 5.4.7 and 5.4.10 also hold for Fréchet-differentiable nonlinear functionals
Q := B(u) and for nonuniform measures µa.

Example 5.4.12 (Comparsion of sampling methods in the lognormal case). To compare the ap-
proaches, let us consider the elliptic PDE (5.2.1) for D = (0, 1)2 (i.e., d = 2) and f ≡ 1, with
lognormal diffusion coefficient a ∈ L∞(D), i.e., log a ∼ N (m,Cν,σ2,λ), with Matérn covariance
Cν,σ2,λ. The Matérn covariance function is defined, for any x, y ∈ D, as

c(x, y) := σ2 21−ν

Γ(ν)

(
2
√
ν |x− y|
λ

)ν
Kν

(
2
√
ν |x− y|
λ

)
,
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Figure 5.3: Comparison of measured ε-costs for ν = 2.5, σ2 = 0.25 and λ = 1. The points on each
of the graphs correspond to the choices L = 1, . . . , 5 with h0 :=

√
2/8.

where Γ and Kν are the Gamma-function and the modified Bessel function (of second-kind) of order
ν, and where ν, σ2 and λ are the so-called smoothness parameter, total variance and correlation
length, respectively. The quantity of interest is

Q(ω) :=
1

|D∗|

∫
D∗
u(x, ω) dx, with D∗ :=

(
3
4 ,

7
8

)
×
(

7
8 , 1
)
.

For a comparison of the sampling approaches discussed above, we use piecewise linear FEs
on a uniform simplicial mesh to discretise the PDE and a truncated Karhunen-Loève expansion
to sample from log a for ν = 2.5. In that case, all the relevant assumptions in Corollaries 5.4.5
and 5.4.7 are satisfied and the assumptions of (the lognormal equivalent of) Corollary 5.4.10 hold
with (`j)j∈N ∈ `r(N) and r < 2/3. We collect the theoretical complexity bounds, as well as the
theoretical bound for multilevel QMC (MLQMC) in Table 5.1. We see that in dimension d ≥ 2,
the cost of MLQMC is asymptotically optimal, in the sense that even to compute a single sample
to accuracy ε has the same asymptotic complexity.

Table 5.1: Theoretical bounds on the order of growth of the ε-cost with respect to ε−1, for the
lognormal case for ν = 2.5 (ignoring log-factors and choosing δ = 1/2 in Corollary 5.4.10).

d MC MLMC QMC MLQMC One sample

1 2.5 2 1.5 1 0.5
2 3 2 2 1 1
3 3.5 2 2.5 1.5 1.5

In Figure 5.3, we can see that these theoretical bounds are attained in practice. For the QMC
methods we used an embedded lattice rule with weights γj = j−2 with generating vector taken from
the file lattice-39102-1024-1048576.3600.txt on Frances Kuo’s webpage (UNSW Sydney).
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5.5 Importance sampling estimators for posterior expectations

However, crucially, in Bayesian inverse problems we typically only have access to the posterior
distribution in unnormalised form, i.e.

dµX|y

dµX
(x) ∝ exp

(
−1

2
‖y − Φ(x)‖2Σ

)
or πX|Y (x|y) ∝ exp

(
−1

2
‖y − Φ(x)‖2Σ

)
πX(x),

in the infinite/finite dimensional case for an additive Gaussian noise model, respectively. For
simplicity, we will only focus on the case of a finite dimensional parameter X : Ω→ Rs.

5.5.1 Importance sampling and ratio estimators

A classical technique to sample from a distribution that is only given in unnormalised form and a
method that can also be used to reduce the variance in the estimator if we have an approximation
for the (normalised or unnormalised) density is importance sampling. The following is based on
the lecture notes of A. Owen (Stanford).

Suppose again that we are interested in computing

Ep[F (X)] =

∫
S
F (x) dν(x) =

∫
S
F (x)p(x) dx,

for some RV X : Ω→ S ⊂ Rs where ν is a probability measure on S ⊂ Rs with density p and the
functional F is ν-measurable, for example if ν is the posterior measure on X. We take p(x) = 0 for
all x 6∈ S. If q is a positive probability density function on Rs, then

Ep[F (X)] =

∫
S
F (x)p(x) dx =

∫
Rs

F (x)p(x)

q(x)
q(x) dx = Eq

[
F (X)p(X)

q(X)

]
(5.5.1)

By making a multiplicative adjustment to the integrand we compensate for sampling from q instead
of p. The adjustment factor w(x) = p(x)/q(x) is called the likelihood ratio or importance
weight. The distribution q is the importance distribution and p is the nominal distribution.
The importance distribution q does not have to be positive everywhere. It is enough to have
q(x) > 0 whenever F (x)p(x) 6= 0.

The importance sampling estimator for m := Ep[F (X)] is

Q̂IS
q,N :=

1

N

N∑
i=1

F
(
X(i)

)
p
(
X(i)

)
q
(
X(i)

) with iid X(i) ∼ q. (5.5.2)

To use (5.5.2) we must be able to compute Fp/q, and in particular p(x)/q(x) at any x we might
sample. When p or q has an unknown normalization constant, then we will resort to a ratio estimate
(see below). For now, we assume that p/q is computable, and study the variance of Q̂IS

q,N .

Theorem 5.5.1. Let q(x) > 0 whenever F (x)p(x) 6= 0. For any N ∈ N, Eq
[
Q̂IS
q,N

]
= m = Ep[F (X)]

and Vq
(
Q̂IS
q,N

)
= σ2

q/N where

σ2
q =

∫
S

(
F (x)p(x)

)2

q(x)
dx−m2 =

∫
S

(
F (x)p(x)−mq(x)

)2

q(x)
dx . (5.5.3)
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Proof. Left as an exercise.

Theorem 5.5.1 guides us in selecting a good importance sampling rule. From the first expression
in (5.5.3) we see that a better q is one that gives a smaller value of

∫
S(Fp)2/q dx.

Lemma 5.5.2. Let Ep
[
|F (X)|

]
6= 0. The probability density q∗ with q∗(x) ∝ |F (x)|p(x) minimises

σ2
q over all densities q that are positive when Fp 6= 0, i.e. σ2

q∗ ≤ σ2
q .

Proof. Let q∗(x) = |F (x)|p(x)/Ep
[
|F (X)|

]
and let q be an arbitrary density such that q(x) > 0

when F (x)p(x) 6= 0. Then

m2 + σ2
q∗ =

∫
S

F (x)2p(x)2

q∗(x)
dx =

∫
S

F (x)2p(x)2

|F (x)|p(x)/Ep
[
|F (X)|

] dx =

=
(
Ep
[
|F (X)|

])2
=

(
Eq
[
|F (X)|p(X)

q(X)

])2

≤ Eq
[
F (X)2p(X)2

q(X)2

]
= m2 + σ2

q .

Remark 5.5.3. If F (x) > 0 is positive where p(x) > 0 and m > 0, then the optimal density
q∗ = 1

mFp has σ2
q∗ = 0, cf. the second form of σ2

q∗ in (5.5.3), but it is of no pratical interest, because

each of the samples in Q̂IS
q∗,N becomes F

(
X(i)

)
p
(
X(i)

)
/q∗
(
X(i)

)
= m, which is available only if

we know the final result anyway in the first place. Although zero-variance importance sampling
densities are not usable, they provide insight into the design of a good importance sampling scheme.
It may be good for q to have spikes in the same places that |F | does, or where p does, but it is even
better to have them where |F |p does. The appearance of q in the denominator of w = p/q, means
that light-tailed importance densities q are dangerous. If we are clever or lucky, then F might be
small just where it needs to be to offset the small denominator. But we often need to use the same
sample with multiple integrands F , and so as a rule q should have tails at least as heavy as p does.

As mentioned at the beginning, in the Bayesian setting we can only sample from an unnormalized
version of p, pu(x) = cp(x), where c > 0 is unknown. The same may be true of q, e.g., if we can
compute qu(x) = bq(x) and b > 0 might be unknown. In general, b 6= c and thus p(x)/q(x) 6=
pu(x)/qu(x). However, we may compute the ratio wu(x) = pu(x)/qu(x) = (c/b)p(x)/q(x) and
consider the self-normalized importance sampling estimator or ratio estimator

Q̂RE
q,N :=

∑N
i=1 F

(
X(i)

)
wu
(
X(i)

)∑N
i=1wu

(
X(i)

) =

1

N

N∑
i=1

F
(
X(i)

)
w
(
X(i)

)
1

N

N∑
i=1

w
(
X(i)

) with iid X(i) ∼ q. (5.5.4)

To obtain iid samples of q it suffices to know qu and the factor b/c cancels from the numerator
and the denominator in (5.5.4), leading to the same estimate as if we had used the desired ratio
w(x) = p(x)/q(x) instead of the computable alternative wu(x).

Lemma 5.5.4. Let p, q be two probability densities on Rs with q(x) > 0 whenever p(x) > 0. Then,

Q̂RE
q,N

P-a.s.−−−−→
N→∞

Ep[F (X)] =: m, (5.5.5)
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but in general Eq
[
Q̂RE
q,N

]
6= m, i.e. the estimator is biased. We also have

√
N
(
Q̂RE
q,N −m

)
d−−−−→

N→∞
N
(

0, σ2
q

)
, (5.5.6)

with asymptotic variance σ2
q , as defined in (5.5.3).

Proof. Consider the second form of the definition of Q̂RE
q,N in (5.5.4). The numerator is equal to

Q̂IS
q,N , which we have already seen is an unbiased estimator of m. The strong law of large numbers

gives P
(

limN→∞ Q̂
IS
q,N = m

)
= 1. Using the same arguments as for the numerator also for the

denominator, but with the constant functional F ≡ 1, we see that the denominator converges in
probability to 1, which implies (5.5.5).

To see that in general Q̂RE
q,N is biased, consider N = 1, p 6= q and F (x) = x. Then,

Eq
[
Q̂RE
q,N

]
= Eq

[
X(i)

]
6= Ep

[
X(i)

]
= m.

The result in (5.5.6) can be shown using again the Central Limit Theorem.

Note that the condition on q for the ratio estimator are slightly stronger than for the importance
sampling estimator, i.e., we need q(x) > 0 whenever p(x) > 0, rather than whenever F (x)p(x) 6= 0.

5.5.2 Estimating posterior expectations

Now let us return to the Bayesian inverse problem with additive Gaussian noise and assume that
p is the density of the posterior ν = µX|y such that

pu(x) = exp

(
−1

2
‖y − Φ(x)‖2Σ

)
πX(x)

and we have access to a family of approximations Fh(X) of F (X) and Φh(X) of Φ(X), parametrised
by h > 0, such that Fh → F and Φh → Φ as h → 0. For the remainder of this section, we will
analyse the accuracy and complexity of various ratio estimators for Ep

[
F (X)

]
based on samples

Fh(X(i)) with X(i) drawn from some distribution q, again possibly given only in unnormalised form.
To simplify the notation let wu(x) = Zw(x) with w = p/q and Z := Eq[wu(X)], such that

Ep[F (X)] =
Eq[Qw]

Z
with Qw := F (X)wu(X),

the quantity of interest times the (unnormalised) weight. Similarly, we write wu,h(x) = Zhwh(x)
with wh = ph/q and Zh := Eq[wu,h(X)], and consider the ratio estimator

Q̂RE
q,h,N :=

Q̂w,h

Ẑh
, (5.5.7)

for Ep[Q] where again Q = F (X) and Q̂w,h and Ẑh are estimators of MC-type (as discussed above)
for Eq[Qw] and for Z, respectively
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Lemma 5.5.5 (MSE of the ratio estimator). If q(x) > 0 when p(x) > 0 and
∥∥Q̂RE

q,h,N

∥∥
L∞(Ω)

<∞,

then

E
[(
Q̂RE
q,h,N − Ep[Q]

)2] ≤ CZ−2
(
E
[(
Q̂w,h − Eq[Qw]

)2]
+ E

[(
Ẑh − Z

)2])
, (5.5.8)

where C := 2 max
(

1, ‖Q̂RE
q,h,N‖2L∞(Ω)

)
. The expected value is with respect to q in the case of MC

and MLMC and with respect to the random shift ∆ ∼ uniform(0, 1)s in QMC.

Proof. Rearranging the MSE and using triangle inequality, we have

E
[(
Q̂RE
q,h,N − Ep[Q]

)2]
=

1

Z2
E
[(
Q̂w,h − Eq[Qw] +

(
Q̂w,h/Ẑh

)(
Ẑh − Z

))2
]

≤ 2

Z2
E
[(
Q̂w,h − Eq[Qw]

)2
+
(
Q̂RE
q,h,N

)2(
Ẑh − Z

)2]
≤ 2

Z2
max

(
1, ‖Q̂RE

q,h,N‖2L∞(Ω)

)(
E
[(
Q̂w,h − Eq[Qw]

)2]
+ E

[(
Ẑh − Z

)2])
.

In the following, let p = πX|Y and denote by

Q̂RE
q,h,typ = Q̂typ

w,h

/
Ẑtyp
h with typ = MC, ML, QMC,

the ratio estimator defined in (5.5.7) for the posterior expectation Ep[Q] with Q̂typ
w,h chosen to be the

MC estimator, the MLMC estimator or the QMC estimator for Eq[Qw], respectively, and let Ẑtyp
h

be the corresponding estimator for the normalization constant. Then, Lemma 5.5.5 implies that
the convergence and the computational complexity of the ratio estimator (5.5.7) follow directly
from the results on the basic estimators in Section 5.4.

Theorem 5.5.6 (Complexity of the ratio estimator). Let typ = MC or ML and let q be a prob-
ability distribution on Rs with q(x) > 0 whenever p(x) > 0. Suppose

∥∥Q̂RE
q,h,N

∥∥
L∞(Ω)

< ∞ and the

assumptions of Theorems 5.4.4 and 5.4.6 hold with α, β 6= γ > 0. Then, for any 0 < ε < e−1 there
exists an h > 0 and an N ∈ N, resp. {N`} ⊂ N, such that

Cε
(
Q̂RE
q,h,typ

)
≤ C

{
(Zε)−2−γ/α, if typ = MC,

(Zε)−2−max(0,(γ−β)/α), if typ = ML.

A similar result can be proved also for the QMC-based ratio estimator.

Remark 5.5.7. The asymptotic order of the ε-cost is independent of the choice of the importance
distribution q. However, due to the appearance of the extra factor Z−η, for some η ≥ 2, the
asymptotic constant will strongly depend on the choice of q, as we will discuss in Section 5.5.3.

Let us give some more details for all three estimators in the case of the elliptic PDE with
uniform diffusion coefficient a. As in Section 5.4.3, we assume that a is discretised via a truncated
Karhunen-Loève expansion parametrised via Ξ ∼ uniform(−1, 1)s. The first and most obvious
choice for the importance distribution is the prior distribution, i.e. q = πΞ .
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Corollary 5.5.8. Consider the elliptic PDE in Section 5.4.3 with p = πΞ|Y and q = πΞ. Let typ =

MC, QMC or ML, and consider the ratio estimator Q̂RE
q,h,typ for the posterior expectation Ep[Q] of

Q = F (Ξ) under the assumptions of Corollaries 5.4.5, 5.4.7, or 5.4.10, respectively. In the QMC
case, let (`j)j∈N ∈ `r(N) with r < 2/3; in the MLMC case, let h0 be sufficiently small.

Let Q = F (Ξ) := B(u) and Φ(Ξ) := H(u) with B and H two bounded (and sufficiently smooth)
functionals of the PDE solution from H1

0 (D) to R and Rm, respectively. Then, for any 0 < ε < e−1

there exists an h > 0 and an N ∈ N, resp. {N`} ⊂ N, such that

Cε
(
Q̂RE
q,h,typ

)
≤ C


(Zε)−2−d/2, if typ = MC,

(Zε)−2, if typ = ML,

(Zε)−1+δ−d/2, if typ = QMC, for any δ > 0.

Proof. Since the unnormalised weight function wu,h(ξ) = exp
(
− 1

2‖y−H(uh(ξ))‖2Σ
)

and the prod-
uct Fh(ξ)wu,h(ξ) = B(uh(ξ)) exp

(
− 1

2‖y − H(uh(ξ))‖2Σ
)

are both sufficiently smooth, nonlinear
functionals of the PDE solution, the extension of Theorem 5.2.5 referred to in Remark 5.2.7(a)
applies and it is possible to prove analogues of Corollaries 5.4.5, 5.4.7 and 5.4.10 for nonlinear
functionals to bound the right hand side of (5.5.8). For a full proof of this extension see [Scheichl,
Stuart, Teckentrup, 2017].

Since by definition q(ξ) > 0 when p(ξ) > 0, we have Z > 0. Thus, provided
∥∥Q̂RE

q,h,N

∥∥
L∞(Ω)

<∞,

we can apply Lemma 5.5.5 and deduce that

Cε
(
Q̂RE
q,h,typ

)
≤ C

(
CZε
(
Q̂typ
w,h

)
+ CZε

(
Ẑtyp
h

))
.

Note that to compensate the factor Z−2 in (5.5.8) we need to scale the required tolerances ε for
the individual estimators for the numerator and the denominator by Z.

It remains to verify
∥∥Q̂RE

q,h,N

∥∥
L∞(Ω)

< ∞. From the assumptions on B and H we deduce that

there exist two constants MF ,MΦ < ∞, such that |Fh(ξ)| ≤ MF and ‖Φh(ξ)‖Σ ≤ MΦ, for any
ξ ∈ [−1, 1]s and for any h > 0. Thus, recalling that wu,h(ξ) ≤ 1, we have

∣∣Q̂MC
w,h

∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

Fh(ξ(i))wu,h(ξ(i))

∣∣∣∣∣ ≤MF and

ẐMC
h =

1

N

N∑
i=1

wu,h(ξ(i)) ≥ exp
(
−1

2

(
‖y‖2Σ +M2

Φ

))
=: MZ > 0,

and thus
∣∣Q̂RE

q,h,MC

∣∣ ≤MΦ/MZ <∞. The proof for typ = QMC is identical.

For typ = ML, the upper bound follows in the same way. On the other hand, to bound ẐML
h we

can use the nonlinear extension of Theorem 5.2.5 again to obtain, with Y` = wu,h` − wu,h`−1
, that

ẐML
h ≥ ẐMC

h0
−

L∑
`=1

Ŷ MC
`,N`

≥ MZ − C
L∑
`=1

h2
` ,

with a constant C independent of {h`}. Thus, if h0 is sufficiently small, such that
∑L

`=1 h
2
` < MZ/C,

we also have
∣∣Q̂RE

q,h,ML

∣∣ <∞.
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For Q̂RE
q,h,ML, a similar result can also be proved for the case of a lognormal PDE coefficient a

(see again [Scheichl, Stuart, Teckentrup, 2017]).

Example 5.5.9 (Continuation of Example 5.4.12). For a numerical comparison we return again
to the lognormal case of the elliptic PDE with Matérn covariance on D = (0, 1)2 discretised by
piecewise linear FEs. However, in the following experiments we choose ν = 1/2, σ2 = 1 and λ = 0.3,
which is a significantly harder case than the one considered in Example 5.4.12. Due to the low
regularity, in that case it is only possible to prove

‖B(u)−B(uh)‖Lp(Ω;Rm) ≤ Ch

for sufficiently smooth (nonlinear) functionals B : H1
0 (D)→ Rm. Thus, the assumptions in Section

5.4 only hold with α = 1, β = 2 and γ = 2. Thus, the theoretically expected ε-costs in the following
experiments are O(ε−4), O(ε−3) and O(ε−2) for typ = MC, QMC and ML, respectively.

We consider the case of f ≡ 0 and mixed boundary conditions, such that

u(x) = 1, for x1 = 0, u(x) = 0, for x1 = 1, and
∂u

∂x2
(x) = 0, on the rest of the boundary,

leading to a flow of heat (or fluid) from x1 = 0 to x1 = 1. The quantity of interest is the outflow
over the boundary at x1 = 1, which can be computed as

Qh = Guh = −
∫
D
a(x, ω)∇uh(x, ω)>∇wh(x) dx,

for a suitably chosen weight function wh with wh|x1=0 = 0 and wh|x1=1 = 1. The observation
functional Φ : [−1, 1]s → Rm consists of m (local) averages of the PDE solution u at m uniformly
distributed points in D. The data y ∈ Rm is generated (synthetically) from the solution of (5.2.5)
with h∗ = 1/256, adding noise in the form of a realisation of E ∼ N (0,Σ) with Σ = σ2

EI. For more
details see [Scheichl, Stuart, Teckentrup, 2017].

In Figure 5.4, we compare the computational ε-cost for the three ratio estimators – here mea-
sured in terms of arithmetic operations – for h = 1/16, . . . , 1/256, m = 9 and σ2

E = 0.09. The

left figure shows results for ratio estimators with the same random samples used in Q̂typ
w,h and Ẑtyp

h ,
referred to as dependent estimators, while the right figure shows ratio estimators with different
random samples used in Q̂typ

w,h and Ẑtyp
h , referred to as independent estimators.

In Figure 5.5, we show estimates of the discretisation error and of the MC sampling error, for
the numerator and denominator in (5.5.7) individually, as well as for the ratio estimate itself. While
we see clearly that they all converge with the same (predicted) rates, the ratio estimate is several
orders of magnitude bigger. This is due to the factor Z−2 on the right hand side of (5.5.8). Note
that Z → 0 as σ2

E → 0 or as m → ∞. In Figure 5.6, we can see that this is also reflected in the
asymptotic variance σ̃2

pq of the dependent ratio estimators as σ2
E → 0 or as m → ∞. The growth

in the independent ratio estimators is significantly faster.

5.5.3 Data-informed importance distributions – preconditioning

The lack of robustness of the ratio estimator with respect to the prior density q = πX observed
in Example 5.5.9 can be clearly seen when considering again the scaled posterior log-likelihood
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Figure 5.4: Lognormal problem (with ν = 0.5): Comparison of ε-costs (in arithmetic Ops.) for the
ratio estimators Q̂RE

q,h,typ with dependent (left) and independent (right) estimators Q̂typ
w,h and Ẑtyp
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nΨn(x) with Ψn defined in (5.3.5). It was used there to study posterior concentration in the small
noise limit. Note that in that case

Z = Eq[wu(X)] =

∫
Rs

exp
(
−n

2
‖y − Φ(x)‖2Σ

)
πX(x) dx → 0 as n→∞,

and so clearly the bound on the MSE of the ratio estimator in Lemma 5.5.5 explodes with n→∞.
The following lemma shows that not only the bound but in fact the asymptotic variance of the

prior-based ratio estimator explodes as n→∞. We do not include the proof.

Lemma 5.5.10 (Schillings, Sprungk, Wacker, 2020). For a RV X : Ω → Rs and a sufficiently
smooth and measurable F : Rs → R, consider the scaled posterior log-likelihood nΨn(x) with Ψn

defined in (5.3.5). Under the assumptions of Theorem 5.3.3 with p = πX|Y and q = πX , there exist

0 < c < C such that the asymptotic variance σ2
q of Q̂RE

q,N satisfies

cns/2Vp(F (X)) ≤ σ2
q ≤ Cns/2Vp(F (X)) .

Let us now instead consider as the importance distribution the Laplace approximation of the
posterior, i.e. qu is the unnormalised density of LµX|y . It can be shown using Theorem 5.3.3 that

Z = Eq[wu(X)] = Eq
[
pu(X)

qu(X)

]
→ 1 as n→∞ and (5.5.9)

Again this result can be sharpened leading to the following theorem.

Theorem 5.5.11 (Schillings, Sprungk, Wacker, 2020). Under the assumptions of Lemma 5.5.10
with p = πX|Y and q the density of the Laplace approximation LµX|y , for any N ∈ N and δ ∈ [0, 1/2),

nδ
∣∣∣Q̂RE

q,N − Ep[F (X)]
∣∣∣ P−−−−→

N→∞
0 ,

i.e. the error of the Laplace-based ratio estimator converges in probability to zero as n → ∞,
independently of the sample size N and with a rate arbitrarily close to n−1/2.

Example 5.5.12. The following numerical experiment for the elliptic (P)DE on (0, 1) (i.e. for
d = 1), with u|x=0 = u|x=1 = 0 and f(x) = 100x, is taken from [Schillings, Sprungk, Wacker, 2020].
It is a toy example with uniform a, with Ξ ∼ uniform(−1, 1)s, for s = 1, 2, 3, and

`jϕj(x) = (10j)−1sin(jπx).

The data are m = 2 (resp. 7) measurements yk = u(x∗k) of the solution at equally spaced points
x∗k ∈ (0, 1) for s = 1, 2 (resp. 3) with measurement noise En ∼ N (0, (100n)−1I) for n ∈ N. The
quantity of interest is Q = u(0.5).

In Figure 5.7, we see the lack of robustness of the prior-based ratio estimator, as well as the
convergence and robust behaviour of the Laplace-based estimator as n→∞.

It is also possible to use other preconditioners. For example, in

• S. Dolgov, K. Anaya-Izquierdo, C. Fox, R. Scheichl, Approximation and sampling of multi-
variate probability distributions in tensor train decomposition, Stat. Comput. 30:603, 2020,
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Figure 5.7: The estimated root mean square error (RMSE) of Q̂RE
q,QMC for q = πX (top) and

Laplace-based importance sampling (bottom) using a randomised lattice rule with 8192 points
averaged over 64 random shifts, for s = 1, 2, 3 and for n = 102, 103, . . . , 1010.

we have used TT-cross approximations, i.e. low-rank tensor approximations described in
[HDAUQ, Chap. 7], of the unnormalised posterior density pu ∝ πX|Y as the unnormalised im-
portance distribution qu. By increasing the ranks in the low-rank approximation, it is possible to
make wu(x) arbitrarily close to 1. This will be discussed in more detail in Section 5.7.

Example 5.5.13. Here, we just show how the TT-cross approximation improves the efficiency of
the ratio estimator for the elliptic PDE over a prior-based ratio estimator and how it compares to
MCMC-based estimators (more details on those in Section 5.6.2). The setup is almost identical
to that in Example 5.5.9, except that log a is modelled as a (Karhunen-Loève like) expansion
with independent uniform instead of independent Gaussian coefficients. The observation operator
Φ : H1

0 (D) → Rm and the quantity of interest are the same. We use the same randomised lattice
rule, m = 9 measurements and a noise E ∼ N (0, 1

100I). For details see [Dolgov et al., 2020].
In Figure 5.8, we compare the relative sampling errors of various estimators, plotted against the

number of samples and also against CPU time. In particular, we compare the TT-based and the
prior-based ratio estimators with QMC rules, qRE(prior) and qRE(TT) resp., with three Markov
chain Monte Carlo (MCMC) estimators: DRAM [Haario et al, 2001], MALA [Roberts, Tweedie,
1996] and a Metropolis-Hastings algorithm with independent proposals drawn from the TT ap-
proximation of the posterior distribution, MetH(TT). We observe the better rate of convergence of
almost O(N−1) for the QMC-based ratio estimators and also how much the TT-based precondi-
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Figure 5.8: Estimated RMSEs of Q̂RE
q,QMC for q = πX (qRE(prior)) and TT-based importance sam-

pling (qRE(TT)), plotted against number of samples N (left) and CPU time in seconds (right). The
estimators are also compared to MCMC estimators based on TT-proposals (MetH(TT)), DRAM
and MALA. (The dashed line indicates the discretisation error for the chosen FE mesh size h.)

tioning helps both in the case of the ratio estimator and in the MCMC case.

5.6 The Markov chain Monte Carlo method

The basic idea of this method is to compute a sequence of RVs (Xj)j∈N, such that

Xj
d−−−→

i→∞
X ∼ µX|y (5.6.1)

Under appropriate conditions it is possible in this setting to prove a strong law of large numbers
and a central limit theorem (as for iid samples in Prop. 5.4.1), in particular if the sequence of RVs
comes from a Markov chain (a well-studied class of time-discrete stochastic processes).

5.6.1 Basic concepts of Markov chain theory

Let H be a separable Hilbert space.

Definition 5.6.1. A Markov chain in H is a sequence of H-valued RVs Xj : Ω→ H, satisfying
the Markov property, i.e.,

P(Xj+1 ∈ A|X1, . . . , Xj) = P(Xj+1 ∈ A|Xj) P-a.s.,

for each j ∈ N and A ∈ B(H) (i.e., the state Xj+1 of a Markov chain only depends on the previous
state Xj and not on the entire history of the chain).

An important special case are homogeneous Markov chains.

Definition 5.6.2. (a) A map K : H ×B(H)→ [0, 1] is called transition or Markov kernel if
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(i) for all x ∈ H ist K(x, ·) is a probability measure on (H,B(H)), and

(ii) for all A ∈ B(H) ist K(·, A) is a measurable functional from H to [0, 1].

(b) A Markov chain (Xj)j∈N is homogeneous, if there exists a transition kernel K, such that
for all j ∈ N, x ∈ H and A ∈ B(H)

K(x,A) = P(Xj+1 ∈ A | Xj = x) P-a.s.

Thus, the transition kernelK of a homogeneous Markov chain provides the transition probability
from the jth state Xj to the next state Xj+1 of the Markov chain.

We will only consider homogeneous Markov chains. Their properties can be expressed as prop-
erties of their transition kernel. We therefore introduce the following notions.

Definition 5.6.3. Let K be a Markov kernel on H and let ν ∈ P(H). Then we denote by νK the
probability measure on (H,B(H)) given by

(νK)(A) :=

∫
H
K(x,A)ν( dx) for all A ∈ B(H). (5.6.2)

Moreover, we define recursively, for j ∈ N, the Markov kernel Kj on H by

Kj(x,A) :=

∫
H
Kj−1(x′, A)K(x, dx′) for all x ∈ H, A ∈ B(H). (5.6.3)

In this notation, we can express the distribution of the jth state Xj of a Markov chain with
transition kernel K and initial distribution X1 ∼ ν simply by Xj ∼ νKj−1.

Remark 5.6.4. The definition of νK is an abuse of notation, since K denotes a Markov kernel but
in νK it plays the role of a mapping from P(H) to P(H). Also, it seems odd to place ν on the left
hand side of K instead of writing Kν. The reason for this is that, in the special case of a discrete
state space H, with |H| = M – where Markov chains have been studied first – the transition kernel
K is simply a (row) stochastic matrix K ∈ [0, 1]M×M and thus for a (column) vector ν ∈ [0, 1]M

of initial probabilities, the vector given by νK describes the distribution of the next state of the
Markov chain.

Definition 5.6.5. (a) Let µ ∈ P(H) and let K be the transition kernel of a Markov chain
(Xj)j∈N in H. The measure µ is called an invariant measure of the Markov chain or
invariant with respect to K if

µ = µK (5.6.4)

(b) The transition kernel K and the corresponding Markov chain (Xj)j∈N are called µ-reversible
if they satisfy the so-called detailed balance condition for all x, x′ ∈ H, i.e.,

K(x, dx′)µ( dx) = K(x′, dx)µ( dx′) , (5.6.5)

where equality holds in the sense of measures on H ×H.

Reversibility means that provided Xj ∼ µ the jump from Xj = x to Xj+1 = x′ has the same
probability as the reverse jump from Xj = x′ to Xj+1 = x, and (5.6.5) is equivalent to

P(Xj ∈ A,Xj+1 ∈ B) = P(Xj ∈ B,Xj+1 ∈ A), for all A,B ∈ P(H).

This property is easier to verify than invariance (5.6.4) itself and it we have the following result.
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Proposition 5.6.6. Let µ ∈ P(H) and let K : H × B(H) → [0, 1] be a µ-reversible transition
kernel. Then µ is invariant with respect to K.

Proof. Let A ∈ B(H). Then, it follows from (5.6.5) that

(µK)(A) =

∫
H
K(x,A)µ( dx) =

∫
H

∫
A
K(x, dx′)µ( dx)︸ ︷︷ ︸
=K(x′, dx)µ( dx′)

=

∫
H

∫
A
K(x′, dx)µ( dx′)

=

∫
A

∫
H
K(x′, dx)µ( dx′) =

∫
A
K(x′, H)︸ ︷︷ ︸

=1

µ( dx′) =

∫
A

1 µ( dx′) = µ(A).

If the transition kernel K : H × B(H) → [0, 1] of a Markov chain is understood as a linear
operator from P(H) to P(H), then (5.6.4) simply means that µ is a fixed point of K and the
Markov chain is a fixed point iteration. Classical convergence results for Markov chains rely on this
point of view. They show that K is a contraction and apply the Banach Fixed Point Theorem.

However, instead we now introduce a notion of geometric convergence of Markov chains to their
invariant distribution.

Definition 5.6.7. A Markov chain (Xj)j∈N in H with transition kernel K is L2
µ(H)-geometrically

ergodic if there exists a number r ∈ [0, 1) such that for any probability measure ν which has a
density dν

dµ ∈ L
2
µ(H) w.r.t. µ

DTV(νKj , µ) ≤ Cνrj for all j ∈ N .

Example 5.6.8. Consider again a Markov chain in a discrete state space with M states and a
row-stochastic matrix K ∈ [0, 1]M×M representing its transition kernel. Then,

∑M
j=1Kij = 1 for

all i = 1, . . . ,M , and the vector of all ones e is a right eigenvector of K to the eigenvalue 1. The
corresponding left eigenvector µ is the invariant measure. In fact, it is easy to see that the spectral
radius of K is 1. If all entries of K are strictly between 0 and 1 then K is called irreducible
and it follows from the Perron-Frobenius Theorem that 1 is in fact dominant, i.e. a simple
eigenvalue strictly larger in modulus than all other eigenvalues of K.

Let the distribution of the initial state of the Markov chain be ν ∈ RM . Then, the distribution
νj := νKj−1 of the jth state represents the jth iterate of the power method to find the eigenvector
corresponding to the dominant eigenvalue of K, normalised such that e>νj = 1. It is easy to see
that the power method converges geometrically to µ:

Let λ1, . . . , λM be the eigenvalues of K with 1 = λ1 > |λ2| ≥ |λ3| ≥ . . . ≥ |λM | and corre-
sponding left eigenvectors µ = v1, v2, . . . , vM . They form an orthonormal basis of RM and thus
ν =

∑M
m=1 αmvm for some α1, . . . , αM ∈ R. If we assume that α1 > 0, then we see easily that

νj+1 =
νKj

‖νKj‖1
=

∑M
m=1 λ

j
mαmvm∑M

m=1 |λm|j |αm|
=

α1µ+
∑M

m=2 λ
j
mαmvm

|α1|
(

1 +
∑M

m=2 |λm|j |αm/α1|
) → µ as j →∞,

since |λm| < 1 for m ≥ 2. The denominator can be bounded below by α1. Thus,

‖νj+1 − µ‖1 ≤
M∑
m=2

|λm|j
∣∣∣∣αmα1

∣∣∣∣ ≤
(

M∑
m=2

∣∣∣∣αmα1

∣∣∣∣
)
|λ2|j

and the Markov chain converges geometrically with rate r = |λ2|.
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Remark 5.6.9. In fact, this link between the spectrum of the transition kernel and of the associated
Markov operator and the geometric ergodicity of the Markov chain is also a key concept in the
convergenve analysis of Markov chains on general state spaces, leading to the concept of the so-
called spectral gap, which we will come back to below. However, already for Markov chains in
continuous state space, such as Rn, we can distinguish between geometric ergodicity as in Def. 5.6.7
with a constant Cν that depends on the initial distribution ν and uniform ergodicity as in the
example above, i.e., that there exists a (uniform) constant C <∞ for all initial distributions ν.

If the distribution of Xj converges to µ, then the Markov chain (Xj)j∈N can be used for ap-
proximate sampling from µ, leading to the very powerful concept of Markov chain Monte Carlo
methods for the computation of expectations. In particular, the expectation Eµ[F (X)] of a function
F : H → R of X w.r.t. µ can be approximated by

Q̂MCMC
N,N0

:=
1

N

N∑
j=1

F (Xj+N0), (5.6.6)

where N is the sample size and N0 is a so-called burn-in parameter to decrease the influence of
the initial distribution. In fact, a strong law of large numbers and also a central limit theorem hold
for Q̂MCMC

N,N0
under appropriate assumptions.

Theorem 5.6.10 (Central Limit Theorem for reversible Markov chains). Let (Xj)j∈N be a µ-
reversible and L2

µ(H)-geometrically ergodic Markov chain and let F be µ-measurable. Then
√
N
(
Q̂MCMC
N,N0

− Eµ[F (X)]
)

d−−−−→
N→∞

N (0, σ2
F )

where σ2
F := limN→∞NV

(
Q̂MCMC
N,N0

)
denotes the asymptotic variance, which in this case satisfies

σ2
F := V

(
F (X1)

)
+ 2

∞∑
j=1

cov
(
F (X1), F (X1+j)

)
< ∞. (5.6.7)

A proof of Theorem 5.6.10 is beyond the scope of this course, but we can motivate the specific
form (5.6.7) of the asymptotic variance. We have

V
(
Q̂MCMC
N,N0

)
= V

 1

N

N∑
j=1

F (Xj+N0)

 =
1

N2

N∑
j=1

N∑
k=1

cov
(
F (Xj+N0), F (Xk+N0)

)
=

1

N2

N∑
j=1

V
(
F (Xj+N0)

)
+

1

N2

∑
j 6=k

cov
(
F (Xj+N0), F (Xk+N0)

)
.

If we now assume that (Xj)j∈N is µ-reversible and X1 ∼ µ, then Xj ∼ µ for any j ∈ N, which
further implies that (Xj , Xj+k) follows the same distribution as (X1, X1+k), for all j, k ∈ N. Hence,

V(F (Xj)) = V(F (X1)) and cov
(
F (Xj+N0), F (Xk+N0)

)
= cov

(
F (X1), F (X1+|j−k|)

)
and we get

V
(
Q̂MCMC
N,N0

)
=

1

N
V
(
F (X1)

)
+

2

N

N∑
j=1

cov
(
F (X1), F (X1+j)

)
.

Of course, the assumption X1 ∼ µ is rather academic and, in general, not given in practice.
However, since the Markov chain in Theorem 5.6.10 is assumed to be L2

µ(H)-geometrically ergodic,
the distribution of its jth state Xj converges exponentially fast to µ as j →∞.
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5.6.2 The Metropolis-Hastings Markov chain Monte Carlo method

We will now describe a generic algorithm to (approximately) sample from distributions µ that are
difficult to sample from directly, e.g. because they are only known in unnormalised form, such
as the posterior distribution µX|y in a Bayesian inverse problem. It is based on a Markov chain
of proposals and rejection sampling, and was first proposed in 1953 by Metropolis and co-authors
before being generalised in 1970 by Hastings. It is considered to be one of the ten most important
algoritms of the 20th century.

We focus again first on finite dimensional H = Rn. Let µ ∈ P(Rn) with µ( dx) ∝ p(x) dx.

Definition 5.6.11 (Proposal distribution). Let Q : Rn×B(Rn)→ [0, 1] be a Markov kernel on Rn
with a transition density q : Rn × Rn → [0,∞) such that

Q(x,A) =

∫
A
q(x, x′) dx′ for all A ∈ B(Rn).

The Markov kernel Q is called the proposal kernel.

Given this proposal kernel we are now able to define the Metropolis-Hastings algorithm
that allows to sample from the target distribution µ. It is defined in Algorithm 1. The function
α : Rn × Rn → [0, 1] in (5.6.8) is called the acceptance probability. The special choice of α has
the desired effect that the resulting Markov chain has µ as its invariant measure, as the following
proposition shows.

Algorithm 1 (Metropolis–Hastings Algorithm).

Input: Proposal kernel Q with transition density q, initial distribution ν ∈ P(Rn).
Output: Realisations (xj)j∈N of a Markov chain (Xj)j∈N.

1 Draw a realisation x1 ∼ ν.

2 for j = 1, 2, . . . do

3 Given the current state Xj = xj , draw a realisation x′ from Q(xj , ·).
4 Compute the acceptance probability

α(xj , x
′) := min

(
1,
p(x′) q(x′, xj)

p(xj) q(xj , x′)

)
. (5.6.8)

5 Draw an independent sample uj+1 ∼ uniform[0, 1] and set

xj+1 =

{
x′, if uj+1 ≤ α(xj , x

′),

xj , otherwise.

6 end for

Proposition 5.6.12. The transition kernel K : Rn × B(Rn)→ [0, 1] of the Markov chain (Xj)j∈N
produced by Algorithm 1 with proposal kernel Q and acceptance probability α in (5.6.8) is given by

K(x, dx′) = α(x, x′)Q(x, dx′) +

(
1−

∫
Rn
α(x, x′′)Q(x, dx′′)

)
δx( dx′), (5.6.9)

114

[Draft of October 6, 2021. Not for dissemination.]



where δx ∈ P(Rn) denotes the Dirac-measure at x ∈ Rn, that is, δx(A) = 1A(x) for all A ∈ B(Rn).
The Metropolis kernel K is µ-reversible, and thus µ is invariant with respect to K.

Proof. We first show that the Metropolis kernel K is of the form (5.6.9). By definition

K(x,A) = P(Xj+1 ∈ A | Xj = x).

We only consider proposal kernelsQ with smooth density q and note that in that case the probability
that x′ = x, i.e. that we propose x given Xj = x is zero. In that case it suffices to study the cases
P(Xj+1 = x | Xj = x), i.e., the probability that the proposal is rejected, and P(Xj+1 = A | Xj = x)
for x /∈ A, i.e., the proposal x′ ∈ A and x′ is accepted.

The rejection probability for a proposal is exactly 1− α(x, x′) with x′ ∼ Q(x, dx′). Thus,

P(Xj+1 = x | Xj = x) =

∫
Rn

(1− α(x, x′))Q(x, dx′) = 1−
∫
Rn
α(x, x′)Q(x, dx′).

On the other hand, the probability that P(Xj+1 = A | Xj = x) for x /∈ A is

P(Xj+1 = A | Xj = x) =

∫
A
α(x, x′)Q(x, dx′).

Combining these two cases we obtain (5.6.9).
To show detailed balance, we consider first A,B ∈ B(Rn) with A ∩ B = ∅. W.l.o.g. we can

assume that p(x)q(x, x′) > 0 for all x, x′ ∈ Rn (otherwise we simply have to restrict the integrations
below accordingly). Since A ∩B = ∅ we have∫

A×B
K(x, dx′)µ( dx) =

∫
A

∫
B
α(x, x′)Q(x, dx′)µ( dx)

=
1

c

∫
A

∫
B

min

(
1,
p(x′) q(x′, x)

p(x) q(x, x′)

)
p(x) q(x, x′) dx′ dx

=
1

c

∫
A

∫
B

min
(
p(x) q(x, x′), p(x′) q(x′, x)

)
dx′ dx

=
1

c

∫
A

∫
B

min

(
p(x) q(x, x′)

p(x′) q(x′, x)
, 1

)
p(x′) q(x′, x) dx′ dx

=

∫
A

∫
B
α(x′, x)µ( dx′)Q(x′, dx)

=

∫
B

∫
A
α(x′, x)Q(x′, dx)µ( dx′)

=

∫
A×B

K(x′, dx)µ( dx′)

If A∩B 6= ∅ we also need to consider rejections, but detailed balance can again be shown similarly,
since P(Xj+1 = x | Xj = x) is clearly symmetric.

The big advantage of the Metropolis-Hastings (MH) algorithm is that we only need to be able
to evaluate the unnormalised density p of the target measure µ and the density q of the proposal
kernel Q. The proposal density is often chosen to be very simple, e.g., symmetric, such that

q(x, x′) = q(x′, x) ∀x, x′ ∈ Rn. (5.6.10)
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In that special case, the acceptance probability simplifies to

α(x, x′) := min

(
1,
p(x′)

p(x)

)
. (5.6.11)

The ’rule’ (5.6.11) can be interpreted such that x′ is definitely accepted (i.e. with probability 1)

if p(x′) ≥ p(x), and if p(x′) < p(x) it is accepted with probability p(x′)
p(x) . However, importantly, in

comparison to pure rejection sampling, when a proposal is rejected we include the previous state xj
again as state xj+1, i.e. we increase the ’weight’ of that state due to its relatively high probability
density (at least when compared to the density of the proposed state x′).

A poopular proposal kernel is the following.

Example 5.6.13 (Gaussian random walk). The proposal kernel Q : Rn ×B(Rn)→ [0, 1] is chosen
to be

Q(s;x, ·) = N (x, s2I), (5.6.12)

where s > 0 is the step size parameter that can be optimised or calibrated. A well established
rule of thumb (which also has some theoretical foundations) is that

s should be chosen such that ᾱ :=

∫
Rn
α(x, x′) Q(s;x, dx′)µ( dx) ≈ 0, 21, (5.6.13)

where ᾱ is called the mean acceptance rate which can be estimated on the basis of a short trial run
of the Markov chain in practice.

The proposal kernel Q(s; ·, ·) has a transition density

q(s;x, x′) ∝ exp

(
− 1

2s2
‖x′ − x‖2

)
and is thus clearly symmetric, i.e., it satisfies (5.6.10).

Theorem 5.6.14. Let p be the unnormalised density of the target measure µ ∈ P(Rn). If the
proposal kernel Q in Algorithm 1 is such that

p(x′) > 0 implies q(x, x′) > 0, for all x ∈ Rn, (5.6.14)

and if
P
(
α(xj , X

′) = 1
)
< 1, for all j ∈ N, (5.6.15)

then the Markov chain (Xj)j∈N produced by the MH algorithm is L2
µ(Rn)-geometrically ergodic and

the Central Limit Theorem 5.6.10 applies.

Remark 5.6.15. Note that condition (5.6.14) on the proposal distribution is similar to the condi-
tion required on the importance distribution q for the ratio estimator in Lemma 5.5.4. Condition
(5.6.15), on the other hand, guarantees that the Markov chain is aperiodic. However, it is some-
what academic, since there is not much point in applying the MH algorithm, when the proposal
distribution is so good that proposed states are accepted a.s.
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Figure 5.9: The unnormalised posterior density from Example 5.6.16.

Example 5.6.16. Let us consider the MH algorithm for a simple one dimensional posterior dis-
tribution. In particular, we consider a RV X : Ω → R with prior distribution X ∼ µX = N (0, 1),
conditioned on the observation y = 4 of Y = X2 + E with E ∼ N (0, 1). Thus,

πX|Y (x|y) ∝ exp
(
−1

2(y − x2)2
)

exp
(
−1

2x
2
)

= exp
(
−1

2 [(y − x2)2 + x2]
)
,

see also Figure 5.9.
Let us use the MH algorithm with random walk proposal kernel Q(s; ·, ·) defined in (5.6.12) to

sample from πX|Y (x|y). The acceptance probability is

α(x, x′) = min

(
1,
πX|Y (x′|y)

πX|Y (x|y)

)
= min

(
1,

exp
(
−1

2 [(4− (x′)2)2 + (x′)2]
)

exp
(
−1

2 [(4− x2)2 + x2]
) )

.

The criterion (5.6.13) is satisfied for a step size of roughly s = 1.5. As the initial state, we choose
x1 = 0, i.e. ν = δ0, and show in Figure 5.10 a realisation (xj)j∈N of the Markov chain produced
by the resulting MH algorithm. In Figure 5.11, we also show a histogram of relative frequencies
averaged over the path (xj)j∈N of the Markov chain compared to the true, normalised posterior
density and observe a very good agreement.

5.6.3 Extension to infinite dimensions

Let us briefly discuss the extension to a general, possibly infinite-dimensional, separable Hilbert
space H. Except for the acceptance probability α in (5.6.8), all the elements of the MH algorithm
in Algorithm 1 were not specific to Rn.

In particular, if µ ∈ P(H), ν ∈ P(H) and Q : H × B(H) → [0, 1] are the target measure, a
measure for the initial state and a proposal kernel on H, respectively, the only remaining question
is how to choose α, such that the Markov chain produced by Algorithm 1 is µ-reversible. With the
probability measures ρ, ρ> ∈ P(H ×H) defined as

ρ( dx, dx′) := Q(x, dx′)µ( dx) and ρ>( dx, dx′) := ρ( dx′, dx), (5.6.16)

the following proposition can be proved similarly to Proposition 5.6.12.
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Figure 5.10: A path of the Markov chain produced in Example 5.6.16.

Figure 5.11: The normalised posterior density for Example 5.6.16 (red curve) and the histogram of
the realisation of the Markov chain from Figure 5.10.
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Proposition 5.6.17. If the Radon-Nikodym derivative dρ>

dρ : H×H → [0,∞) exists and we replace
the acceptace probability (5.6.8) in Algorithm 1 by

α(xj , x
′) = min

(
1,

dρ>

dρ
(xj , x

′)

)
, (5.6.17)

then the transition kernel K : H × B(H) → [0, 1] of the Markov chain (Xj)j∈N that is produced by
Algorithm 1 with proposal kernel Q is given by

K(x, dx′) = α(x, x′)Q(x, dx′) +

∫
H

(1− α(x, x′′))Q(x, dx′′) δx( dx′)

and it is µ-reversible.

In infinite-dimensional spaces the existence of dρ>

dρ is not guaranteed. For H = Rn,

ρ( dx, dx′) = Q(x, dx′)µ( dx) = q(x, x′) p(x) dx′ dx ,

so that, provided q(x, x′) p(x) > 0, we have

dρ>

dρ
(x, x′) =

q(x′, x) p(x′)

q(x, x′) p(x)
,

i.e., the two definitions of α in (5.6.17) and (5.6.8) agree.

A possible way to ensure the existence of dρ>

dρ in infinite dimensions in the case of a posterior
measure µ = µX|y with

dµX|y

dµX
(x) ∝ exp

(
−1

2
‖y − Φ(x)‖2Σ

)
=: exp

(
−M(x)

)
,

is to choose a proposal kernel Q that is prior-reversible, i.e.,

η( dx, dx′) := Q(x, dx′)µX( dx) = Q(x′, dx)µX( dx′) =: η>( dx, dx′) . (5.6.18)

Multiplying both sides with exp
[
−M(x)−M(x′)

]
, this implies

exp(−M(x′))Q(x, dx′)µX|y( dx)︸ ︷︷ ︸
=ρ( dx, dx′)

= exp(−M(x))Q(x′, dx)µX|y( dx′)︸ ︷︷ ︸
=ρ>( dx, dx′)

.

Thus, dρ>

dρ is well-defined (under resonable conditions on the observation operator Φ) and

α(x, x′) = min

(
1,

dρ>

dρ
(x, x′)

)
= min

(
1, exp

(
M(x)−M(x′)

))
(5.6.19)

One way to trivially obtain prior-reversibility is an independence sampler with Q(x, dx′) =
µX( dx′), independently of x, which uses independent draws from the prior as proposals in Algo-
rithm 1. However, this will not work well in practice if the data is informative and the posterior
concentrates only on part of the support of µX .

A more efficient alternative can be obtained through a slight modification of the Gaussian
random walk proposal kernel from Example 5.6.13.
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Proposition 5.6.18 (pCN proposals). Let X be a RV on H with Gaussian prior µX = N (0, C)
and let µX|y ∈ P(H) be a posterior distribution of the usual form with additive Gaussian likelihood,
such that

µX|y( dx) ∝ exp(−M(x))µX( dx), with M(x) =
1

2
‖y − Φ(x)‖2Σ .

Then, Algorithm 1 with the so-called preconditioned Crank-Nicolson (pCN) proposal kernel

Q(s;x, ·) := N
(√

1− s2 x, s2C
)
, for s ∈ (0, 1), (5.6.20)

and acceptance probability

α(x, x′) = min
(
1, exp

(
M(x)−M(x′)

))
(5.6.21)

produces a µX|y-reversible Markov chain.

Proof. To see thatQ(s;x, ·) in (5.6.20) is prior-reversible, consider η( dx, dx′) = Q(s;x, dx′)µX( dx)
and let X,W be two independent samples from µX = N (0, C). Then,(

X
X ′

)
:=

[
I 0√

1− s2I sI

](
X
W

)
=

(
X√

1− s2X + sW

)
∼ η .

As a linear combination of Gaussians, the RV (X,X ′) is jointly Gaussian, and as in (5.3.3), it
follows that

η = N
([

0
0

]
,

[
C

√
1− s2C√

1− s2C C

])
,

which is symmetric and independent of the order of the two RVs X and X ′. Thus, η = η>.

The assumption that µX = N (0, C) in Prop. 5.6.18 is crucial. The result is not true in general.

Remark 5.6.19. In practice, we never work with infinite-dimensional distributions. However, the
classical Gaussian random walk in Example 5.6.13 is not prior-reversible and its acceptance prob-
ability is not well-defined in H = Rn in the limit as n → ∞. In fact, the step size s to achieve
ᾱ ≈ 0.21 tends to 0 as n→∞, so that the proposal distribution degenerates and the convergence
of the algorithm becomes very poor.

In contrast, MH algorithms that are well-defined also in the infinite-dimensional limit, such as
the pCN algorithm in Proposition 5.6.18, typically lead to a dimension-independent convergence
and are therefore suitable also for very high dimensions n of the state space.

5.6.4 Efficient proposal kernels and multilevel MCMC

There are a number of more efficient and more cutting-edge proposal distributions, but to describe
those would go beyond the scope of this course. Research in these directions is also at the centre
of interest in both our research groups in Heidelberg.

Another promising direction which is at the heart of our research is the extension of the multi-
level idea to MCMC, but again we will not have the tim to cover this; for details see

• T.J. Dodwell, C. Ketelsen, R. Scheichl, A.L. Teckentrup, Multilevel Markov chain Monte
Carlo, SIAM Review 61:509–545, 2019.
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5.7 Variational methods

Contrary to MCMC methods, variational inference is based on optimization instead of sampling.
The general idea can be described as follows: Let H be a variational family of probability mea-
sures on Rn. To approximate the posterior µX|y, we determine as a surrogate the best approximation
within the class H w.r.t. the KL-divergence

ρ∗ ∈ argminρ∈HDKL(ρ‖µX|y). (5.7.1)

Depending on the choice of H, in general such ρ∗ need not exist or be unique. However, if it does
exist, it can be used in place of µ|X|y approximate the quantities we are interested in, such as the
conditional mean EµX|y [X] ≈ Eρ∗ [X]. For this reason the family H has to be chosen such that
expectations Eρ[f ] for ρ ∈ H are easy and cheap to compute (this is losely referred to as being
“tractable”). This is for example the case, if we have a method of computing iid samples from ρ,
as we may then approximate Eρ[f ] with a Monte Carlo estimate.

Example 5.7.1. Set H := {N (µ,Σ) : µ ∈ Rm, Σ ∈ Rm×m SPD}. Then (5.7.1) corresponds to
fitting a Gaussian to the posterior w.r.t. the KL-divergence. Since a Gaussian is uniquely determined
through its expectation and covariance, we merely need to determine µ ∈ Rm and Σ ∈ Rm×m. In
practice this is done by minimizing DKL(ρ‖µX|y) with optimization methods such as gradient
descent or—in particular for large datasets and high-dimensional parameters—stochastic gradient
descent. Note that (5.7.1) will in general not yield the same result as the Laplace approximation
(5.3.4).

In this section we concentrate on the finite dimensional case and let the parameter X ∈ Rn,

the data y ∈ Rm, and the posterior µX|y � λn with density πX|y(x) =
πX,Y (x,y)
Z(y) =

πY |x(y)πX(x)

Z(y) , and
normalization constant

Z(y) =

∫
Rn
πX,Y (x, y) dx =

∫
Rn
πY |x(x)πX(x) dx (5.7.2)

as in Chapter 4.

5.7.1 ELBO

The normalization constant Z(y) is also referred to as the model evidence. Recall that y 7→
Z(y) = πY (y) is the marginal density of the data. Assume that ρ � λn for all ρ ∈ H and denote
fρ(x) = dρ

dλn
(x). The objective function to be minimized in (5.7.1) then equals

DKL(ρ‖µX|y) = Eρ
[
log

(
fρ
πX|y

)]
= Eρ[log(fρ)]− Eρ[log(πX,Y (·, y))] + log(Z(y)), (5.7.3)

where, as earlier, we use the notation Eρ[F ] =
∫
F (x) dρ(x). With

ELBO(ρ) := Eρ[log(πX,Y (·, y))]− Eρ[log(fρ)],

the optimization problem (5.7.1) can be reformulated as

argminρ∈HDKL(ρ‖µX|y) = argmaxρ∈H ELBO(ρ),

121

[Draft of October 6, 2021. Not for dissemination.]



with the equality being an equality of sets in case there are multiple minimizers and maximizers.
By Jensen’s inequality for concave functions,

ELBO(ρ) = Eρ
[
log

(
πX,Y (·, y)

fρ

)]
≤ log

(
Eρ
[
πX,Y (·, y)

fρ

])
= log(Z(y)).

Therefore ELBO(ρ) is a lower bound of the logarithm of the model evidence; hence the acronym
ELBO (evidence lower bound). This could also be deduced from 0 ≤ DKL(ρ‖µX|y) = log(Z(y))−
ELBO(ρ).

Remark 5.7.2. In principle another distance or divergence apart from the KL-divergence could be
used in (5.7.1), but the KL-divergence has the advantage that the resulting optimization problem
can be formulated as maximizing ELBO(ρ), which is independent of (the in practice unknown
constant) Z(y).

5.7.2 CAVI

In this section we consider coordinate ascent mean-field variational inference (CAVI).
To simplify the optimization problem (5.7.1), one can choose a variational family H which

factorizes over individual variables: H = {⊗nj=1ρj : ρj ∈ Hj} for certain classes Hj of probability
measures on R. Note that this corresponds to the assumption of the unknown parameters (Xj)

n
j=1

being independent. Assuming ρj � λ and setting fρj :=
dρj
dλ , the density function fρ of ρ = ⊗nj=1ρj

becomes

fρ(x1, . . . , xn) =

n∏
j=1

fρj (xj).

The surrogate ρ∗ of µX|y in (5.7.1) can in this case capture marginal densities of the posterior,
but it cannot capture correlation between the different parameters. Due to the type of ansatz, the
method is referred to as mean field variational inference.

Remark 5.7.3. More generally, one can partition {1, . . . , n} via 1 = i1 < · · · < im = n + 1 and
consider fρ(x1, . . . , xn) =

∏m−1
j=1 fj(xij , . . . , xij+1−1).

The coordinate ascent algorithm tries to optimize ELBO(ρ) = ELBO(⊗nj=1ρj) by repeatedly
iterating through all j = 1, . . . , n, each time only updating (i.e. maximizing in) ρj . To describe the
procedure in more detail let us first introduce the notation

E−j [f ](xj) :=

∫
Rn−1

f(x) dρ1(x1) . . . dρj−1(xj−1) dρj+1(xj+1) . . . dρn(xn)

for f : Rn → R and x = (x1, . . . , xn)> ∈ Rn. Then E−j [f ] is a function of xj . Fixing ρi for all
i 6= j, we write

ρ∗j := argmaxρj∈Hj ELBO(ρ) = argmaxρj∈Hj Eρ[log(πX,Y )]− Eρ[log(fρ)].

If Hj is chosen as the set of all probability measures on R which have a density (i.e. are absolutely
continuous w.r.t. λ), then the argmax can be expressed explicitly:

Lemma 5.7.4. With the above choice of Hj it holds for fρ∗j :=
dρ∗j
dλ that

fρ∗j (xj) ∝ exp (E−j [log(πX,Y )])

in case exp(E−j [log(πX,Y )]) ∈ L1(R).
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Proof. Due to fρ(x) =
∏n
j=1 fρj (xj) holds Eρ[log(fρ)] =

∑n
j=1 Eρj [log(fρj )] and therefore

ρ∗j = argmaxρj∈Hj Eρ[log(πX,Y )]− Eρj [log(fρj )]

= argmaxρj∈Hj Eρj [E−j [log(πX,Y )]]− Eρj [log(fρj )]

= argmaxρj∈Hj Eρj [log(exp(E−j [log(πX,Y )]))]− Eρj [log(fρj )]

= argmaxρj∈Hj −Eρj
[
log

(
fρj

exp(E−j [log(πX,Y )])

)]
. (5.7.4)

The last expression in (5.7.4) is up to a constant equal to the negative KL-divergence between
ρj and the probability measure with density proportional to exp(E−j [log(πX,Y )]) (the constant is
log(

∫
R exp(E−j [log(πX,Y )]) dxj) and does not depend on ρj). Since the KL-divergence between two

measures is nonnegative, and it is equal to 0 if and only if they are the same, this concludes the
proof.

This leads to Alg. 2.

Algorithm 2 CAVI; input: tolerance, πX,Y

while ELBO(ρ) > tolerance do
for j = 1, . . . , n do

set fρj ∝ exp(E−j [log(πX,Y )])
end for
compute ELBO(ρ)

end while

5.7.3 Transport Maps

As mentioned before, the optimization problem (5.7.1) only yields a useful result ρ∗, in case the
probability measures ρ ∈ H are such that they allow for simple computation of quantities like
EµX|y [X] ≈ Eρ∗ [X]. For this reason, variational methods are often applied with somewhat simple
variational familiesH such as in Example 5.7.1, which are not able to capture more complex features
of the posterior.

Transport maps provide a general approach which is in principle suitable for arbitrarily complex
posteriors. Set

H := {T]η : T ∈ T }, (5.7.5)

where η � λn is a fixed reference probability measure on Rn (typically η ∼ N (0, I)), and T is
a family of transport maps, which we here assume to be bijective maps T : Rn → Rn such that
T ∈ C1 and also T−1 ∈ C1 (i.e. T is a diffeomorphism). Recall that the pushforward measure is
defined as T]η(A) := η(T−1(A)), and in this section we’ll also use the pullback measure defined via
T ]η(A) := η(T (A)). The optimization problem (5.7.1) can then be equivalently stated as finding

T ∗ := argminT∈T DKL(T]η‖µX|y) = argminT∈T DKL(η‖T ]µX|y),

where the second inequality will be shown in (5.7.7). The desired quantity in (5.7.1) is then ρ∗ =
T ∗] η. We will next discuss how T ∗ can be used to compute or approximate Eρ∗ [X] ≈ EµX|y [X]—our
main goal in Bayesian inference. Afterwards we will show that T satisfying T]η = µX|y exists
(under certain assumptions on η and µX|y), thus justifying this approach.
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Sampling using measure transport

Note that for any A ∈ B(Rn), a RV S ∼ η and a bijection T : Rn → Rn

P[T (S) ∈ A] = P[S ∈ T−1(A)] = η(T−1(A)) = T]η(A).

Thus
S ∼ η ⇒ T (S) ∼ T]η. (5.7.6)

Hence, with the minimizer T ∗ in (5.7.5), an approximation to the conditional mean EµX|y [X] is
obtained by the Monte Carlo estimate

EµX|y [X] ≈ ET ∗] η[X] ≈ 1

N

N∑
j=1

T ∗(Sj), Sj ∼ η.

Having computed T ∗, it is therefore easy to approximate the conditional mean.
Next, let us write down the optimization problem (5.7.5) in terms of densities. To this end

assume η � λn and denote fη = dη
dλn

. As pointed out in Rmk. 3.2.25 we have

dT]ρ

dλn
(x) = fη(T

−1(x)) det dT−1(x),

where dT : Rn → Rn×n denotes the Jacobian matrix of T . Similarly with the density πX|y of µX|y

dT ]µX|y

dλn
(x) =

d(T−1
] µX|y)

dλn
(x) = πX|y(T (x)) det dT (x).

Hence, using Thm. 3.2.24,

DKL(T]η‖µX|y) =

∫
Rn

log

(
fη(T

−1(x)) det dT−1(x)

πX|y(x)

)
dT]η(x)

=

∫
Rn

log

(
fη(x) det dT−1(T (x))

πX|y(T (x))

)
dη(x)

=

∫
Rn

log

(
fη(x)

πX|y(T (x)) det dT (x)

)
dη(x)

= DKL(η‖T ]µX|y). (5.7.7)

With πX,Y (x, y) = πX|y(x)Z(y) the optimization problem reads: Find

argminT∈T

∫
Rn

log(fη(x))− log(πX,Y (T (x), y))− log(det dT (x)) + log(Z(y)) dη(x)

= argminT∈T

∫
Rn

log(fη(x))− log(πX,Y (T (x), y))− log(det dT (x)) dη(x),

where this optimization problem is again independent of the constant Z(y). We emphasize once
more, that as earlier depending on the choice of T this argmin need neither exist nor be unique in
general.
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In practice T is chosen as some parametrization of possible transport maps, for instance using
polynomial expansions or neural networks with a suitable network architecture. The problem is
then solved by performing gradient descent (or other optimization techniques) on the approximate
objective

1

N

N∑
j=1

log(fη(Sj))− log(πX,Y (T (Sj), y))− log(det dT (Sj))

with iid samples Sj ∼ η. This optimization problem is in general nonconvex and highly nontrivial
to solve. We summarize this strategy in Alg. 3.

Algorithm 3 Approximate CM computation using transport; input: fη, πX,Y , n

T̃ ← argminT∈T Ex∼η[log(fη)− log(πX,Y (T (x), y))− log(det dT (x))]
Sj ∼ η iid for j = 1, . . . , n
return 1

n

∑n
j=1 T̃ (Sj)

Remark 5.7.5. Note that in the general form (5.7.1), every ρ ∈ H needs to be such that we can
easily sample from it in order to compute a Monte Carlo approximation. Using the transport maps
approach (5.7.5), due to (5.7.6) this automatically holds as long as we can sample from η.

Triangular transports

In this section we show the existence of transport maps pushing forward a reference measure to a
target. We denote in the following by µ a target measure on Rn. For the moment we can think of
µ as the posterior µX|y, however we’ll later also consider the target µY,X .

In the following lemma, we write F [−1] : [0, 1]→ R for the inverse CDF, i.e.

F [−1](a) = inf{x ∈ R : F (x) ≥ a}.

As earlier, for a set A ∈ B(R) we write F−1(A) = {x : F (x) ∈ A}.

Lemma 5.7.6 (Monotone transport in 1d). Let η, µ be two probability measures on R with CDFs

Fη : R → [0, 1] and Fµ : R → [0, 1], and let η be atomless. Then T := F
[−1]
µ ◦ Fη is nondecreasing

and satisfies T]η = µ.

Proof. We have Fη(x) = η((−∞, x]) and Fµ(x) = µ((−∞, x]). Since η is atomless, Fη : R → [0, 1]
is continuous with limx→−∞ Fη(x) = 0 and limx→∞ Fη(x) = 1. Hence for a ∈ (0, 1), F−1

η ([0, a]) =
{x ∈ R : Fη(x) ≤ a} is the closed interval (−∞, xa] where xa = max{x ∈ R : Fη(x) = a}. Thus
η(F−1

η ([0, a])) = η((−∞, xa]) = Fη(xa) = a for all a ∈ (0, 1), implying that (Fη)]η = λ|[0,1] (the
Lebesgue measure on [0, 1]).

Next we show (F
[−1]
µ )]λ|[0,1] = µ. We have F

[−1]
µ : [0, 1]→ R, and for every x ∈ R

(F [−1]
µ )−1((−∞, x]) = {a ∈ [0, 1] : F [−1]

µ (a) ∈ (−∞, x]}

= {a ∈ [0, 1] : F [−1]
µ (a) ≤ x}

= {a ∈ [0, 1] : a ≤ Fµ(x)}.
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The last equality follows by equivalence of F
[−1]
µ (a) ≤ x and a ≤ Fµ(x), and this implies (F

[−1]
µ )]λ|[0,1] =

µ. In all (F
[−1]
µ )](Fη)]η = µ, i.e. T]η = µ. The map T is nondecreasing as a composition of two

nondecreasing functions.

Remark 5.7.7. One can show that the nondecreasing transport in Lemma 5.7.6 satisfying T]η = µ
is η-a.e. unique. If we drop the assumption of T being nondecreasing, then T satisfying T]η = µ is
in general not η-a.e. unique (exercise: come up with a counterexample).

The above lemma shows the existence of a transport map pushing forward η to µ for two
measures on R. Next, we generalize this construction to the case of two measures on Rn. This
then proves the existence of a transport map T such that T]η = µ, and thus justifies the approach
(5.7.5). Again, we emphasize that in general there exist many different T satisfying T]η = µ, and
we only construct one of them.

To do so, we first need to introduce some notation. For simplicity, we assume in the following
that η � λn and µ� λn with continuous and positive probability densities

f :=
dη

dλn
∈ C0(Rn; (0,∞)), g :=

dµ

dλn
∈ C0(Rn; (0,∞)).

The assumption that both densities are positive and continuous is not necessary, but allows to avoid
some technicalities. For a vector x = (x1, . . . , xd)

> ∈ Rn, throughout we will use the notation

x̄k := (x1, . . . , xk)
> ∈ Rk,

in particular x = x̄n.
Let fn = f , gn = g and for every k ∈ {1, . . . , n− 1}

fk(x̄k) :=

∫
Rn−k

f(x̄n) dxk+1 . . . dxn (5.7.8a)

gk(x̄k) :=

∫
Rn−k

g(x̄n) dxk+1 . . . dxn, (5.7.8b)

and with the convention f0 ≡ 1

fkx̄k−1
(xk) :=

fk(x̄k)

fk−1(x̄k−1)
(5.7.8c)

gkx̄k−1
(xk) :=

gk(x̄k)

gk−1(x̄k−1)
. (5.7.8d)

Note that fk : Rk → (0,∞) is simply the marginal density of η in the first k variables x̄k, and
fkx̄k−1

: R → (0,∞) is the density of η in xk conditioned on x̄k−1. Due to
∫
Rk f

k =
∫
Rn f = 1, it

holds 0 < fk−1(x̄k−1) < ∞ for every x̄k−1 so that indeed fkx̄k−1
: R → R is a probability density,

and the same holds true for gkx̄k−1
: R→ R. Here we used that f and g are continuous and positive.

We denote in the following by ηk, µk the corresponding measures on Rk, and by ηkx̄k−1
, µkx̄k−1

the
corresponding measures on R, that is

fk(x̄k) =
dηk

dλk
(x̄k), gk(x̄k) =

dµk

dλk
(x̄k). (5.7.9a)
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and

fkx̄k−1
(xk) =

dηkx̄k−1

dλ
(xk), gkx̄k−1

(xk) =
dµkx̄k−1

dλ
(xk). (5.7.9b)

Since fn = f and gn = g
ηn = η and µn = µ.

We next construct T = (T1, . . . , Tn). Let T1 : R→ R be such that

(T1)]η
1 = µ1. (5.7.10)

Thus T1 pushes forward the marginal of η in the first variable to the marginal of µ in the first
variable. Both of these marginals are probability measures on R, and T1 exists by Lemma 5.7.6.
We set T 1 : R→ R via T 1(x1) := T1(x1).

Inductively, for each k = 2, . . . , d and for each (x̄k−1) ∈ Rk−1 we let Tk(x̄k−1, ·) : R→ R be the
transport satisfying

(Tk(x̄k−1, ·))]ηkx̄k−1
= µkTk−1(x̄k−1) (5.7.11)

and set

T k :=

{
Rk → Rk

x̄k 7→ (T1(x1), . . . , Tk(x̄k−1))>.

Note that Tk(x̄k−1, ·) : R→ R pushes forward the marginal of η in the kth variable conditioned on
x̄k−1, to the marginal of µ in the kth variable conditioned on T k−1(x̄k−1). Existence of Tk(x̄k−1, ·) :
R→ R follows again by Lemma 5.7.6.

In all this yields a map T := Tn = (T1, . . . , Tn)> : Rn → Rn which is triangular in the sense
that the kth component Tk depends only on x̄k = (x1, . . . , xk)

> i.e.

T (x1, . . . , xn) =


T1(x1)

T2(x1, x2)
...

Tn(x1, . . . , xn)

 .

Theorem 5.7.8 (Knothe-Rosenblatt transport). Under the above conditions it holds T]η = µ.

Proof. We will show inductively that
T k] η

k = µk. (5.7.12)

For k = n this proves T]η = µ.
For k = 1, (5.7.12) holds by definition of T1 = T 1 in (5.7.10). To show the induction step, by

Thm. 3.1.12 it suffices to show that for all A = ×kj=1Aj with Aj ∈ B(R) holds

T k] η
k(A) = µk(A) ⇔ ηk({x̄k ∈ Rk : T k(x̄k) ∈ A}) = µk(A)

which is equivalent to ∫
Rk
1A(T k(x̄k)) dηk(x̄k) =

∫
Rk
1A(ȳk) dµk(ȳk). (5.7.13)
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For the rest of the proof we show (5.7.13) under the induction hypothesis that (5.7.13) holds
for k − 1 ≥ 1, which by density of indicator functions in L1(Rk−1, µk−1;R) is equivalent to∫

Rk−1

ψ(T k−1(x̄k−1)) dηk−1(x̄k−1) =

∫
Rk−1

ψ(ȳk−1) dµk−1(ȳk−1) (5.7.14)

for all ψ ∈ L1(Rk−1, µk−1;R).
With ψ(ȳk−1) := 1×k−1

j=1Aj
(ȳk−1) and φ(yk) := 1Ak(yk) (5.7.13) reads∫

Rk
ψ(T k−1(x̄k−1))φ(Tk(x̄k)) dηk(x̄k) =

∫
Rk
ψ(ȳk−1)φ(yk) dµk(ȳk).

Using the definition of the densities in (5.7.8)∫
Rk
ψ(T k−1(x̄k−1))φ(Tk(x̄k)) dηk(x̄k) =

∫
Rk
ψ(T k−1(x̄k−1))φ(Tk(x̄k))f

k(x̄k) dx̄k

=

∫
Rk−1

ψ(T k−1(x̄k−1))fk−1(x̄k−1)

∫
R
φ(Tk(x̄k))

fk(x̄k)

fk−1(x̄k−1)
dxk dx̄k−1

=

∫
Rk−1

ψ(T k−1(x̄k−1))fk−1(x̄k−1)

(∫
R
φ(Tk(x̄k)) dηkx̄k−1

(xk)

)
dx̄k−1.

Using the definition of Tk in (5.7.11) we have (Tk(x̄k−1, ·)]ηkx̄k−1
= µk

T̄k−1(x̄k−1)
and thus∫

R
φ(Tk(x̄k)) dηkx̄k−1

(xk) =

∫
R
1Ak(Tk(x̄k)) dηkx̄k−1

(xk)

= µkT̄k−1(x̄k−1)(Ak)

=

∫
R
φ(yk)g

k
T̄k−1(x̄k−1)(yk) dyk

=: G(T̄ k−1(x̄k−1)).

By the induction hypthesis (5.7.14) and the definition of G∫
Rk
ψ(T k−1(x̄k−1))φ(Tk(x̄k)) dηk(x̄k) =

∫
Rk−1

ψ(T k−1(x̄k−1))G(T̄ k−1(x̄k−1)) dηk−1(x̄k−1)

=

∫
Rk−1

ψ(ȳk−1)G(ȳk−1) dµk−1(ȳk−1)

=

∫
Rk−1

ψ(ȳk−1)

∫
R
φ(yk)g

k
ȳk−1

(yk) dyk g
k−1(ȳk−1) dȳk−1

=

∫
Rk
ψ(ȳk−1)φ(yk) dµk,

where for the last equality we used dµk

dλk
= gk by (5.7.9), and gkȳk−1

(yk)g
k−1(ȳk−1) = gk(ȳk) by

(5.7.8). This shows (5.7.13) and concludes the proof.
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Conditional sampling using triangular transports

In the previous section we interpreted the target µ as the posterior density µX|y so that T]η = µX|y,
with the reference η being a measure on Rn if X ∈ Rn. For Bayesian inference it is also interesting
to consider the case µ = µY,X , i.e. the target is the joint measure of the data and the parameter,
and T]η = µY,X for some reference measure η on Rm+n with X ∈ Rn, Y ∈ Rm. The reason is,
that, as we saw in the construction of the Knothe-Rosenblatt map, its components push forward
conditional densities to conditional densities. Since the posterior is a conditional density, this yields
a method to sample from the posterior. We emphasize that this is a specific feature of the triangular
Knothe-Rosenblatt map (and does not hold for other types of transport maps).

To illustrate the idea, we consider the simplest case where m = n = 1, i.e. the parameter X ∈ R
and the data Y ∈ R are one-dimensional. Suppose that T : R2 → R2 pushes forward a reference
η = η1 ⊗ η2 (e.g. ηj ∼ N (0, 1)) to the joint µY,X . Then T = (T1, T2) as in the previous subsection
satisfies (cp. (5.7.10), (5.7.11))

(T1)]η1 = µY , (T2(y, ·))]η2 = µX|T1(y).

Thus for a RV S ∈ R
S ∼ η2 ⇒ T2(T−1

1 (y), S) ∼ µX|y.

In other words, if we have T as in (5.7.10)-(5.7.11) such that T](η1 ⊗ η2) = µY,X , we can use it
to construct iid samples from the posterior µX|y by sending iid samples Sj ∼ η2 through the map

x 7→ T2(T−1
1 (y), x) (keep in mind that η2 can be chosen at will, and we choose it such that we can

easily sample from it, e.g. η2 ∼ N (0, 1)). A similar construction also works in the more general
case where X ∈ Rn, Y ∈ Rm.

5.8 Sequential Monte Carlo methods & Bayesian filtering

In this section, we are going to present an outlook to data assimilation problems. This part is
mainly based on the references listed below.

• P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68: 411-436, 2006.

• G. Evensen, The Ensemble Kalman filter: theoretical formulation and practical implementa-
tion, Ocean Dynamics, 53(4):343-367, 2003.

• K. Law, A. M. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction,
Springer, 2016.

• S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge
University Press, 2015.

• T. Sullivan, Introduction to Uncertainty Quantification, Springer, 2015.

In the data assimilation problem we deal with the combination of two information sources:
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• Dynamical system: We consider a time-dependent physical system described through our
mathematical model. In particular, let Z = (Zj)j∈N be a Markov chain describing the dy-
namical system through

Zj+1 = Hj(Zj) + ξj , j ∈ N, (5.8.1)

with Z0 ∼ π0 for some probability distribution π0 on Rn. The dynamics are driven by the
possibly nonlinear mappings Hj : Rn → Rn and perturbed by additive Gaussian noise. The
noise is modelled as i.i.d. sequence ξ = (ξi)i∈N of random variables with ξ1 ∼ N (0,Σ) for
some symmetric and positive definite Σ ∈ Rn×n. Further, we assume that Z0 and ξ0 are
stochastically independent. We refer to the equation (5.8.1) as the (stochastic) dynamical
system and denote its current state Zj as signal.

• Observations: We assume to have access to a time series of observations of the underlying
stochastic dynamical system. The time series of observations Y = (Yi)i∈N are described
through the observation model

Yj+1 = hj+1(Zj+1) + ηj+1, j ∈ N, (5.8.2)

where hj : Rn → RK are mapping the signal to the observation space RK . The measurement
is assumed to be perturbed by additive Gaussian noise given as i.i.d. sequence η = (ηi)i∈N
of random variables with η1 ∼ N (0,Γ) for some symmetric and positive definite Γ ∈ RK×K .

We aim to use both the dynamical system as well as the incoming observations to construct
sequential estimates of the current signal or even to predict the future signal. We call the task of
determining information about the signal Z, given the observation Y , data assimilation problem.
The common tools in data assimilation are based on Bayesian models.

Example 5.8.1. We consider a Rn-valued stochastic differential equation described by

dZt = b(Zt) dt+ σ(Zt) dWt, Z0 ∼ π0, t ∈ [0, T ],

where b : Rn → Rn denotes the drift coefficient and σ : Rn → Rn×n denotes the diffusion coefficient.
The diffusion is driven by the Rn-valued Brownian motion W = (Wt)t≥0. For simplicity, we assume
that b and σ are both global Lipschitz continuous, such that unique existence of strong solutions
is verified. A common numerical approximation method is the Euler–Maruyama method, which
approximates the solution of the SDE recusively by

Zj+1 = Zk + (tj+1 − tj) · b(Zj) + σ(Zj) · (Wtj+1 −Wtj ).

Here, we have used a partition of the time interval [0, T ] given by

0 = t0 < t1 < · · · < tN = T.

We note that the increments of the Brownian motion are multivariate Gaussian distributed

Wtj+1 −Wtj ∼ N (0, (tj+1 − tj)Id).

Suppose that ∆ = tj+1 − tj for all j and σ(z) = R ∈ Rn×n for all z ∈ Rn, then our stochastic
dynamical system is described by

Zj+1 = Zj + ∆ · b(Zj) + ξj , ξj ∼ N (0,∆(RR>)).
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The observation model might be described by an observation matrix

h(·) = O ·, O ∈ RK×n.

For example, we can choose an index subset I = {i1, . . . , iK} ⊂ {1, . . . , n} and define

Ol,j =

{
1, j = il

0, j 6= il
, l = 1, . . . ,K, j = 1, . . . , n.

This special choice of O observes the components I of the vector Z.

5.8.1 Prediction, filtering and smoothing

We assume to have access to the prior information about the unknown signal given by the probabil-
ity density function π0. With the application of the Chapman–Kolmogorov equation for the Markov
chain constructed in (5.8.1), we can compute the marginal distribution πZj of Zj sequentially by

πZj+1(dz′) = P(Zj+1 ∈ dz′) =

∫
Rn
πj(dz

′ | z)πZj (dz).

Since we assume that the distribution of Z0 has Lebesgue density π0 and the underlying noise is
Gaussian, the transition density function can be derived explicitly by

πj(dz
′ | z) =

1

det(2πΣ)
exp(−1

2
‖z′ −Hj(z)‖2Σ) dz′.

Similarly we can derive the marginal pdf of the observation Yj conditioned on the state Zj = z

πYj (dy | z) =
1

det(2πΓ)
exp(−1

2
‖y − hj(z)‖2Γ) dy.

Given a realization y[1:Nobs] = (y1, . . . , yNobs
) of the time series of observations Y [1:Nobs] =

(Y1, . . . , YNobs
), Nobs ≥ 1, the data assimilation problem is the computation of the conditional

distribution of Zj given y[1:Nobs]:

πZj |y[1:Nobs](dz) = P(Zj ∈ dz | Y [1:Nobs] = y[1:Nobs]). (5.8.3)

Definition 5.8.2. We call the task of computing (5.8.3)

(i) prediction problem if j > Nobs,

(ii) filtering problem if j = Nobs,

(iii) and smoothing problem if j < Nobs.

Depending on the corresponding case, we denote the distribution in (5.8.3) as prediction, filtering
and smoothing distribution.

Through the connection to Bayesian inverse problems, we will focus on filtering problems.
The filtering problem splits into two steps, where for the first step we are updating the filtering
distribution using only the stochastic dynamical system (5.8.1), while in the second step we apply
Bayes’ theorem to incorporate information from the incoming data.
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Definition 5.8.3. Given the filtering distribution πZj |y[1:j] , we refer the prediction step to the
computation of the marginal distribution of the next state through

πZj+1|y[1:j](dz) = P(Zj+1 ∈ dz | Y [1:j] = y[1:j]) =

∫
Rn
πj+1(dz | z′)πZj |y[1:j](dz′).

We call the second step Bayesian assimilation step, which is the computation of the filtering
distribution πZj+1|y[1:j+1] via Bayes’ theorem

πZj+1|y[1:j+1](dz) = P(Zj+1 ∈ dz | Y [1:j+1] = y[1:j+1]) =
πYj+1(yj+1 | z)πZj+1|y[1:j](dz)∫

Rn πYj+1(yj+1 | z)πZj+1|y[1:j](dz)
.

Summarizing, given the current filtering distribution πZj |y[1:j] , we construct a prior distribu-
tion πZj+1|y[1:j] using our knowledge about the stochastic dynamical system and update w.r.t. the
incoming data Yj+1 = yj+1 via Bayes’ theorem.

5.8.2 Linear Kalman filter

Under linear and Gaussian assumptions on the underlying stochastic dynamical system and the
corresponding observations, the Kalman filter solves the filtering problem exactly. We consider
the signal described through

Zj+1 = FZj + ξj , j ∈ N (5.8.4)

and the observations
Yj+1 = AZj+1 + ηj , j ∈ N, (5.8.5)

where F ∈ L(Rn,Rn) and A ∈ L(Rn,RK). Furthermore, we assume that the initial distribution is
Gaussian, i.e. π0 = N (m0, C0). Since the forward maps are assumed to be linear and the noise to
be Gaussian, the filtering distribution remains Gaussian

πZj |y[1:j] = N (mj , Cj).

Given the initial mean m0 ∈ Rn and symmetric, positive definite covariance C0 ∈ Rn×n, the Kalman
filter computes the mean mj and covariance Cj of the filtering distribution recursively.

(i) prediction step: Given the mean mj and covariance Cj of iteration j, we first update based
on the stochastic dynamical system (5.8.4). Since we have assumed that ξj is independent of
Zj ∼ N (mj , Cj), the prediction step computes

m̂j+1 = Fmj , Ĉj+1 = FCjF
> + Σ.

(ii) Bayesian assimilation step: We set the prior distribution πZ = N (m̂j+1, Ĉj+1) and update
the mean and the covariance according to Bayes’ Theorem (compare Theorem 5.3.1.)

mj+1 = m̂j+1 + Ĉj+1A
>(AĈj+1A

> + Γ)−1(yj+1 −Am̂j+1)

Cj+1 = Ĉj+1 − Ĉj+1A
>(AĈj+1A

> + Γ)−1AĈj+1

(5.8.6)
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Defining the Kalman gain
Kj = ĈjA

>(AĈjA
> + Γ)−1

we can write the Bayesian update step as

mj+1 = m̂j+1 +Kj+1(yj+1 −Am̂j+1)

Cj+1 = Ĉj+1 −Kj+1AĈj+1

As we describe the filtering distribution through N (mj , Cj) we need to ensure that Cj stays positive
definite.

Lemma 5.8.4. Assume that Z0 ∼ N (m0, C0) for some symmetric and positive definite covariance
matrix C0 ∈ Rn×n. Then the matrix Cj resulting from (5.8.6) is symmetric and positive definite.

Proof. The proof is left as an exercise (Hint: apply Woodbury matrix identity).

Prior:

mj �→ m̂j+1

Prediction step:
(based on dynamical system)

Cj �→ Ĉj+1

Update step:
(based on observations)

Measurements

m̂j+1 �→ mj+1

Ĉj+1 �→ Cj+1

Filtering:

πj+1 = N (mj+1, Cj+1)

π0 = N (m0, C0)

Figure 5.12: Summary of the linear Kalman filter method.

5.8.3 Extended Kalman filter

The extended Kalman filter is a generalization of the linear Kalman filter to nonlinear dynamical
systems. In order to apply the introduced Kalman filter, we firstly linearize the nonlinear dynamical
system and then apply the Kalman filter to the resulting linear system. This method results in a
Gaussian approximation to the filtering distribution. For strongly nonlinear dynamical systems the
resulting filtering distribution might be poorly approximated through Gaussian measures. How-
ever, the extended Kalman filter can be viewed as best linear unbiased estimate for the linearized
dynamical system, which can lead to a good approximation of the original nonlinear system.
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We assume that the signal and the observations are described by

Zj+1 = H(Zj) + ξj , Yj+1 = AZj+1 + ηj , j ∈ N,

where H : Rn → Rn is a possibly nonlinear mapping and A ∈ L(Rn,RK). We note the the fol-
lowing ideas can straightforwardly be extended to a nonlinear observation model. Given the initial
distribution π0 = N (m0, C0), the extended Kalman filter approximates the filtering distribution by
N (mj , Cj) as follows

(i) linearization step: Given the mean mj and covariance Cj , we build the linearized approx-
imation

Zj+1 = FjZj + bj + ξj , j ∈ N,

with
Fj := DH(mj) and bj = H(mj)− Fjmj .

(ii) prediction step: We predict the mean and the covariance by

m̂j+1 = Fjmj + bj , Ĉj+1 = FjCjF
>
j + Σ.

(iii) Bayesian assimilation step: We again set the prior distribution πZ = N (m̂j+1, Ĉj+1) and
update the mean and the covariance according to Bayes’ Theorem

mj+1 = m̂j+1 + Ĉj+1A
>(AĈj+1A

> + Γ)−1(yj+1 −Am̂j+1)

Cj+1 = Ĉj+1 − Ĉj+1A
>(AĈj+1A

> + Γ)−1AĈj+1

5.8.4 Ensemble Kalman filter

An alternative method to overcome the nonlinearity in the dynamical system is the application
of the ensemble Kalman filter (EnKF). The EnKF has been originally introduced by G. Evensen
(2003) and can be viewed as a Monte Carlo approximation of the Kalman filter. The basic idea
is to use a particle system, initialized by a sample of the prior distribution Z0 ∼ π0, which will
then be updated according to the Kalman filter. Since we do not use any Gaussian assumptions
and approximate the filtering distribution with the particle system empirically, we are now able to
apply the EnKF in nonlinear dynamical systems (5.8.1). For simplicity, we again consider a linear
observation model (5.8.5).

Given the current particle system (v
(m)
j )m=1,...,M of size M , we proceed as follows.

(i) prediction step: We apply the dynamical system to predict the system’s state by

v̂
(m)
j+1 = H(v

(m)
j ) + ξ

(m)
j , m = 1, . . . ,M,

where (ξ
(m)
j )m=1,...,M is an i.i.d. sample of N (0,Σ). The empirical mean and the empirical

covariance are given by

m̂j+1 =
1

M

M∑
m=1

v̂
(m)
j+1, Ĉj+1 =

1

M

M∑
m=1

(v̂
(m)
j+1 − m̂j+1)(v̂

(m)
j+1 − m̂j+1)>. (5.8.7)
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(ii) analysis step: We apply to each particle the linear Kalman filter update corresponding to
a Gaussian approximation. The particles are updated by

v
(m)
j+1 = v̂

(m)
j+1 +Kj+1(ỹ

(m)
j+1 −Av̂

(m)
j+1),

ỹ
(m)
j+1 = yj + η

(m)
j+1, η

(m)
j+1

i.i.d.∼ N (0,Γ).

Kj = ĈjA
>(AĈjA

> + Γ)−1,

where we denote ỹ
(m)
j+1 as perturbed observation and Kj is again the introduced Kalman gain.

The filtering distribution is approximated empirically by

πZj |y1:j (v. ) ≈ π̂j(v. ) =
1

M

M∑
m=1

δ
v

(m)
j

(v. ),

As stated above one advantage of the EnKF is the application in nonlinear dynamical systems.
Furthermore, through the computation of the empirical covariance we save computational costs
compared to updating the covariance in each iteration according to (5.8.6).

Prior:

v
(m)
j �→ v̂

(m)
j+1

Prediction step:
(based on dynamical system)

m̂j+1 =
1
M

∑
v̂
(m)
j+1

Update step:
(based on observations)

Measurements

v̂
(m)
j+1 �→ v

(m)
j+1

Filtering:

π̂j+1 =
1
M

∑
δ
v
(m)
j+1

(v
(m)
0 ) ∼ π0

Ĉj+1 =
1
M

∑
(v̂

(m)
j+1 − m̂j+1)⊗ (v̂

(m)
j+1 − m̂j+1)

Figure 5.13: Summary of the ensemble Kalman filter method.

5.8.5 Particle filters - Sequential Monte Carlo methods

As alternative to the different presented variants of Kalman filters, we briefly introduce the class
of particle filters which can be seen as sequential Monte Carlo method of the filtering distribution
without including Gaussian approximations. To derive the scheme we consider again a Rn-valued
state driven by a stochastic differential equation of the form

dZt = b(Zt) dt+R dWt, Z0 ∼ π0, t ∈ [0, T ],
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and its discrete time approximation

Zj+1 = Zk + ∆ · b(Zj) + ξj , (5.8.8)

where b : Rn → Rn is the drift coefficient,, ∆ > 0 is the time increment, R ∈ Rn×n is symmetric
positive semi-definite and ξj ∼ N (0,∆ · RR>). Furthermore, we consider a possibly nonlinear
observation model

Yj+1 = h(Zj) + ηj , ηj ∼ N (0,Γ).

We can then describe the marginal distribution of the state Zj through its Markov transition kernel

Kj(z,dz
′) = P(Zj+1 ∈ dz′ | Zj = z).

The aim of particle filters is to approximate the filtering distribution empirically with a weighted
particle system by combining the prediction step with ideas from importance sampling. The method

proceeds as follows. We generate an initial particle system Z
(m)
0 ∼ π0, m = 1, . . . ,M and define

initial weights w
(m)
0 = 1

M , m = 1, . . . ,M weighting each particle equally. Using the discrete time
dynamical system we generate prediction for the next state by

Ẑ
(m)
1 = Z

(m)
0 + ∆ · b(Z(m)

0 ) + ξ
(m)
1 , ξ

(m)
1 ∼ N(0,∆ ·RR>)

which follows the marginal distribution K1(Z
(m)
0 ,dz). With the help of these predictions we ap-

proximate the marginals of Z1 empirically by

πZ1(dz) =

∫
Rn
π0(dz′)K1(z′,dz) ≈

M∑
m=1

w
(m)
0 δ

Ẑ
(m)
1

(dz).

Given this empirical approximation we apply an importance sampling step following Bayes’ theorem

πZ1|y[1](dz) =
πY1(y1 | z)∫

Rn πY1(y1 | z)πZ1|y[1](dz)
πZ1(dz) ≈

M∑
m=1

w
(m)
1 δ

Ẑ
(m)
1

(dz),

where we have updated and normalized the weights

w
(m)
1 =

w
(m)
0 πY1(y1 | Ẑ(m)

1 )∑M
m=1w

(m)
0 πY1(y1 | Ẑ(m)

1 )
.

Hence, given the current weighted particle system (w
(m)
j , Ẑ

(m)
j )m=1,...,M we can divide the update

scheme again in a prediction step followed by a Bayesian assimilation step described as follows.

(i) prediction step: Given the current state approximations Ẑ
(m)
j , we first update the particles

based on the stochastic dynamical system (5.8.8) by

Ẑ
(m)
j+1 = Ẑ

(m)
j + ∆ · b(Ẑ(m)

j ) + ξ
(m)
j+1, ξ

(m)
j+1 ∼ N(0,∆ ·RR>)

according to the marginal distribution Kj+1(Ẑ
(m)
j , dz) such that the marginal distribution of

the state Zj+1 can be approximated by

πZj+1(dz) =

∫
Rn
πZj |y[1:j](dz′)Kj+1(z′,dz) ≈

M∑
m=1

w
(m)
j δ

Ẑ
(m)
j+1

(dz).
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(ii) Bayesian assimilation step: Following Bayes’ Theorem we approximate the filtering dis-
tribution by

πZj+1|y[1:j+1](dz) =
πYj+1(yj+1 | z)∫

Rn πYj+1(yj+1 | z)πZj+1|y[1:j](dz)
πZj+1(dz) ≈

M∑
m=1

w
(m)
j+1δẐ(m)

j+1

(dz),

where we have updated and normalized the weights

w
(m)
j+1 =

w
(m)
j πYj+1(yj+1 | Ẑ(m)

j+1)∑M
m=1w

(m)
j πYj+1(yj+1 | Ẑ(m)

j+1)
.

Given the weighted particle system (w
(m)
j+1, Ẑ

(m)
j+1)m=1,...,M in iteration j + 1, we are able to

approximate expectation values for functionals F : Rn → R of the following kind

E[F (Zj+1) | Y [1:j] = y[1:j]] ≈
M∑
m=1

w
(m)
j F (Ẑ

(m)
j+1),

E[F (Zj+1) | Y [1:j] = y[1:j+1]] ≈
M∑
m=1

w
(m)
j+1F (Ẑ

(m)
j+1).

In general, particle filters of this form can be viewed as sequential importance sampling method,
where existing consistency results are based on perfect models and M approaching infinity. In
practical implementations, the generated weights tend to degenerate for small choices of the number
of particles M . To overcome this issue, resampling methods based on the effective sample size have
been considered in the literature.
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Appendix A

Basic Concepts in Functional Analysis

In this appendix we put together the main concepts from functional analysis that will be needed
in this lecture. We recommend the following supplementary references:

• H. Alt, Funktionalanalysis, 6. Auflage, Springer, Berlin, 2012.

• W. Rudin, Functional Analysis, 2nd ed., Mc-Graw-Hill, New York, 1991.

• D. Werner, Funktionalanalysis, 6. Auflage, Springer, Berlin, 2007.

A.1 Normed spaces and bounded linear operators

A.1.1 Normed spaces

In the following X will denote a vector space. We restrict ourselves to vector spaces over the field
K = R. A map ‖ · ‖ : X → [0.∞) is a norm on X, if

(i) ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

(iii) ‖x‖ = 0 iff x = 0.

The norms ‖ · ‖α and ‖ · ‖β are equivalent, if there are constants c1, c2 > 0, such that

c1‖x‖β ≤ ‖x‖α ≤ c2‖x‖β for all x ∈ X .

If dim(X) <∞ all norms on X are equivalent. The constants c1, c2 depend on the dimension of X.

Example A.1.1. The following maps are norms on

(i) X = Rn , n ∈ N:

‖x‖p =

( n∑
j=1

|x|p
)1/p

, 1 ≤ p <∞, and ‖x‖∞ = max
j=1,...,n

|xj | .

(ii) X = lp (:= {(tn) : tn ∈ R,
∑∞

n=1 |tn|p <∞}):

‖x‖p =

( ∞∑
j=1

|x|p
)1/p

, 1 ≤ p <∞, and ‖x‖∞ = max
j=1,...,∞

|xj | .
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(iii) X = Lp(Ω) (:=
{
f : Ω→ K : f messbar,

∫
Ω |f |

pdλ <∞
}

) where Ω ⊂ Rn:

‖f‖p =

(∫
Ω
|f |pdλ

)1/p

, 1 ≤ p <∞, and ‖f‖∞ = ess sup
x∈Ω

|f(x)| .

If ‖ · ‖ is a norm on X, we call the pair (X, || · ‖) a normed space.

A normed space (X, | · ‖X) with X ⊂ Y is said to be continuously embedded in (Y, ‖ · ‖Y ),
denoted by X ↪→ Y , if there is a constant C > 0 such that

‖x‖Y ≤ C‖x‖X for all x ∈ X .

A sequence (xn) ⊂ X converges strongly in X to x ∈ X, denoted xn → x as n→∞, if

lim
n→∞

‖xn − x‖X = 0 .

A subset U ⊂ X is called

• closed, if the limit of any convergent sequence (xn) ⊂ U lies in U , i.e., x ∈ U ;

• compact, if any sequence (xn) ⊂ U has a convergent subsequence (xnk)k≥1 with limit x ∈ U ;

• dense in X, if for any x ∈ X there exists a sequence (xn) ⊂ U with xn → x.

The union of U with the set of all limits of convergent sequences in U is called the closure U of
U . It follows that U is dense in U .

A normed space X is said to be complete, if every Cauchy sequence in X converges. Such a space
X is also called a Banach space. If X is not complete, we denote by X its completion (w.r.t.
the norm ‖ · ‖X).

For x ∈ X and r > 0 we define

• the open ball Ur = z ∈ X : ‖x− z‖X < r and

• the closed ball Br = z ∈ X : ‖x− z‖X ≤ r.

The closed ball at 0 with radius 1 is called the unit ball BX in X. Furthermore, the set U ⊂ X
is called

• open, if for all x ∈ U there exists a r > 0 such that Ur(x) ⊂ U ;

• bounded, if there exists an r > 0 such that U is contained in the closed ball Br(0);

• convex, if for all x, y ∈ U and λ ∈ (0, 1) we have λx+ (1− λ)y ∈ U .

The complement of an open set in a normed space is closed and vice versa.

As a consequence of the norm axioms, all open and closed balls are convex.

A.1.2 Bounded operators

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed spaces, U ⊂ X und F : U → Y a map. We denote by

• D(F ) := U the domain of F ,
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• N (F ) := {x ∈ U : F (x) = 0} the kernel of F ,

• R(F ) := {F (x) ∈ Y : x ∈ U} the range of F .

Furthermore, we say that F is

• continuous in x ∈ U , if for all ε > 0 there exists a δ > 0 such that

‖F (x)− F (y)‖Y < ε for all z ∈ U with ‖x− z‖X < δ;

• Lipschitz continuous, if there exists a L > 0 such that

‖F (x1)− F (x2)‖Y ≤ L‖x1 − x2‖X for all x1, x2 ∈ U .

A map F : X → Y is continuous iff xn → x implies F (xn)→ F (x), and closed, if for any sequence
xn → x with F (xn)→ y it follows that F (x) = y.

If F : X → Y is linear, i.e., F (λ1x + λ2x2) = λ1F (x1) + λ2F (x2) for all x1, x2 ∈ X, λ1, λ2 ∈ R,
then the continuity of F is equivalent with the condition that there exists a constant C > 0 such
that

‖Fx‖Y ≤ C‖x‖X for all x ∈ X . (A.1)

For that reason continuous, linear maps are also called bounded and we speak about a bounded,
linear operator. (To stress this in the following, we will denote such maps with A.)

If Y is complete, then the space of all bounded, linear operators from X to Y , denoted by L(X,Y ),
is a Banach space with the operator norm

‖A‖L(X,Y ) = sup
x∈X\{0}

‖Ax‖Y
‖x‖X

= sup
‖x‖X≤1

‖Ax‖Y

It is equal to the smallest constant C in the definition of continuity in (A.1). As for linear operators
in Rn we say that A is

• injective, if N (A) = {0},
• surjective, if R(A) = Y ,

• bijective, if A is injective and surjective.

If A ∈ L(X,Y ) is bijective, the inverse A−1 : Y → X is bounded iff there exists a c > 0 such that

c‖x‖X ≤ ‖Ax‖Y für alle x ∈ X ,

and ‖A−1‖L(Y,X) = c−1 for the largest possible c. When this is the case follows from the following
fundamental theorem of functional analysis.

Theorem A.1.2 (Closed Graph Theorem). Let X,Y be Banach spaces. A map F : X → Y is
continuous iff F is closed.

Corollary A.1.3. Let X,Y be Banach spaces and A ∈ L(X,Y ) bijective. Then A−1 : Y → X is
continuous.

We consider now sequences of linear operators and distinguish two different notions of convergence:
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A sequence (An) ⊂ L(X,Y ) converges to A ∈ L(X,Y )

• pointwise, if Anx→ Ax for all x ∈ X (strong convergence in Y );

• uniformly, if An → A (strong convergence in L(X,Y )).

Uniform convergence implies pointwise convergence.

Theorem A.1.4 (Banach-Steinhaus). Let X be a Banach space and Y a normed vector space,
and suppose that (Ai)i∈I ⊂ L(X,Y ) is a family of pointwise bounded, linear operators, i.e., for all
x ∈ X there exists Mx > 0 such that supi∈I ‖Aix‖ ≤Mx. Then

sup
i∈I
‖Ai‖L(X,Y ) <∞ .

Corollary A.1.5. Let X,Y be Banach spaces and (An) ⊂ L(X,Y ). Then the following three
statements are equivalent:

(i) (An) converges uniformly on compact subsets of X.

(ii) (An) converges pointwise on X,

(iii) (An) converges pointwise on a dense subset U ⊂ X and supn∈N ‖An‖L(X,Y ) <∞.

Also, if An converges pointwise to A : X → Y then A is bounded.

A.2 Hilbert spaces, compact operators and the Spectral Theorem

Inverse problems can be analysed in Banach spaces, but the theory can be presented more com-
prehensively in Hilbert spaces. It also provides a clearer link to underdetermined or ill-conditioned
linear equation systems in Rn, which have been covered, e.g., in introductory numerical analysis
courses.

A.2.1 Scalar product and weak convergence

Hilbert spaces distinguish themselves from Banach spaces by having one additional structure: a
map 〈·, ·〉 : X ×X → R, called a scalar product, with the properties

(i) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ X, α, β ∈ R,

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X,

(i) 〈x, x〉 ≥ 0 for all x ∈ X, with 〈x, x〉 = 0 iff x = 0.

The skalar product induces a norm
‖x‖X :=

√
〈x, x〉X

that satisfies the Cauchy-Schwarz inequality

|〈x, y〉X | ≤ ‖x‖X‖y‖X .

A Banach space with a skalar product (X, 〈·, ·〉X) is called a Hilbert space.
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Example A.2.1. We can define the following scalar products on

(i) X = Rn, n ∈ N:
〈x, y〉 =

n∑
j=1

xiyi , for all x, y ∈ X;

(ii) X = l2:
〈x, y〉 =

∞∑
j=1

xiyi for all x, y ∈ X;

(iii) X = L2(Ω), Ω ⊂ Rn:
〈f, g〉 =

∫
Ω
fg dλ for all f, g ∈ X .

In all cases the scalar product also induces a canonical norm on X.

The scalar product also allows to define a further notion of convergence: a sequence (xn) ⊂ X
converges weakly (in X) to x ∈ X – we write xn ⇀ x – if

〈xn, z〉X → 〈x, z〉X for all z ∈ X .

It generalises coordinatewise convergence in Rn. In finite dimensional spaces strong and weak
convergence are equivalent. In infinite dimensional spaces, strong convergence implies weak con-
vergence, but the converse is not true. However, if a sequence (xn) converges weakly to x ∈ X and
in addition ‖xn‖X → ‖x‖X , then (xn) converges also strongly to x.

Theorem A.2.2 (Bolzano-Weierstrass). Every bounded sequence in a Hilbert space has a weakly
convergent subsequence.

Conversely, every weakly convergent sequence is bounded.

Let us now consider bounded, linear operators A ∈ L(X,Y ) on Hilbert spaces X,Y . Of particular
interest is the special case Y = R, i.e., the space L(X,R) of bounded, linear functionals on X.

Theorem A.2.3 (Riesz-Fischer). Let X be a Hilbert space. For every functional λ ∈ L(X,R) there
exists a unique zλ ∈ X with ‖zλ‖X = ‖λ‖L(X,R) such that

λ(x) = 〈zλ, x〉X für alle x ∈ X .

This theorem allows to define an adjoint operator A∗ ∈ L(Y,X) for every linear operator A ∈
L(X,Y ) such that

〈A∗y, x〉X = 〈y,Ax〉Y for all x ∈ X, y ∈ Y ,

and

(i) (A∗)∗ = A,

(ii) ‖A∗‖L(Y,X) = ‖A‖L(X,Y ),

(iii) ‖A∗A‖L(X,X) = ‖A‖2L(X,Y ).

If A∗ = A, then A is called self-adjoint.
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A.2.2 Orthogonality and orthogonal systems

A scalar product allows to coin the notion of orthogonality: if X is a Hilbert space, then two
elements x, y ∈ X are orthogonal, if 〈x, y〉X = 0.

For any subset U ⊂ X, the set

U⊥ := {x ∈ X : 〈x, u〉X = 0 for all u ∈ U}

is called orthogonal complement of U in X. It follows from the definition that U⊥ is a closed
subspace of X. In particular, we have X⊥ = {0} and U ⊂ (U⊥)⊥.

If U is a closed subspace of X, then U = (U⊥)⊥ (and thus also {0}⊥ = X). In this case, there
exists an orthogonal decomposition

X = U ⊕ U⊥ ,

i.e., each element x ∈ X can be uniquely decomposed as

x = u+ u⊥, u ∈ U, u⊥ ∈ U⊥ .

The assignment x 7→ u defines a linear operator PU ∈ L(X,X), the orthogonal projection
onto U . It has the following properties:

(i) PU is self-adjoint;

(ii) ‖PU‖L(X,U) = 1 for U 6= {0};

(iii) Id− PU = PU⊥ ;

(iv) ‖x− PUx‖X = minu∈U ‖x− u‖X ;

(v) z = PUx iff z ∈ U and z − u ∈ U⊥.

If the subspace U is not closed, we only have(U⊥)⊥ = U ⊃ U . Thus, for any A ∈ L(X,Y ),

(i) R(A)⊥ = N (A∗) and thus N (A∗)⊥ = R(A),

(ii) R(A∗)⊥ = N (A) and thus N (A)⊥ = R(A∗).

The kernel of a bounded linear operator is always closed and A is injective iff R(A∗) is dense in X.

A set U ⊂ X, consisting of pairwise orthogonal elements, is called an orthogonal system in X.
If

〈x, y〉X =

{
1 for x = y,

0 otherwise,
for all x, y ∈ U,

we speak of an orthonormal system. An orthonormal system is complete, if there exists no
orthonormal system V ⊂ X with U ( V .

Every orthonormal system U ⊂ X satisfies the Bessel inequality∑
y∈U
|〈x, y〉X |2 ≤ ‖x‖2X for all x ∈ X , (A.1)
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with only countably many nonzero terms in the sum. In the case of equality, U is complete and
called an orthonormal basis (ONB) and

x =
∑
y∈U
〈x, y〉X y for all x ∈ X .

Every Hilbert space has an ONB. If the ONB is countable, the Hilbert space is called separable.
In that case, there exists a sequence (un) ⊂ U , such that U = span(un). It follows from the Bessel
inequality that the sequence (un) converges weakly to zero (but not strongly, since ‖un‖X = 1).

Example A.2.4. Let X = L2([0, 1]). An ONB (un) for X is given by

un =


√

2 sin(π(n+ 1)x) n > 0 odd√
2 cos(πnx) n > 0 even

1 n = 0 .

Every closed subspace U ⊂ X has an ONB (un), which can be used to define the orthogonal
projection onto U by

PUx =
∞∑
j=1

〈x, uj〉X uj .

A.2.3 Compact operators and the Spectral Theorem

In the same way as Hilbert spaces are a generalisation of finite dimensional vector spaces, compact
operators are the infinite dimensional analogon of matrices.

An operator A : X → Y is said to be compact, if the image of any bounded sequence (xn) ⊂ X
has a convergent subsequence (Axnk)k≥1 ⊂ Y . An equivalent chatacterisation is as follows: A
is compact iff A maps weakly convergent sequences in X to strongly convergent sequences in Y .
(Such an operator is also called completely continuous.) In general, compact operators will be
denoted by K. Clearly every linear operator is compact if Y is finite dimensional. In particular,
the identity operator Id : X → X is compact iff dim(X) <∞.

Furthermore, the space K(X,Y ) of all compact operators from X to Y is a closed subspace of
L(X,Y ) (and hence a Banach space with the operator norm), and the limit of a sequence of linear
operators with finite dimensional range is also compact. If A,S ∈ L(X,Y ) and at least one of the
two operators is compact, then S ◦ A is also compact. Finally, A∗ is compact iff A is compact
(Schauder Fixed-Point Theorem).

Example A.2.5. A canonical example for compact operators are integral operators.

Let X = Y = L2([0, 1]) and, for a given kernel function k ∈ L2([0, 1] × [0, 1]), consider the linear
operator K : L2([0, 1])→ L2([0, 1]), pointwise defined by

[Kx](t) =

∫ 1

0
k(s, t)x(s)ds for almost all t ∈ [0, 1] .

Fubini’s Theorem guarantees Kx ∈ L2([0, 1]), and using the Cauchy-Schwarz inequality and Fu-
bini’s Theorem again it follows that

‖K‖L(X,X) ≤ ‖k‖L2([0,1]) ,
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which furthermore implies that K is a bounded operator from L2([0, 1]) to L2([0, 1]).

Since the kernel function k ∈ L2([0, 1]2) is measurable, there exists a sequence (kn) ⊂ L2([0, 1]2)
of simple piecewise constant functions such that kn → k in L2([0, 1]2). Let E1, . . . , En be a finite
disjoint partitioning of [0, 1] with |Ei| ≤ cn−1, i = 1, . . . , n. Then we could choose for example

kn(s, t) =
n∑
i,j

aijξEi(s)ξEj (t) ,

with ξE the characteristic function of E ⊂ [0, 1]. If Kn denotes the integral operator with kernel
kn instead of k, then it follows from the linearity of the integral that

‖Kn −K‖L(X,X) ≤ ‖kn − k‖L2([0,1]2) → 0 , as n→∞,

i.e., Kn → K in L(X,X). On the other hand,

[Knx](t) =

∫ 1

0
kn(s, t)x(s)ds =

n∑
j=1

(
n∑
i=1

aij

∫
Ei

x(s)ds

)
ξEj (t)

and thus Knx is a linear combination of the n functions ξEi , i = 1, . . . , n. As the limit of a sequence
(Kn) of linear operators with finite dimensional range, the operator K is compact.

For the adjoint operator K∗ ∈ L(X,X) we have

[K∗y](s) =

∫ 1

0
k(s, t)y(t)dt for almost all s ∈ [0, 1] .

Hence, an integral operator is self-adjoint iff the kernel function is symmetric, i.e., k(s, t) = k(t, s)
for almost all s, t ∈ [0, 1].

The analogy between compact operators and matrices is primarily related to the fact that compact
linear operators have only countably many eigenvalues. (For bounded linear operators that is not
necessarily the case!) We even have the following extension of the Schur decomposition for matrices.

Theorem A.2.6 (Spectral Theorem). Let X be a Hilbert space let K ∈ K(X,X) be self-adjoint.
Then there exists an orthonormal system (un) ⊂ X and a null sequence (λn) ⊂ R \ {0} with

Kx =

∞∑
n=1

λn〈x, un〉Xun for all x ∈ X .

The sequence (un) forms an ONB for R(K).

Letting x = un, we can see that un is an eigenvector corresponding to the eigenvalue λn with
Kun = λnun. Typically, the eigenvalues and the corresponding eigenvectors are ordered such that

|λ1| ≥ |λ2| ≥ . . . ≥ 0 .

It follows that ‖K‖L(X,X) = |λ1|.
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